Journal of the Mechanics and Physics of Solids 1 (smm) mma—sm

MECHARICS AND PHYSICS.
oF saLins

Contents lists available at ScienceDirect

Journal of the Mechanics and Physics of Solids

journal homepage: www.elsevier.com/locate/jmps /ﬁ

Plasticity of metal wires in torsion: Molecular dynamics and
dislocation dynamics simulations

Christopher R. Weinberger *, Wei Cai

Department of Mechanical Engineering, Stanford University, CA 94305-4040, USA

ARTICLE INFO ABSTRACT

Article history: The orientation dependent plasticity in metal nanowires is investigated using molecular
Received 19 February 2010 dynamics and dislocation dynamics simulations. Molecular dynamics simulations show
Received in revised form that the orientation of single crystal metal wires controls the mechanisms of plastic
}\ic‘zg?e]dzglipm 2010 deformation. F_or wires oriented. along <110, dislocations_ nucleate alc_)ng _the axis of

the wire, making the deformation homogeneous. These wires also maintain most of
their strength after yield. In contrast, wires oriented along (111) and <100)

Ke_)’WOMS-' directions deform through the formation of twist boundaries and tend not to recover
I\D/l.lcll‘osttl"UCtUI'ES when high angle twist boundaries are formed. The stability of the dislocation structures
1slocations

observed in molecular dynamics simulations are investigated using analytical and

Grain boundaries . . .
dislocation dynamics models.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The plastic response of materials at the small scale is an area of great interest because as sample dimensions decrease,
the material’s mechanical response changes. The compression tests of micro- and nano-pillars has shown a dramatic
increase in flow stress as a function of material size (Uchic et al., 2004; Greer et al., 2005). In addition, strain bursts become
more prominent in small scale structures (Dimiduk et al., 2006; Csikor et al., 2007; Brinckmann et al., 2008) which may
limit the ability of plastic metal-forming at the micro- and nano-scale (Csikor et al., 2007).

When materials are bent or twisted, they experience strain gradients which are known to alter the plastic response of
the materials (Guzman et al., 1993; Fleck et al., 1994; Nix and Gao, 1998). This has lead to the development of strain
gradient plasticity, which explains strengthening of materials at small scale through the interaction of statistically stored
dislocations and geometrically necessary dislocations (Fleck and Hutchinson, 1993, 1997). Strain gradient plasticity theory
has been successful in explaining strengthening observed in polycrystalline wires under torsion (Fleck et al., 1994). This
naturally leads to the question of what happens when nanowires are twisted. Wires at this size are often single crystals,
and there is very little experimental or numerical studies on plasticity of single crystal wires in torsion.

In this paper, we examine the plasticity of single crystal wires under torsion using both molecular dynamics (MD) and
dislocation dynamics (DD) simulations. This will provide insight into how the deformation changes as a function of the
wire’s diameter. Since the wires are single crystals, we will study three high symmetry directions, {110)», <111) and
{100>}. The authors have already presented a discussion on the mechanisms of yield in these wires (Weinberger and Cai,
2010). In this work, we present a detailed look into the yield of the nanowires, boundary formation and stability.
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Dislocation dynamics simulations will be presented in order to provide further understanding in the formation and
dissolution of these structures.

2. Simulation methods
2.1. Molecular dynamics

To study the plasticity in metallic nanowires, the primary tool used here is molecular dynamics. To avoid end effects,
torsional periodic boundary conditions (tPBC) are used in all of the simulations. The details of this method have been
described previously by the authors (Cai et al., 2008) including discussions on how to measure torque. The loading is an
applied affine twist enforced by the boundary conditions, the same way strain would be applied in MD simulations of
uniaxial loading of nanowires. This leads to a constant twist rate and hence a constant surface shear strain rate simulation.

In order to fully understand the plasticity in nanowires, a large number of parameters are varied as part of this study.
The orientations of the nanowires studied are three high symmetry directions, {100, (110> and <(111). Three
diameters, 5, 7.5, and 10 nm, are used. The orientation and size of the nanowires are thought to provide the largest impact
on plasticity in the nanowires. However, other effects will also be examined, including strain rates, aspect ratios, stacking
fault energy, statistical variations, and surface defects.

