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Abstract. The calculation of stress fields due to dislocations and hence the forces they
exert on each other is the most time consuming step in dislocation dynamics (DD)
simulations. The fast multipole method (FMM) can reduce the computational cost at each
simulation step from O(N2) to O(N) for an ensemble of N dislocation segments. However,
FMM has not yet been applied to three dimensional DD simulations which take into account
anisotropic elasticity. We demonstrate a systematic procedure to establish this capability by
first obtaining the derivatives of the elastic Green’s function to arbitrary order for a medium
of general anisotropy. We then compute the stress field of a dislocation loop using multipole
expansions based on these derivatives, and analyze the dependence of numerical errors on the
expansion order. This method can be implemented in large scale DD simulations when the
consideration of elastic anisotropy is necessary, for example the technologically important
cases of iron and ferritic steels at high temperatures.

1. Introduction

The behavior of dislocations governs the mechanical properties of crystalline materials. By

studying the evolution of dislocation microstructure, dislocation dynamics (DD) simulations

aim to link the plastic deformation of single crystals with the microscopic dynamics of

individual dislocations. In DD simulations, the dislocation lines are discretized, and

can be represented as a set of nodes connected by short straight segments. Distant

dislocation segments interact via long-range Peach-Koehler forces, and the calculation of

these interactions can pose a severe computational challenge for large systems. For a system

in which the total number of dislocation segments is N , the computational complexity scales

as N2 and is hence very CPU-intensive. The fast multipole method (FMM) can reduce the

computational cost to O(N) [1]. Using isotropic elasticity, LeSar and Rickman performed a

multipole expansion of the interaction energy between dislocations in three dimensions [2],

and Wang et al. gave multipole representations of the elastic fields of dislocation loop

ensembles [3]. Based on LeSar’s and Wang’s mathematical framework, Arsenlis et al.

Wei Cai
Typewritten Text
Model. Sim. Mater. Sci. Eng. resubmitted (2012)



Computing dislocation stress fields in anisotropic elastic media using fast multipole expansions2

implemented the FMM algorithm into their Parallel Dislocation Simulator (ParaDiS) code,

enabling large scale DD simulations to study the plastic behavior of single crystals [4].

Recently Zhao et al. implemented the new version of FMM [5] yielding accelerated stress

field calculations [6].

However, all the implementations mentioned above are based on isotropic elasticity,

while real single crystals are in many cases anisotropic. Under certain conditions, e.g. α-

iron at high temperature [7], isotropic elasticity fails completely, and can no longer be used to

describe the system. There is generally no explicit closed-form expression for the stress field

of a dislocation segment in anisotropic elasticity, and the evaluation of remote dislocation

interactions typically involves the numerical calculation of an integral, or the solution of

an eigenvalue problem [8]. Therefore, anisotropic elasticity-based DD simulations are much

slower than the relatively efficient isotropic DD codes (e.g. by a factor of about 200 [9]), so

the implementation of the FMM is particularly advantageous in this case.

Pang derived the interaction energy between two infinitely long parallel straight

dislocations using anisotropic elasticity, and implemented the FMM for two-dimensional DD

simulations [11]. However, for dislocation configurations of arbitrary geometric complexity

three dimensions are required, and to this end we describe here an FMM implementation

suitable for this task.

The FMM for DD simulations requires the derivatives of the anisotropic elastic Green’s

function. For this purpose, we develop a systematic procedure to calculate these derivatives

to arbitrary order, which is detailed in Appendix A. The numerical algorithms to compute

the Green’s function derivatives are described in Appendix B and Appendix C. Based on

these results, we perform a multipole expansion of the dislocation stress field, which is

described in Section 2. In Section 3 we evaluate the accuracy of our FMM implementation

scheme by studying the effect of expansion orders and investigating discontinuities at field

cell boundaries.

2. Method

2.1. Taylor and multipole expansions

In an infinite homogeneous linear elastic medium with elastic stiffness tensor Cijkl, the stress

σ at x due to a dislocation loop L is given by Mura’s formula [12, 13]:

σij(x) = Cijkl

∮
L
εlnhCpqmnGkp,q(x− x′)bmdx′h (1)

where εlnh is the permutation tensor, and Gkp,q is the first derivative of the Green’s function

Gkp with respect to xq. Only closed loops define σ uniquely, but one can perform the above

integral along a straight finite segment and then sum contributions to determine the unique

field due to a discretized closed polygonal loop.

In isotropic media, equation (1) can be reduced to the following line integral:

σij(x) =
µbn
8π

∫
R,mpp(x− x′)

[
εjmndx′i + εimndx′j

]
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+
µbn

4(1− ν)π

∫
εkmn [R,ijm(x− x′)− δijR,ppm(x− x′)] dx′k (2)

where R,ijk = ∂
∂xi

∂
∂xj

∂
∂xk

R, R = |x− x′|. The FMM scheme of Arsenlis et al. [4] is based on

Taylor expansions of equation (2).

Similarly, we perform Taylor expansions of equation (1) as follows. Consider a

differential segment dx′ with Burgers vector b, whose stress field at a point x is dσij(x),

dσij(x) = Cijkldεkl(x) (3)

dεkl(x) = εlnhCpqmnbmdxhGkp,q(x− x′) (4)

where dεkl(x) is the differential strain field at x. Suppose dx′ and x lie in different cells,

whose centers are x′′ and x′′′ respectively, as shown in Fig. 1.

b

x′′

x′′′

Dislocations source cell

Field cell

x

dx′

2d

L

s

Multipole expansion(m)

Taylor expansion(t)

Figure 1. Differential segment dx′ is located in the source cell centered at x′′ and the
Burgers vector is b. The field point x is in the field cell centered at x′′′. Both cells have
length 2d. The distance between two cell centers is L. We perform multipole expansions for
the source cell and Taylor expansion for the field cell.