The simulations are performed on two face-centered-cubic (FCC) metals, gold and aluminum, in order to capture the
effect of stacking fault energies. The interatomic potential for gold is the EAM Foiles (Park and Zimmerman, 2005), which
has a stacking fault energy of 31 mJ/m? and agrees very well with DFT calculations. The aluminum potential used is the
EAM Mishin et al. (1999) with a stacking fault energy of 146 mJ/m?. Since the stacking fault energy of gold is about five
times smaller than aluminum, larger diameter gold wires are also investigated. The stacking fault energy is important for
these simulations because the diameter of the wires studied approaches the equilibrium separation width between partial
dislocations, governed by the stacking fault energy.

In order to compare different diameter wires, the nominal engineering surface shear strain rate is 4 x 108s~! for all the
simulations. This is accomplished by applying an incremental twist per unit length every 5 ps using a time step of 1fs. We
define the engineering shear strain rate as y = r, where f is the twist rate per unit length and r is the radius where the
strain is evaluated. The surface engineering shear strain rate is found by evaluating r at the nanowire radius. Since
the aspect ratio is held constant for all wires 10nm and smaller, # and J|, _ are constants, where R is the radius of the
nanowire. Thus the maximum applied twist is also a constant, at 0.8 radians or 46°.

In preparation for twisting, the wires are relaxed and equilibrated at 300 K. First, the nanowires are created from a bulk
configuration and relaxed using conjugate gradient relaxation in order to alleviate axial stresses due to surface effects.
Then, the wires are equilibrated at 300K for 100 ps using a Nosé—Hoover thermostat and a Parrinello-Rahman barostat to
eliminate stresses in the wire, reproducing a NoT ensemble. The equilibrium length of the nanowire is taken to be the
average of the last half of the equilibration run.

The twisting simulations are then carried out using torsional periodic boundary conditions along the z-axis of the wire.
In order to alleviate axial stress that develops during the simulation, caused by either elastic or plastic processes, the length
of the wire is allowed to relax using the Parrinello-Rahman stress control (Parrinello and Rahman, 1981) in that direction.
The twist is incremented, however, at fixed intervals simulating a constant twist rate experiment.

2.2. Dislocation dynamics

The dislocation dynamics simulations are performed using the ParaDiS code developed at Lawrence Livermore National
Laboratory (Cai et al., 2004; Bulatov et al., 2004). The perfect dislocations are approximated as straight line segments. In
order to simulate dislocation structures in a nanowire, the free surfaces must be accounted for. The authors use a modified
version of the ParaDiS code for this purpose (Weinberger and Cai, 2007; Weinberger et al., 2009) which accurately
computes the image stress and interactions with free surfaces.

The dislocation dynamics simulations are further modified to account for the applied torque. From elasticity theory, a
torque applied to a circular shaft can be related to the shear stress as ¢,y = tr/J where 7 is the applied torque, r is radius of
the point where the stress is evaluated and J = (7/2)R? is the polar moment of inertial of a circular shaft with radius R. The
additional force on the dislocations can be evaluated by integrating over the segment lengths as discussed in Arsenlis et al.
(2007). For simplicity, we use one point quadrature for evaluation of the nodal force contribution from the applied torque.

For simulations of dislocations in (110) oriented wires, a two-dimensional dislocation dynamics code is used. The
forces on the dislocations are computed by superimposing the fields of infinitely long screw dislocations in cylinders
derived by Eshelby (1953) and Eshelby (1979). The contributions arise from forces due to the dislocations in an infinite
medium, image forces required to make the surfaces traction free, and image torque forces required to make the rod torque
free. Additional forces from an applied torque are also included. The dislocations are allowed to relax in the direction of the
total Peach-Koehler forces.
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3. Results

Fig. 1 shows torque twist curves for both gold and aluminum nanowires for all three orientations. From these results we
can make a simple observation about strength. In general, aluminum is stronger than gold. This is in agreement with the
difference in unstable stacking fault energies between the gold and aluminum potentials, which are 120 mJ/m? and 168 m]J/
m? respectively.