By performing a Taylor expansion of Gkp, q(x− x′) for x near x′′′, we arrive at

dεkl(x) =
∞∑
ζ=0

1

ζ!

∑
α+β+γ=ζ

ζ!

α! β! γ!
εlnhCpqmnbmdx′h · (x1 − x′′′1 )α(x2 − x′′′2 )β(x3 − x′′′3 )γ

( ∂

∂x1

)α (
∂

∂x2

)β (
∂

∂x3

)γ
Gkp, q(x− x′)


x=x′′′

(5)

Defining

Mαβγ ≡ (α + β + γ)!

α! β! γ!
(6)

dεαβγkl (x′′′) ≡ εlnhCpqmnbmdx′hG
α, β, γ
kp, q (x′′′ − x′) (7)

Gα, β, γ
kp, q (x′′′ − x′) ≡

( ∂

∂x1

)α (
∂

∂x2

)β (
∂

∂x3

)γ
Gkp, q(x− x′)


x=x′′′

, (8)
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equation (5) becomes

dεkl(x) =
∞∑
ζ=0

1

ζ!

∑
α+β+γ=ζ

Mαβγ · dεαβγkl (x′′′) · (x1− x′′′1 )α(x2− x′′′2 )β(x3− x′′′3 )γ(9)

Using a Taylor expansion for x′ near x′′, equation (7) becomes

dεαβγkl (x′′′) = εlnhCpqmnbmdx′h

∞∑
ξ=0

1

ξ!

∑
a+b+c=ξ

Mabc · (x′1 − x′′1)a(x′2 − x′′2)b(x′3 − x′′3)c

( ∂

∂x′1

)a (
∂

∂x′2

)b (
∂

∂x′3

)c
Gα, β, γ
kp, q (x′′′ − x′)


x′=x′′

(10)

Note that ∂/∂x = −∂/∂x′ and define the differential multipole moment

dηabcmh(x
′′) = bmdx′h · (x′1 − x′′1)a(x′2 − x′′2)b(x′3 − x′′3)c. (11)

Then equation (10) can be rewritten as

dεαβγkl (x′′′) = εlnhCpqmn
∞∑
ξ=0

(−1)ξ

ξ!

∑
a+b+c=ξ

Mabc · dηabcmh(x
′′)

( ∂

∂x1

)a (
∂

∂x2

)b (
∂

∂x3

)c
Gα, β, γ
kp, q (x− x′′)


x=x′′′

= εlnhCpqmn
∞∑
ξ=0

(−1)ξ

ξ!

∑
a+b+c=ξ

Mabc · dηabcmh(x
′′)

Ga+α, b+β, c+γ
kp,q (x′′′ − x′′). (12)

Because dηabcmh is called the multipole moment, we will refer to the above expansion around the

source cell center x′′ as the multipole expansion. Equation (12) thus describes the mapping

from multipole expansion coefficients (dηabcmh) to Taylor expansion coefficients (dεαβγkl ). Now

integrate the strain field contribution dεkl from differential segments dx′ along the dislocation

line, and multiply by the elastic stiffness tensor to obtain

σij(x) = Cijkl

∫
dεkl(x)

= Cijkl
∞∑
ζ=0

1

ζ!

∑
α+β+γ=ζ

Mαβγεαβγkl (x′′′) (x1 − x′′′1 )α(x2 − x′′′2 )β(x3 − x′′′3 )γ

(13)

where

εαβγkl (x′′′) =
∫

dεαβγkl (x′′′)

= εlnhCpqmn
∞∑
ξ=0

(−1)ξ

ξ!

∑
a+b+c=ξ

Mabcηabcmh(x
′′)Ga+α, b+β, c+γ

kp, q (x′′′ − x′′)

(14)

ηabcmh(x
′′) =

∫
dηabcmh(x

′′)

=
∫

(x′1 − x′′1)a(x′2 − x′′2)b(x′3 − x′′3)c bmdx′h (15)
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2.2. Algorithm

In summary, the stress field at x in a cell centered at x′′′ due to dislocation segments in a

cell centered at x′′ can be computed using the following 4 steps. To avoid loss of accuracy in

numerical implementation, we introduce scaled variables (e.g. η̃abcmh) scaling by the half cell

size d.

Step 1. Compute multipole moments at source cell center x′′:

η̃abcmh(x
′′) ≡ ηabcmh(x

′′)

da+b+c
=
∫ (

x′1 − x′′1
d

)a (
x′2 − x′′2

d

)b (
x′3 − x′′3

d

)c
bmdx′h (16)

Step 2. Compute Taylor expansions of the strain field at field cell center x′′′:

ε̃αβγkl (x′′′) ≡ εαβγkl (x′′′) · dα+β+γ

=
∞∑
ξ=0

(−1)ξ

ξ!

∑
a+b+c=ξ

Mabc η̃abcmh(x
′′) · g̃klmh(a, b, c, α, β, γ,x′′,x′′′)(17)

where

g̃klmh(a, b, c, α, β, γ,x
′′,x′′′) = εlnhCpqmn · dξ+ζ ·Ga+α, b+β, c+γ

kp,q (x′′′ − x′′) (18)

is the kernel that converts multipole expansion coefficients η̃mh in the source cell to Taylor

expansion coefficients ε̃kl in the field cell, and

ξ = a+ b+ c

ζ = α + β + γ

Step 3. Compute the strain field at x:

εkl(x) =
∞∑
ζ=0

1

ζ!

∑
α+β+γ=ζ

Mαβγ ε̃αβγkl (x′′′)

(
x1 − x′′′1

d

)α (
x2 − x′′′2

d

)β (
x3 − x′′′3

d

)γ
(19)

Step 4. Compute the stress field at x:

σij(x) = Cijkl εkl(x) (20)

Steps 1 to 4 can be implemented numerically. The kernel g̃klmh is proportional to spatial

derivatives of the Green’s function

Ga+α, b+β, c+γ
kp,q (x′′′ − x′′)

=

( ∂

∂x1

)a+α (
∂

∂x2

)b+β (
∂

∂x3

)c+γ
∂

∂xq
Gkp(x− x′′)


x=x′′′

(21)

Derivations and numerical implementations of the derivatives of the Green’s function are

presented in the Appendices. According to equation (A.16), Ga+α, b+β, c+γ
kp,q (x′′′ − x′′) scales

as 1/Lξ+ζ+2, where L = |x′′′−x′′|. Therefore, dξ+ζ ·Ga+α, b+β, c+γ
kp,q (x′′′−x′′) is well behaved

for arbitrarily high expansion order as long as L > 2d, i.e. when the field cell and the source

cell do not overlap.
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2.3. Truncation of expansion order

The previous section did not define the numerical implementation completely, because the

summations in equations (17) and (19) still include an infinite number of terms. In practice,

we must limit the order of the multipole expansion ξ ≡ a+b+c by a maximum value m, and

the order of the Taylor expansion ζ ≡ α+ β + γ by a maximum value t. Several truncation

schemes exist in the literature.

A simple way to introduce this truncation is to replace the summation in equation. (17)

by
∑m
ξ=0, and to replace the summation in equation (19) by

∑t
ζ=0. This means that for each

multipole moment of order up to m at the center of the source cell, the Taylor expansion

of its strain field of order up to t will be computed at the center of the field cell. This

requires the availability of the derivatives of the Green’s functions of order up to m+ t+ 1,

as illustrated in Fig. 2(a). Suppose that the derivatives of the Green’s function are available

up to order p+1, one still has the freedom to choose the individual values for m and t within

the constraint of m + t = p. Intuitively, we expect the optimal choice that gives the lowest

error would correspond to the case of m ≈ t. Although this truncation scheme has been

used before in DD simulations [4], strictly speaking it is not a correct multipole expansion

at a given order (p), as explained below.

m

t

ζ

ξ0

ξ+ζ=p

m

t

ζ

ξ0

ξ+ζ=p

(a) (b)

Figure 2. (a) In the first truncation scheme, the multiple expansion order satisfies ξ ∈ [0,m]
and the Taylor expansion order satisfies ζ ∈ [0, t]. This requires Green’s function derivatives
up to (p+1)-th order, where p = m+t. (b) In the second truncation scheme, all combinations
of ξ and ζ that satisfy 0 ≤ ξ+ ζ ≤ p are included, so that m = t = p. Filled circles represent
terms included in the expansion, and open circles represent terms that are not included.

The correct way [2] to truncate the expansions at a given order p is to include all

combinations of ξ and ζ that satisfy 0 ≤ ξ + ζ ≤ p, as shown in Fig. 2(b). In this case,

both the maximum multipole expansion order m and the maximum Taylor expansion order t

equal p. Operationally, this means that the summation in equation (19) is replaced by
∑p
ζ=0,

while the summation in equation (17) is replaced by
∑p−ζ
ξ=0. In other words, the maximum
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order to which we Taylor expand the strain field due to a dislocation multipole depends on

the order of this multipole.

We have implemented both truncation schemes and found that, given the same

derivatives of the Green’s function up to order p + 1, the second truncation scheme always

gives lower error (by more than a factor of 4 in our test cases) than the first truncation scheme

(even for the optimal choice of m and t). This can be understood by noticing that all terms

in the expansion with different ξ and ζ but the same ξ + ζ = p are of the same order.‡ All

terms of the same order must be included in order to reach accuracy of that order. Hence

the scheme in Fig. 2(a) is only accurate to order min(m, t), while the the scheme in Fig. 2(b)

is accurate to order p, even though they both make use of Green’s function derivatives up

to order p + 1. Therefore, the scheme shown in Fig. 2(b) is not only preferred, but is the

correct way to truncate the multipole expansions. It is used for the rest of this paper.

Note that the Green’s function derivatives only need be evaluated at x′′′ − x′′, i.e. the

distance vector between cell centers. In the FMM scheme of [4], there are less than 63 = 216

distinct directions for the x′′′ − x′′ vectors (this number can be further reduced by taking

symmetry into account). The Green’s function derivatives along these directions can be

pre-computed before running DD simulations.

3. Results

We implemented the algorithm described above using Matlab [14]. To evaluate the results

given by the fast multipole expansions, we computed the stress field due to a dislocation

loop and compared it with direct calculations obtained using our DDLab code based on

anisotropic elasticity [9] (using the Willis-Steeds-Lothe formula [10]).

Given pre-computed derivatives of the Green’s function up to order n = p + 1, both

the multipole expansion order ξ = a + b + c and the Taylor expansion order ζ = α + β + γ

range from 0 to p. However, for a given multipole moment of order ξ, the Taylor expansion

of its strain field is only evaluated up to order p − ξ. The source and field cells are both

cubes of side 2d, where d is chosen to be 500 Å. The distance between the two cell centers

is L = |x′′′ − x′′|.
The multipole expansion results are expected to converge to the exact solution in the

limit of L/d � 1, i.e. when the two cells are well separated. For the same reason, the

largest error is expected for cells with the smallest value of L/d. In its three dimensional

isotropic FMM implementation, ParaDiS [4] adopts a hierarchical grid structure. As shown

in Fig.3(a), the smallest distance between a field cell and a source cell is L = 4d, for which

(x′′′ − x′′) is along the [1 0 0] direction. We choose this geometry as one of our test cases.