For small angles, the torque is approximately linear with the applied twist, as predicted by linear elasticity. The
relationship for isotropy is © =Juf where 7 is the torque, J is the polar moment of inertia and f is the twist per unit length.
This can be used to approximate the torque twist relationship in the anisotropic case if we replace the isotropic shear
modulus with the effective shear modulus of the plane in torsion. We computed the effective shear modulus by simply
averaging over all the shear moduli on the plane under torsion. The resulting torque twist relationships are

1
T =Z(C11—C12 +2C)Jf <110

1
T =§(C11—C12+C44)Jﬁ <1115

T=Ca4fp <1005

The theoretical torsional stiffness, defined as k;=0t/0f, is compared against simulation data in Tables 1-3. The
agreement for aluminum is generally good for all three directions, with an error around 10%. The agreement between
theory and simulation is not that good for gold, with errors around 30%. This disagreement persists at 0 K, but disappears if
the torsional stiffness is calculated without letting the atoms relax between subsequent twists. These expressions are
derived assuming that the cross-sections remain planar and circular. However, the shear modulus varies throughout the
cross-section due to elastic anisotropy. Hence, cross-sections may become non-planar or non-circular, leading to
discrepancies. This hypothesis is supported by agreement achieved when the wire is not allowed to relax which forces the
cross-sections to remain planar and circular. Another source of error is the uncertainty in the calculation of the radius.
However, we note that the effective stress strain curves shown in Figs. 2, 7, and 10(c), (d) collapse on one another in the
linear range suggesting a lack of radius dependence.

3.1. <110) Orientation

If we define a yield strain yy = fyR at which the curve first unloads, then the yield strain appears size independent for
wires oriented along <110, as shown in Table 1. The average and standard deviation of the yield strain are taken from
eight different runs for each case reported. Fig. 2(a) and (b) shows three sample twisting and untwisting curves for both
metals at a diameter of 5nm. Fig. 2(c) and (d) show an effective shear stress-strain response of the material for the three
different diameters. The strain is the engineering surface shear strain and the effective stress is the torque divided by the
radius cubed, which removes and dependence on the radius of the wire.

The strength of the materials is not the only aspect of the deformation that depends on the wire material. Figs. 3 and 4
show the evolution of plastic deformation in (110) oriented nanowires. As discussed previously by the authors
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Fig. 1. Torque-twist per unit length curves for three different orientation 5 nm diameter (a) aluminum and (b) gold nanowires.
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Table 1

Yield strains and torsional stiffnesses for (110 oriented metallic nanowires.
Material Diameter (nm) Yy ke (eVA) k¢ (theory)
Gold 5 0.061 4 0.002 (6.75 +0.25) x 10* 1.02 x10°
Gold 7.5 0.056 + 0.001 (3.41 +0.04) x10° 5.19 x10°
Gold 10 0.057 4+ 0.002 (1.08 +0.004) x 106 1.64 x10°
Aluminum 5 0.085 + 0.002 (1.02 +0.004) x 10° 1.10 x 10°
Aluminum 7.5 0.078 4 0.002 (5.24+0.02) x10° 5.56 x 10°
Aluminum 10 0.078 + 0.001 (1.65 +0.003) x 108 1.77 x10°

The yield strain y, = yR is calculated when the torque initially begins to unload. The torsional stiffness is kr:% and the averages and standard

deviations are reported for 8 different runs. ¢

Table 2

Yield strains and torsional stiffnesses for (111) oriented metallic nanowires.
Material Diameter (nm) Yy ke (eVA) ke (theory)
Gold 5 0.093 + 0.003 (6.19 +0.05) x 10* 8.68 x 10*
Gold 7.5 0.085 + 0.001 (2.95 +0.03) x 10° 4.40 x 10°
Gold 10 0.082 + 0.002 (9.79 +0.09) x 10° 1.39 x 106
Aluminum 5 0.119 + 0.003 (9.06 +0.05) x 10* 1.07 x 10°
Aluminum 7.5 0.105 + 0.002 (4.83 +0.01) x 10° 5.41x 10°
Aluminum 10 0.097 + 0.003 (1.53 + 0.003) x 10° 1.71 x 108

Table 3

Yield strains and torsional stiffnesses for (100) oriented metallic nanowires.
Material Diameter (nm) Yy ke (eVA) ke (theory)
Gold 5 0.082 + 0.005 (1.38 +0.004) x 10° 1.49 x 10°
Gold 7.5 0.080 + 0.002 (6.62 +0.02) x 10° 7.56 x 10°
Gold 10 0.074 + 0.002 (2.11 +0.004) x 10° 2.39 x 10°
Aluminum 5 0.113 + 0.003 (1.39 +0.003) x 10° 1.21x10°
Aluminum 7.5 0.112 + 0.003 (7.02 +0.02) x 10° 6.13 x 10°
Aluminum 10 0.112 + 0.006 (2.14 +0.002) x 10° 1.94 x 10°