To be specific, we choose x′′ = [0, 0, 0] and x′′′ = [L, 0, 0], with L = 4d. For comparison

‡ The second truncation scheme will also look more natural if we derive the multipole expansions in a
different way. Starting from equation (1), instead of performing a Taylor expansion twice, for x′ and x,
respectively, we can perform one Taylor expansion for x − x′ around x′′′ − x′′. Truncating this Taylor
expansion at order p corresponds to Fig. 2(b).
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L

[1 0 0]

2d

(001)

(010)
(01̄0)

(100)

(1̄00)

(001̄)

(a) (b)

Figure 3. (a) Cell geometries for FMM implementation in ParaDiS [4]. All cells have
length 2d and the source cell is in black. Cells that are nearest neighbors of the source cell
(i.e. within the square in thick lines) are not included in the multipole expansion at the
current level. The closest field cell (gray) included in the multipole expansion corresponds
to L = 4d. (b) A hexagonal dislocation loop connecting all six face centers of the source
cell.

purposes, we also consider another test case in which L = 40d. In both cases, the Green’s

function derivatives only need to be computed along the direction of [1 0 0]. For a given

direction, the n-th order derivative of the Green’s function is proportional to 1/rn+1, where

r is the distance between source point and field point, see equation (A.16).

We consider two anisotropic crystals, molybdenum (Mo, c44=110 GPa, c11=460 GPa,

c12=176GPa, anisotropy ratio A = 0.72) and sodium (Na, c11 = 6.03 GPa, c12 = 4.59 GPa,

c44 = 5.86 GPa, anisotropy ratio A = 8.15).§ We pre-computed the derivatives of the Green’s

function up to the 8-th order for Mo and 12-th order for Na. The derivatives are computed

based on the integral formalism (see Appendix A) with 21 integration points for Mo and 41

integration points for Na.

The source cell contains a hexagonal dislocation loop connecting all six face centers,

as shown in Fig.3(c). The dislocation Burgers vector is b = [−0.5, 2, 3]Å‖ We examine the

stress field along a line within the field cell defined by x′ = x′′′ + s0 · s, where s0 = [1, 0, 0]

and −d < s < d. To evaluate the accuracy of the multipole expansion method, we need

to consider the following factors: maximum multipole/Taylor expansion order p, and the

separation ratio L/d. These are discussed below.

3.1. Relative error in stress

Fig.4(a) plots σxy as a function of s for different values of maximum expansion order n, for

the case of Mo with L/d = 4. The exact solution based on the Willis-Steeds-Lothe (WSL)

§ Mo can be considered as moderately anisotropic while Na is highly anisotropic. We note that as the
temperature approaches the α − γ phase transition temperature of iron, the anisotropy ratio of Fe can
approach 7.4, comparable to the anisotropy ratio of Na.
‖ The choice of such an unphysical Burgers vector is to ensure that our test case is fairly general, e.g. every
dislocation segment has both edge and screw components.
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formula [9] is also shown for comparison. Notice that for p = 1, the computed stress field

is a constant (instead of being a linear function of space) within the field cell. This is due

to the monopole (ζ = 0) coefficient being zero in the source cell, which contains a complete

dislocation loop. With increasing p, the multipole expansion results quickly converge to the

exact solution. To quantify the effect of expansion order, we define the maximum relative

error of all stress components

RE =
||σij − σWSL

ij ||
||σWSL

ij ||
(22)

The relative errors for both L = 4d and L = 40d cases are summarized in Fig.4(b). The

maximum relative error RE decreases exponentially) with increasing p. The error for the

case of L = 40d is also much smaller than that for L = 4d, as it should be.

−1 −0.5 0 0.5 1
−2.5

−2

−1.5

−1

−0.5

0

s / d

σ xy
 (

M
P

a)

WSL
p = 1
p = 2
p = 3

1 2 3 4 5 6 7
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

p

R
E

L = 4d
L = 40d

(a) (b)

Figure 4. (a) σxy as a function of s for d = L/4, and different maximum expansion order
p. (b) RE as a function of p for L = 4d and L = 40d.

3.2. Discontinuity at field cell boundaries

The relative errors considered above are limited to field points within a single field cell. As

the field point goes from one field cell to its neighbor, the stress field is evaluated as a Taylor

expansion around a different cell center. This causes a discontinuity in the FMM stress field

across cell boundaries.¶ As a result, a dislocation moving across FMM cell boundaries may

experience a jump in the Peach-Koehler force, which is a numerical artifact that needs to be

minimized. Here we investigate the stress continuity at cell boundaries for different values

of maximum expansion order n.

¶ In principle, this discontinuity can be removed by an interpolation scheme that evaluates the stress field
based on Taylor expansion coefficients in neighboring cells. Because we found that the discontinuity is about
the same as the relative error and decreases rapidly with expansion order n, this possibility is not explored
in this work.
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Figure 5. (a) Setup for the boundary continuity study where L = 4d. The field point
moves along the dash-dotted line, i.e. s goes from −d to 3d. (b) σxy as a function of s for
different maximum expansion order p.

In this test case, L = 4d, and the field point moves along [1 0 0] direction and s goes

from −d to 3d, as shown in Fig.5(a). When −d ≤ s ≤ d, the stress field at x is obtained

from a Taylor expansion around cell center x′′′ = [4d, 0, 0]. When d ≤ s ≤ 3d, the stress field

at x is obtained from a Taylor expansion around cell center x′′′′ = [6d, 0, 0]. Fig.5(b) plots

σxy as a function of s for different values of maximum expansion order n. The discontinuity

can be observed at s/d = 1.