(Weinberger and Cai, 2010), the gold nanowires deform mainly by nucleation of partial dislocations with the stacking
faults terminating at the wire surface. In contrast, the aluminum wires start by nucleating partial dislocations, but the
trailing partials follow creating perfect screw dislocations in the wire. For 5nm diameter aluminum wires and 20 nm
diameter gold nanowires, we see a mixture of both partial and perfect dislocations. The difference in nucleating perfect and
partial dislocations is related to the material’s stacking fault energy and the radius of the nanowire. The stacking fault
energy of the gold potential is 31 and 146 mJ/m? for the aluminum potential. This results in a equilibrium partial
dislocation separation of approximately 1.5 and 0.3 nm in bulk gold and aluminum, respectively.

The nucleation of dislocations generally occur, in these simulations, on planes of maximum shear stress. A simple
consideration of the torsion of a circular cross-section shows that two types of planes contain the maximum shear stress.
Planes perpendicular to the wire axis are planes of maximum stress as well as all planes that contain the wire axis. In the
case of a (110 oriented nanowire, two {11 1} type planes contain the specific (110 direction, separated by 71°, and
are likely planes for dislocation activity. This is confirmed by examination of the planes of slip in Fig. 3.

The twisting and untwisting curves for gold in Fig. 2(b) show a large amount of, and often complete, reversibility during
untwisting. Since the torque in the untwisting curves of gold generally do not drop below zero, this means that the dislocations
all leave prior to unloading. The torque, in a few cases, does drop below zero, but it is difficult to determine if this is caused
simply by fluctuations in the torque calculation, or a real unloading. Regardless, in every case the gold wires are always able to
recover a significant amount of the deformation. For the case of aluminum, Fig. 2(a), we can see that the deformation is always
irreversible. If one wishes to remove all the dislocations from the wire, a negative torque must be applied to the wire in order to
accomplish this. The reversibility of the gold nanowires should be size dependent, though. As we will see later, perfect
dislocations are generally stable inside a wire, making the deformation generally irreversible. As the wire diameter increases
the amount of perfect dislocations that nucleate will increase, transitioning from reversible to irreversible deformation.

3.1.1. Stability analysis
The difference between perfect and partial dislocations in gold and aluminum illustrates that nucleation should depend
on the stacking fault energy of the material and the diameter of the nanowire. This suggests that the difference in
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Fig. 2. Three representative torque twist curves showing both loading and unloading, (a) aluminum and (b) gold nanowires with 5nm diameters.

Torsional stress-strain curves (c¢) for aluminum and (d) for gold, which illustrate the effect of diameter on mechanical properties.

Fig. 3. The evolution of dislocation networks in (110) gold nanowires. (a) The initial plastic event, (b) more partial dislocations nucleate and
(c) significant dislocation structure once loading is complete for a 7.5 nm diameter wire. (d) A similar network in a 20 nm diameter wire showing mostly
partial dislocations with a few perfect dislocations. The engineering surface shear strains for the configurations are: (a) 0.062, (b) 0.084, (c) 0.200, and
(d) 0.192.
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Fig. 4. The evolution of a dislocation network in a {110} aluminum nanowire. (a) Perfect and partial dislocations, (b) nucleated perfect dislocations and
(c) the final configuration. The engineering surface shear strains for the configurations are: (a) 0.108 (b) 0.118, and (c) 0.200.
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Fig. 5. The configuration for (a) two partial dislocations and (b) one partial dislocation in a cylinder and (c) the forces on one dislocation in a cylinder.
Unstable equilibrium points are marked with a circle and stable equilibrium points are marked with a square.

nucleation may be explained purely through elastic effects and, that at some critical diameter, the dislocations are no
longer stable in the nanowire. A simple analytical model can be constructed involving two partial dislocations in a cylinder
separated by a stacking fault, as shown in Fig. 5(a). The forces on the dislocations and their stability can be written using
the expressions developed by Eshelby (1979) as discussed in Appendix A. From this analysis we find that the partial pair is
only stable when their center of mass is at the center of the nanowire. A positive applied torque simply pushes the partials
closer together and enhances the stability of the configuration. Two negative critical torques can be established. One pulls
the partials out leaving a stacking fault. The other makes the configuration unstable with respect to perturbations of the
center of mass, resulting in the partial pair leaving together. The lower critical torque, from numerical investigations,
appears to always be the center of mass instability. This makes sense since the wire containing a stacking fault will have a
higher energy than the defect free wire.

This problem is very similar to the problem Eshelby (1953) solved which showed that perfect screw dislocations are
stable inside whiskers. However, we now have two partial dislocations bounded by a stacking fault inside a cylinder. For
the perfect screw dislocation problem, Eshelby was able to show that an applied torque drives the screw dislocation out
when it reaches a critical value of T = —}1#sz~ We can compare this to our solution for a screw dislocation dipole in gold
with g =31GPa, v=04, b=2.88A, b, =0.83A, b; =1.44A, y =30m]J/m? and the radius is taken to be R=25 A. The critical
torque predicted by our analysis is 1<t = —53.6eV while Eshelby’s result gives tit = _87.2eV. This shows that the
dissociated dislocation is less stable than a non-dissociated perfect dislocation. This can be compared with the critical
torque to pull two partial dislocations out of the wire in opposite directions, — 169 eV, whose magnitude is much higher.
As the diameter of the wire increases, the critical torque approaches that predicted by Eshelby; at a radius of 50 A we find
the critical torques are —306eV and —349eV for this analysis and Eshelby’s, respectively. This shows that the partial
dislocation pairs behave as perfect dislocations for all but the smallest nanowires.

The above model is unable to explain why at smaller diameters only partial dislocations nucleate because it predicts
that a partial dislocation pair is also (meta-)stable in torque free nanowires. However, elasticity models can help explain
why the deformation in gold nanowires is reversible but not is in aluminum. This is because a pair of partial dislocations
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Fig. 6. The equilibrium structure of (a) 4, (b) 8, and (c) 20 dislocations in a torque free cylinder and (d) 20 dislocations under an applied torque. The
patterning of these dislocations illustrates the homogenelty of the deformation.

(connected by a stacking fault) is meta-stable in the torque-free wire while a single partial dislocation is not. The force on a
single partial dislocation shown in Fig. 5(b) is

phy & pbr| & 2R 2¢&,
2n(1-v)R2_& * 27 |(R2—&2) R4 )T RaDs

= M
and is plotted in Fig. 5(c). For zero torque, the partial dislocation has one equilibrium position for which & > 0. This position
is an unstable equilibrium since the slope at the point is positive, which results in a negative second derivative of the
energy. It is possible, just as it was for the pair of partials, to determine the torque required to make the dislocation stable
using similar criterion. The dislocation is stable when f1=0 and &f! /a¢ < 0. The critical torque can be found by requiring
fx=0 and &f! /¢ =0. The critical torque to stabilize the partial dislocation is now positive and has a value of 607 eV. This
shows that a single partial dislocation is unstable in a torque free wire. Therefore, when the wire is unloaded in our MD
simulations, perfect dislocations already in the wire remain and provide a plastic twist. However, if only the leading partial
dislocations nucleate, they are unstable and will leave during the unloading process, creating a reversible torque twist
curve.

3.1.2. Dislocation patterning

The deformation shown in Fig. 4 and discussed previously shows striking homogeneity. This has important implications
for plastic metal forming at the micro and nanoscales. To better understand this process, we need to predict how more
dislocations will distribute in the wire during deformation. This can be done using a two dimensional dislocation dynamics
code as described previously. In this model, every dislocation will be modeled as a like signed perfect screw dislocation
and will be initially placed in the cylinder at a random location within 0.5 of the radius (so that they do not escape). The
resulting equilibrium configurations are shown in Fig. 6. A simple ring structure appears stable when the number of
dislocations is about 6 or less. When there are 6 or more dislocations, one dislocation will occupy the center position.
A large number of dislocations shows more complicated ring structures, as in Fig. 6(c). Barnett and Nix (Private commu-
nication) have shown that a ring of N dislocations is always in equilibrium in a torque-free cylinder. When our DD
simulations are carried out, the ring structure appears to be an unstable equilibrium for N greater than 6 and numerical
noise changes the structure to one or more dislocations inside the outer ring. This patterning shows that as more dis-
locations are nucleated, they spread out ensuring the deformation continues in a homogeneous fashion.