To quantify the error introduced by the stress discontinuity, we define the following

quantity as the maximum relative error of the stress jump at s = d,

Discont =
||σij(s = d+)− σij(s = d−)||

||σWSL
ij ||

(23)

The dependence of Discont on the maximum expansion order n is discussed in the next

section.

3.3. Effect of maximum expansion order p

As indicated earlier, the present formulation of FMM is supposed to be applied to DD

simulations, in which the derivatives of the Green’s function are pre-computed up to order

n = p + 1. It is important to know the necessary value for p to ensure that the relative

error and discontinuities in the stress field are within a certain tolerance. The choice of

how accurate the stress field needs to be in DD simulations is largely subjective. Given the

approximations inherent in the DD model formulation, we assume an error of ∼ 5% in stress

calculations would usually be considered tolerable. In the following, we will determine the

necessary value of p to achieve this level of accuracy.

Fig. 6(a) plots the relative error, RE, and discontinuity at cell boundary, Discont, as

functions of p for the case of Mo at L = 4d. The values of RE and Discont in Mo are given
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Figure 6. (a) The relative error, RE, and stress discontinuity at cell boundary, Discont, as
functions of multipole expansion order p, for the case of Mo at L = 4d. (b) RE and Discont
as functions of p for the case of Na at L = 4d.

below.

p 2 3 4 5 6 7

RE 50 % 18 % 7.5 % 3.6 % 1.7 % 1.1 %

Discont 39 % 21 % 6.6 % 3.9 % 1.6 % 1.1 %

It can be seen that p ≥ 5 is sufficient to ensure that both RE and Discont are less

than 5%, suggesting that the derivatives of the Green’s function up to 7-th order need to be

pre-computed for DD simulations in anisotropic Mo.

The maximum order of Green’s function derivatives necessary to control the error within

a specified tolerance depends on how anisotropic the crystal is. Fig. 6(b) plots RE and

Discont as functions of p for the case of Na, which is highly anisotropic. The values are

given below.

p 4 5 6 7 8 9 10 11

RE 32 % 7.9 % 8.4 % 5.8 % 1.4 % 2.3 % 1.2 % 0.3 %

Discont 30 % 6.5 % 8.0 % 5.8 % 0.7 % 2.3 % 1.2 % 0.2 %

It can be seen that p ≥ 8 is sufficient to ensure that both RE and Discont are less than

5%, suggesting that the derivatives of the Green’s function up to 10-th order need to be

pre-computed for DD simulations in anisotropic Na.

4. Summary and discussion

We have developed a systematic procedure to derive the derivatives of the Green’s function

to arbitrary order in anisotropic elasticity. By pre-computing the high order derivatives of

the Green’s function, we performed multipole expansions of the dislocation stress field. The

effect of the expansion orders on the relative error in the stress, as well as on the stress
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discontinuity at cell boundaries, is investigated. For more anisotropic crystals, a higher

expansion order is needed to reach the same level of accuracy.

The method described here is an important ingredient for the fast multipole method

(FMM) in DD simulations with anisotropic elasticity. A full implementation of FMM requires

a hierarchical cell structure and information passing between cells at different levels of the

hierarchy. This has been implemented in the ParaDiS program within isotropic elasticity [4].

To extend this implementation to anisotropic elasticity, only the kernel connecting the

multipole and the Taylor expansion coefficients needs to be changed to that described in this

paper. While FMM enables O(N) scaling, the cell size needs to be chosen carefully according

to the number of dislocation segments, as discussed in [4]. We note that for the FMM

part of the dislocation force evaluation, the computational cost for anisotropic elasticity is

similar to that for isotropic elasticity (within a factor of 10). This should be compared with

the short range part of dislocation force evaluation, in which the computational cost for

anisotropic elasticity is more than 200 times that for isotropic elasticity [9]. Therefore, it

will be advantageous to shift more computations from the short range part to the FMM part

(by reducing FMM cell size) in anisotropic elasticity DD simulations. This will reduce the

gap in computational cost between DD simulations with isotropic and anisotropic elasticity.
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Appendix A. Derivation of n-th order derivative of Green’s function

For a maximum multipole expansion order p, the derivatives of the Green’s function need

to be pre-computed up to order n = p+ 1. We evaluate the Green’s function and its spatial

derivatives based on the integral formalism [8, 15]. Unlike the matrix formalism, the integral

formalism is numerically robust for elastic media with arbitrary symmetries (even including

isotropic media) [8, 15]. The Green’s function Gij(x− x′) in an infinite elastic solid is the

displacement in the i direction at a field point x due to a unit point force in the j direction



Computing dislocation stress fields in anisotropic elastic media using fast multipole expansions13

at x′. It satisfies the equation

Cijkl
∂2

∂xj∂xl
Gkm(x− x′) + δimδ(x− x′) = 0. (A.1)

Define the unit vector T in the direction of (x−x′) and consider a right-handed coordinate

system a-b-T , where a and b are also unit vectors (see Fig.A1). Introduce a unit vector z,

which makes an angle σ with T , i.e.

z · T = cosσ (A.2)

e3

e1

e2

z0

σ

Ψ

z

T

a
b

Figure A1. The unit vector T is along the direction of (x− x′). Unit vectors a, b and T
form a right-handed coordinate system. Unit vector z form an angle σ with T . z0 is the
projection of z on the a-b plane and forms an angle Ψ with a. If z lies on the a-b plane,
then σ = π/2.

For a given material with elastic stiffness tensor Cijkl, the symmetric Christoffel stiffness

matrix Mir(z) and its inverse M∗
ir(z) are defined by

Mir(z) = Cijrszjzs (A.3)

M∗
ir(z)Mrm(z) = δim (A.4)

Equation (A.1) can be solved by Fourier transform [15], yielding

Gir(x− x′) =
1

8π3|x− x′|

∫ 2π

0
dΨ

∫ π

0
dσM∗

ir(z(Ψ)) sinσ
∫ ∞
0

dk cos(k cosσ),

(A.5)

where Ψ is a polar angle in the plane z ·T = 0. The Green’s function can be further simplified

to

Gir(x− x′) =
1

8π2|x− x′|

∫ 2π

0
M∗

ir(z(Ψ)) dΨ, (A.6)

where the integral must be evaluated in the plane z · T = 0, i.e. σ = π/2. For arbitrary

orthonormal vectors a and b in the plane z · T = 0, the vector z can be given by

z = a cos Ψ + b sin Ψ (A.7)
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Expressions for the first and second derivatives of the Green’s function were derived by

Barnett [15]. Willis [16] demonstrated a way to derive the n-th order derivative of the Green’s

function. However, his expressions are difficult to use in a numerical implementation. Here

we provide an alternative derivation which is more suitable for numerical calculations. Using

the methods in [15], the n-th derivative of the Green’s function can be shown to have the

form

∂(n)Gir(x− x′)

∂xs∂xm . . . ∂xp
=

1

8π3|x− x′|n+1

∫ 2π

0
dΨ

∫ π

0
dσ sinσ [M∗

ir(z) zszm . . . zp]

· dn

d (cosσ)n

∫ ∞
0

dk cos(k cosσ) (A.8)

Since ∫ ∞
0

dk cos(k cosσ) = πδ(cosσ) (A.9)

we have

∂(n)Gir(x− x′)

∂xs∂xm . . . ∂xp
=

1

8π2|x− x′|n+1

∫ 2π

0
dΨ ·

·
∫ π

0
dσ sinσ [M∗

ir(z) zszm . . . zp]
dn

d (cosσ)n
δ(cosσ) (A.10)

Define u ≡ cosσ, then du = − sinσ dσ. Denote Fn(u) = M∗
ir(z) zszm . . . zp, the inner integral

over the polar angle σ becomes (see Lighthill [17])∫ 1

−1
duFn(u)

dnδ(u)

dun
= (−1)n

∂nFn(u)

∂ un

∣∣∣∣∣
u=0

(A.11)

Therefore,

∂(n)Gir(x− x′)

∂xs∂xm . . . ∂xp
=

(−1)n

8π2|x− x′|n+1

∫ 2π

0
dΨ

{
∂n

∂ un
[M∗

ir(z) zszm . . . zp]

}
u=0

(A.12)

One can show that the integrand is a periodic function of Ψ with period π. Hence,

∂(n)Gir(x− x′)

∂xs∂xm . . . ∂xp
=

(−1)n

4π2|x− x′|n+1

∫ π

0
dΨ

{
∂n

∂ un
[M∗

ir(z) zszm . . . zp]

}
u=0

=
1

4π2|x− x′|n+1

∫ π

0
dΨ

{(
1

sinσ

∂

∂ σ

)n
[M∗

ir(z)zszm . . . zp]

}
σ=π/2

(A.13)

When n = 0, 1, 2, the results above are identical to those given by Barnett [15]. Here we

give the explicit expression for the third derivative of Green’s function:

∂3Gir(x− x′)

∂xs∂xm∂xp
=

1

4π2|x− x′|4
∫ π

0
dΨ

( 1

sinσ

∂

∂ σ

)3

(M∗
ir(z)zszmzp)


σ=π/2

=
1

4π2|x− x′|4
∫ π

0
dΨ

[
∂

∂ σ
F3(σ) +

∂3

∂ σ3
F3(σ)

]
σ=π/2

(A.14)
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where F3(σ) = M∗
ir(z) zszmzp. To calculate the third order derivative of the Green’s function,

we need to compute ∂F3(σ)/∂σ and ∂3F3(σ)/∂σ3, as described in Appendix B.

Because spatial derivatives are independent of the order in which they are taken, a more

compact way to represent (and store) high order derivatives of the Green’s function is the

following. (
∂

∂x1

)a (
∂

∂x2

)b (
∂

∂x3

)c
Gir(x− x′)

=
(−1)a+b+c

4π2|x− x′|a+b+c+1

∫ π

0
dΨ


(
∂

∂ u

)a+b+c [
M∗

ir(z) · (z1)
a(z2)

b(z3)
c
]

u=0

(A.15)

=
1

4π2|x− x′|a+b+c+1

∫ π

0
dΨ


(

1

sinσ

∂

∂ σ

)a+b+c [
M∗

ir(z) · (z1)
a(z2)

b(z3)
c
]

σ=π/2

(A.16)

More explicit expressions of the Green’s function derivatives can be obtained by following

either equation (A.15) or equation (A.16). In Appendix B, we use equation (A.16), following

the approach of Barnett [15]. However, this approach requires the expression of ( 1
sinσ

∂
∂σ

)n in

terms of ( ∂
∂σ

)m, m = 1, · · · , n. In Appendix C, we use equation (A.15), which bypasses this

complication. We have implemented both methods described in Appendix B and Appendix

C and they give identical numerical results.

Appendix B. Numerical algorithm based on (∂/∂σ)m

From Appendix A, the calculation of the n-th order derivative of the Green’s function

amounts to the calculations of the m-th order derivatives of Fn(σ), with m = 0, 1, · · · , n.

Below is a procedure to compute the m-th order (m ≤ n) derivative of Fn(σ) ≡
M∗

ir(z)zszm . . . zp, and subsequently the n-th derivative of the Green’s function. Recall that

we only need to evaluate these derivatives at σ = π/2. However, the substitution of σ = π/2

can only be made after taking the derivatives.

(I) Compute m-th order derivatives of Mir(z) for m = 0, 1, · · · , n.