The patterning shown in Fig. 6 results from allowing the dislocations to move along the direction of the Peach-Koehler
force. As shown in our MD simulations, the dislocations appear confined to slip planes and may not be able to reach these
equilibrium positions. That may influence the resulting patterning seen in MD simulations and what would be observed in
experiments. Furthermore, the application of torque tends to drive the dislocations into the interior of the wire, as shown
in Fig. 6(d). Therefore, the completely disperse configuration shown in Fig. 6(c) should not always be expected. Finally,
these simulations show that an arbitrarily large number of screw dislocations can be in equilibrium in a torque free wire.

3.2. (111 Orientation

Fora (111 )- oriented wire a {11 1} type plane is oriented perpendicular to the wire axis, which as discussed before, is
a plane of maximum stress. This suggests that this plane will be the most active slip plane during plastic deformation. For
these nanowires, the trend shown in Table 2 is that smaller is stronger. The stress required for nucleation decreases as a
function of the wire diameter. We also see that aluminum is again stronger than gold in this orientation.

Fig. 7 shows the twisting and un-twisting curves for the {111} oriented nanowires in addition to the normalized
stress-strain curves. The un-twisting part of the curves show that the deformation is essentially irreversible. These figures
also illustrate an important difference between the gold and aluminum torque twist curves. When the aluminum wires
yield, the torque relaxes to nearly zero almost instantaneously. Gold, however, unloads more slowly reaching a near zero
torque condition close to the end of the simulations. This behavior correlates well with the dislocation network formation.
When aluminum wires yield, the dislocations nucleate and organize into structures while the torque drops. By the time the
torque is completely relaxed, a high angle twist boundary has already formed. However, in gold, the dislocation structures
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Fig. 7. Three representative torque twist curves showing both loading and unloading for ¢(111) oriented (a) aluminum and (b) gold nanowires.
Torsional stress—strain curves (c) for aluminum and (d) for gold, which illustrate the effect of diameter on mechanical properties.

take longer to nucleate and organize, so the torque stays higher for much longer. This can be attributed to the higher torque
when dislocations first nucleate in aluminum compared to gold.

3.2.1. Dislocation patterning

The strength of the wires may depend weakly on the diameter, however we do not see a great difference in the behavior
of the dislocations that emerge from the deformation. The deformation is limited to one or just a few planes, localizing the
deformation. The dislocation structure that evolves initially starts by the creation of a Y junction shown in Fig. 8(a) and (b).
The junction starts from the nucleation of a single partial dislocation. As the partial dislocation expands, it eventually
nucleates two trailing partial dislocations, which covers all three possible partial dislocations on that glide plane. This
structure, as seen in Fig. 8(b), is all that is needed to evolve into a extended Y junction. Fig. 8(b) and (c) also shows that
constricted Y junctions can form from the interaction of two dislocations. Our simulations show that both constricted and
extended nodes can form as the initial embryo of the twist boundary. However, a Y junction of screw dislocations is the
first step in the twist boundary formation.

As the dislocation structure evolves, it develops into a {11 1} twist boundary shown in Fig. 8(d). The clarity of this figure
is unique since in most our simulations partial dislocations nucleated on parallel planes close to the twist boundary restrict
visualization. The larger diameter wires, such as the 17.5nm in diameter shown, illustrate the difference between
constricted and extended nodes better. But, this also makes visualization of the hexagonal structure more difficult. Fig. 8(d)
shows a hexagonal structure during untwisting in a 5nm diameter aluminum wire. Careful examination of this network
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a b c
Constricted Node

Fig. 8. The evolution of dislocation networks in <111) gold nanowires. (a) Initial nucleation of three partial dislocations in a 17.5 nm diameter gold
wire, (b) The initial formation of an extended Y junction, (c) the formation of a constricted node, (d) evolution to a hexagonal dislocation array of
alternating constricted and extended junctions, (e) a hexagonal network in a 5 nm aluminum nanowire viewed during untwist. The engineering surface
shear strains for the configurations are: (a) 0.072, (b) 0.074, (c) 0.076, (d) 0.098, and (e) 0.038.
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Fig. 9. (a) Symmetric screw dislocation junction and (b) the perturbed configuration of one arm by an angle ¢, (c) the perturbed configuration of the
center node by Jy, (d) a stable hexagonal array from DD simulations.

also shows the same nodal configuration, however it is more visible due to a combination of a smaller density network and
the constriction of the partials caused by the torque.