For example, starting from equation (A.3), we obtain

∂Mir

∂ σ
= Ciprw

(
zp
∂zw
∂σ

+ zw
∂zp
∂σ

)
(B.1)

∂2Mir

∂ σ2
= Ciprw

(
2
∂zp
∂σ

∂zw
∂σ

+ zw
∂2zp
∂σ2

+ zp
∂2zw
∂σ2

)
(B.2)

∂3Mir

∂ σ3
= Ciprw

(
zp
∂3zw
∂σ3

+ 3
∂zp
∂σ

∂2zw
∂σ2

+ 3
∂2zp
∂σ2

∂zw
∂σ

+
∂3zp
∂σ3

zw

)
(B.3)

Equations (B.1-B.3) take forms similar to the binomial expansion with binomial coefficient



Computing dislocation stress fields in anisotropic elastic media using fast multipole expansions16

Ck
n, and indeed can be generalized to arbitrary order, i.e.,

∂mMir

∂ σm
= Ciprw

m∑
k=0

Ck
m

∂kzp
∂σk

∂m−kzw
∂σm−k

(B.4)

Ck
m ≡ m!

k!(m− k)!
(B.5)

From Fig. A1, the derivatives of z with respect to σ to arbitrary order can be obtained from

the following relations at σ = π/2.{
∂zs
∂σ

}
σ=π/2

= −Ts,
{
∂2zs
∂σ2

}
σ=π/2

= −zs,{
∂3zs
∂σ3

}
σ=π/2

= Ts,

{
∂4zs
∂σ4

}
σ=π/2

= zs. (B.6)

Equations (B.4-B.6) are sufficient to provide explicit expressions for the derivatives of Mir(z)

to arbitrary order. For example,

∂Mir

∂ σ
= Ciprw(−zpTw − zwTp) (B.7)

∂2Mir

∂ σ2
= Ciprw(2TpTw − 2zpzw) (B.8)

∂3Mir

∂ σ3
= Ciprw(4zpTw + 4Tpzw) (B.9)

(II) Compute m-th order derivatives of M∗
ir(z) for m = 0, 1, · · · , n.

Indices are suppressed for clarity. Noting that MM∗ = I, we have, for m > 0,

0 =
∂m

∂ σm
(MM∗)

=
∂mM

∂ σm
+ C1

m

∂m−1M

∂ σm−1

∂M∗

∂ σ
+ · · ·+ Cm−1

m

∂M

∂ σ

∂m−1M∗

∂σm−1
+
∂mM∗

∂σm
(B.10)

Therefore,

∂mM∗

∂σm
= −

m−1∑
k=0

Ck
m

∂m−kM

∂ σm−k
∂kM∗

∂ σk
(B.11)

This allows the m-th order derivative of M∗ to be computed from lower order derivatives.

(III) Compute m-th order derivatives of (z1)
a(z2)

b(z3)
c for m = 1, · · · , n.

This can also be computed recursively from a binomial expansion. Obviously, the

derivative is zero if a = b = c = 0. Without loss of generality, let us assume c > 0.

Then,

∂m

∂ σm

[
(z1)

a(z2)
b(z3)

c
]

=
m∑
k=0

Ck
m

{
∂m−k

∂ σm−k

[
(z1)

a(z2)
b(z3)

c−1
]} ∂kz3

∂ σk
, (B.12)
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This means that the derivatives of (z1)
a(z2)

b(z3)
c can be constructed from the derivatives of

(z1)
a′

(z2)
b′(z3)

c′ , where a′ + b′ + c′ = a+ b+ c− 1.

(IV) Compute m-th order derivatives of Fn(σ) for m = 1, · · · , n.

Recall that

Fn(σ) =
[
M∗

ir(z) (z1)
a(z2)

b(z3)
c
]

(B.13)

where a+ b+ c = n. Obviously, Fn depends on the specific values of a, b, c, but for brevity

this dependence is not written out explicitly. Again, the derivatives of Fn can be expressed

from the results obtained from previous steps using the binomial expansion.

∂m

∂ σm
Fn(σ) =

m∑
k=0

Ck
m

[
∂m−k

∂ σm−k
M∗

ir(z)

]
∂k

∂ σk

[
(z1)

a(z2)
b(z3)

c
]

(B.14)

(V) Compute ( 1
sinσ

∂
∂σ

)nFn(σ) from ( ∂
∂σ

)mFn(σ) for m = 1, · · · , n.

This step is necessary because the integrand in equation (A.16) contains ( 1
sinσ

∂
∂σ

)n

instead of ( ∂
∂σ

)n. This would not be necessary if we followed equation (A.15), as described

in Appendix C.

In general, we have the following relationship at σ = π/2,(
1

sinσ

d

dσ

)n
Fn(σ) =

n∑
m=1

Amn ·
∂m

∂ σm
Fn(σ) (B.15)

The coefficients Amn can be computed efficiently using a symbolic manipulator with the

following procedure. Consider an arbitrary function f(σ), which is Taylor-expanded around

σ = π/2. Define β = π/2− σ.

f(σ) = a0 + a1 β +
a2

2!
β2 +

a3

3!
β3 + · · · (B.16)

where an = (− ∂
∂σ

)nf(σ)|σ=π/2. Since u = cos σ, we have σ = arccos(u) and f can also be

written as a function of u, which can be Taylor expanded around u = 0.

f(u) = b0 + b1 u+
b2
2!
u2 +

b3
3!
u3 + · · · (B.17)

where bn = ( ∂
∂u

)nf(u)|u=0. We can also Taylor expand β = π/2 − arccos(u) around u = 0,

which gives

β = u+
1

6
u3 +

3

40
u5 +

5

112
u7 +

35

1152
u9 +

63

2816
u11 +O(u13) (B.18)