For single crystal wires in torsion, McClintock and Prinz (1983) proposed a mechanism by which such a network would
evolve. The first junction in our simulations, the Y junction, forms by the reaction they postulate in their paper. But, the
evolution of further dislocation structures occurs differently. They hypothesize that network formation requires a number
of sources set in the right places to form the hexagonal dislocation network including some sources on the interior of the
wire. In our MD simulations, the sources of the dislocation are always on the surface. There are no pile ups as suggested by
McClintock and Prinz (1983) since all the dislocations needed for the structure naturally nucleate off the surface.

3.2.2. Stability analysis

The screw dislocation Y junction obtained in this configuration should be stable under an applied torque as an array of
like signed screw dislocations. This idea can be confirmed by doing a simple stability analysis of the structure. Consider a
symmetric array of three left handed screw dislocations as shown in Fig. 9(a). The array is unstable when there is no
applied torque since any perturbation of the center node will cause a junction to zip, leaving one screw dislocation in the
cylinder. However, if a torque is applied to the cylinder as shown in Fig. 9(b), the Y junction is stabilized.

Please cite this article as: Weinberger, C.R., Cai, W., Plasticity of metal wires in torsion: Molecular dynamics and
dislocation dynamics simulations. J. Mech. Phys. Solids (2010), doi:10.1016/j.jmps.2010.04.010



dx.doi.org/10.1016/j.jmps.2010.04.010

10 C.R. Weinberger, W. Cai / J. Mech. Phys. Solids 1 (1am1) -

In order to understand how the dislocation structure is stabilized we analyze a perturbed state shown in Fig. 9(b). The
Peach-Koehler force exerted on the vertical segment as it is displaced from the screw orientation by an angle ¢ is

f—_ TTbr(sind)cosd))"(+Sinz¢9) ©

where b is the magnitude of the Burgers vector, 7 is the applied torque, J is the polar moment of inertia and r is the radial
distance. For ¢ < 1, this reduces to

f=-— T—br ([))2 (3)
J
which is a restoring force opposite to the direction of ¢. Of course, if the array were composed of right handed screw
dislocations instead, then b < 0 and the force is destabilizing. The force would also be destabilizing for a left handed screw
array with a negative applied torque.

The perturbation of one of the arms by an angle ¢ illustrates the stabilizing nature of the applied torque. However, the
dislocation arm would also tend to rotate back by a line tension argument. This is because the rotated arm has a higher
energy since it has an edge component. In addition, the previous analysis does not predict a critical torque to stabilize the
junction. This can be done by considering another perturbed configuration shown in Fig. 9(c) where the center node is
moved by a distance dy without changing the arm angles. To first order in dy, the line length of the junction does not
change. The work done by the applied torque is zero to first order, which is the Peach-Koehler force on the unperturbed
configuration. Therefore, to investigate the critical torque, the configuration must be analyzed to second order in Jy, which
is done in detail in Appendix B. The critical torque is

R?ub R
Tc= S log <E> 4

A hexagonal network, like the one shown in Fig. 9(d), will have a critical torque as well. This is the torque required to
keep the hexagonal structure inside the wire diameter. Lowering the torque would allow the structure to dissolve, while
increasing it will simply create a more compact hexagon. If we approach the problem using line tension arguments as
above, we find that the change in energy is zero. This is because as the hexagon enlarges, the change in perimeter always
exactly matches the loss of length in the spokes. However, if we account for the elastic interactions, the structure would be
unstable at zero torque due to the repulsion of the like-signed screw dislocations. The repulsive Peach-Koehler force can be
approximated by assuming the screw segments in the hexagon interact as straight infinite segments with a force
f = ub?/4nr where r is half the distance between them. The applied torque provides a stabilizing force of f = —zrb/J.
Equating forces and solving for the torque gives t = uJb/4nr?. From this simple model we estimate the critical torque in
terms of R by setting r=R and assuming a simple constant of proportionality

b UbR?
o= %%nr2 =% 8

The critical torque for the hexagonal loop is very similar in form to that of the Y junction. One could also propose such a
form based on dimensional analysis since the torque must be proportional to the shear modulus times the Burgers vector
and the R? term comes from the only available length scale parameter in the problem.