Substituting equation (B.18) into equation (B.16) and comparing the result with

equation (B.17), we obtain

b1 = a1

b2 = a2

b3 = a1 + a3
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b4 = 4 a2 + a4

b5 = 9 a1 + 10 a3 + a5

· · ·

The coefficients linking bn and am are Amn . The values of Amn for n from 1 to 12 are listed

below. It takes about one minute to compute all these coefficients using Matlab.

n m = 1 2 3 4 5 6 7 8 9 10 11 12

1 1

2 0 1

3 1 0 1

4 0 4 0 1

5 9 0 10 0 1

6 0 64 0 20 0 1

7 225 0 259 0 35 0 1

8 0 2304 0 784 0 56 0 1

9 11025 0 12916 0 1974 0 84 0 1

10 0 147456 0 52480 0 4368 0 120 0 1

11 893025 0 1057221 0 172810 0 8778 0 165 0 1

12 0 14745600 0 5395456 0 489280 0 16368 0 220 0 1

For example, the n = 3 entry in the above table gives(
1

sinσ

d

dσ

)3

F3(σ) =
∂3

∂ σ3
F3(σ) +

∂

∂ σ
F3(σ) (B.19)

which is consistent with equation (A.14).

We note (without proof) that the coefficients Amn obey interesting patterns. For example,

Ann = 1 and Amn = 0 if m+ n is odd.

A1
n = (1)2, (1× 3)2, (1× 3× 5)2, · · · , for n = 3, 5, 7, · · ·

A2
n = (2)2, (2× 4)2, (2× 4× 6)2, · · · , for n = 4, 6, 8, · · · (B.20)

Amm+2 = Am−1
m+1 +

m(m+ 1)

2
, starting with A1

3 = 1

Steps (I)-(V) above compute the integrand in the expression for the arbitrary derivatives

of the Green’s function, equation (A.16). The integral itself is performed numerically using

a uniform grid [9]. Let Nint be the number of integration points. The grid points are,

Ψi =
i

Nint

· π , i = 0, 1, · · · , Nint − 1 (B.21)

Because of the periodic nature of the integrand, a rectangular rule is used for numerical

quadrature.

The time it takes Matlab to evaluate all components of Green’s function derivatives up

to order n for a given vector x − x′ = [1 0 0] and Nint = 21 is given below. The time to

evaluate the coefficients Amn is not included here.
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n 1 to 4 5 6 7 8 9 10 11 12

time (seconds) < 1 2 3 6 11 18 29 46 72

Appendix C. Numerical algorithm based on (∂/∂u)m

The algorithm based on equation (A.15) is very similar to that described in Appendix B,

with ∂/∂σ replaced by ∂/∂u. There are only two key differences. First, the expressions for

∂mzs/∂u
m are different from ∂mzs/∂σ

m. Second, Step (V) is no longer necessary. For clarity,

in the following, we list the four steps for computing Green’s function derivatives based on

equation (A.15).

(I) Compute m-th order derivatives of Mir(z) for m = 0, 1, · · · , n.

∂mMir

∂ um
= Ciprw

n∑
k=0

Ck
m

∂kzp
∂uk

∂m−kzw
∂um−k

(C.1)

To develop the expressions for ∂mzs/∂u
m, we need to consider the general case where z no

longer lies in the plane z · T = 0. In this case,

z = (a cos Ψ + b sin Ψ) · sinσ + T · cosσ

= (a cos Ψ + b sin Ψ) ·
√

1− u2 + T · u (C.2)

Therefore {
∂zs
∂ u

}
u=0

= zs
d
√

1− u2

du

∣∣∣∣∣
u=0

+ Ts = Ts (C.3){
∂2zs
∂ u2

}
u=0

= zs
d2
√

1− u2

du2

∣∣∣∣∣
u=0

= −zs (C.4)

Define

Bm ≡
dm
√

1− u2

dum

∣∣∣∣∣
u=0

(C.5)

we have {
∂mzs
∂ um

}
u=0

= zsBm + Ts δm,1 (C.6)

Coefficients Bm can be evaluated by a symbolic manipulator (e.g. Matlab), which gives

m 1 2 3 4 5 6 7 8 9 10 11 12

Bm 0 −1 0 −3 0 −45 0 −1575 0 −99925 0 −9823275

The Bm are easier to evaluate than the Amn coefficients needed in Appendix B.

(II) Compute m-th order derivatives of M∗
ir(z) for m = 0, 1, · · · , n.
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∂mM∗

∂ um
= −

m−1∑
k=0

Ck
m

∂m−kM

∂ um−k
∂kM∗

∂ uk
(C.7)

(III) Compute m-th order derivatives of (z1)
a(z2)

b(z3)
c for m = 1, · · · , n.

∂m

∂ um

[
(z1)

a(z2)
b(z3)

c
]

=
m∑
k=0

Ck
m

{
∂m−k

∂ um−k

[
(z1)

a(z2)
b(z3)

c−1
]} ∂kz3

∂ uk
, (C.8)

assuming c > 0.

(IV) Compute m-th order derivatives of Fn(u) for m = 1, · · · , n.

∂m

∂ um
Fn(u) =

m∑
k=0

Ck
m

[
∂m−k

∂ um−k
M∗

ir(z)

]
∂k

∂ uk

[
(z1)

a(z2)
b(z3)

c
]

(C.9)

Steps (I)-(IV) above compute the integrand in the expression for the arbitrary derivatives

of the Green’s function, equation (A.15). The integral itself is performed numerically on a

uniform grid in the same way as in Appendix B. The computational time for the method

described in this Appendix is essentially the same as that for the method described in

Appendix B.
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