The stability of these structures is further confirmed using dislocation dynamics. The screw dislocation array shown in
Fig. 9(a) is a stable equilibrium structure in DD under an appropriate applied torque. AY junction is created and the center
node is moved down as part of the initial structure. Reversing the direction of the torque causes the structure to dissolve, in
agreement with the above calculations. Fig. 9(d) shows a hexagonal structure in dislocation dynamics, which is also
stabilized by an applied torque. In our dislocation dynamics simulations, the hexagonal array dissolves when the applied
torque is removed. We note that in a real crystal, the twist boundary may be stabilized (even at zero applied torque) by
impurities or other defects.

3.3. <100 Orientation

The ¢(100) is a high symmetry direction and has been the subject of intensive investigations of size effects in
micropillars. The orientation is the highest symmetry direction in uniaxial loading involving the most possible slip
systems. However, we note that based on a qualitative look at the associated stress strain curves, it appears similar to the
{111 direction. Fig. 10(a) and (b) shows the torque twist curves for both aluminum and gold for 5 nm diameter wires
and we note a similar significant drop in the torque upon dislocation nucleation. However, it is not clear if there is a trend
to the strength of the nanowires as a function of diameter, as illustrated in Fig. 10(c) and (d). The yield strain of the wires
from Table 3 shows a slight decrease in strength for gold, but not as strong or obvious as the {(111) direction. The
strength of the wires for aluminum remains constant, independent of diameter.
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Fig. 10. Representative twisting and un-twisting curves for 5nm diameter (a) aluminum and (b) gold nanowires. Torsional stress-strain curves (c) for
aluminum and (d) for gold, which illustrate the effect of diameter on mechanical properties.

3.3.1. Dislocation patterning

The deformation of the wire after initial failure shows the formation of a twist boundary, similar in some respects to the
{111 direction. Fig. 11 shows the nucleation of dislocations and their evolution into a twist boundary. The dislocations behave
effectively the same in both aluminum and gold. In larger diameters, the initial dislocations that are originally nucleated show
splitting of the dislocations into partials, but eventually the dislocations organize into planar structures with constricted perfect
dislocations. This is interesting, especially in the case of gold, because the partial separation in the bulk should be around 1.5 nm,
which is on the same order of the diameters of the wires. However, the applied torque both constricts the partials and drives them
to organize onto planes of maximum stress. Furthermore, the dislocations organize themselves into perfectly straight rectangular
arrays, which is classical model of a low angle twist boundary (Hirth and Lothe, 1982).

The twist boundary that forms should be a rectangular array of screw dislocations. For a wire oriented along the [001]
direction, the screw dislocations that can form such a boundary are a/2[11 0] and a/2[1 1 0], each of which can exist on two slip
planes. These slip planes are the (11 1) and (11 1) for the a/2[110] and the (111) and (1 171) for the a/2[11 0] respectively.
All of these slip systems can be active, but a regular rectangular array is needed to form a pure twist boundary.

The slip geometry also implies that it is possible to form many twist boundaries from the nucleation of dislocations at various
locations along the wire diameter. If dislocations nucleate far enough from the twist boundary, they would either form a new
twist boundary or have to cross-slip to reach a currently forming boundary. Fig. 11(d) shows a perspective view of the plasticity
along a 10nm diameter gold nanowire. In this case, dislocations initially nucleate and form multiple twist boundaries, as
expected. Secondary twist boundaries are often observed, but usually are made of only two or three dislocations. Further plastic
deformation is limited to the primary twist boundary which eventually evolves into a high angle twist boundary.
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Fig. 11. The evolution of a dislocation network in a (100> 10nm gold nanowire. (a) Initial dislocations nucleated in the wire, (b) the dislocations
organize onto planes, (c) and form a single rectangular array. (d) Primary and secondary twist boundaries that form along the wire. The primary boundary
is the same boundary as that shown in (c). The engineering surface shear strains for the configurations are: (a) 0.076, (b) 0.082, and (c) 0.096.

a b e
Fig. 12. The evolution of a (100) twist boundary from a random arrangement of dislocations. (a) The initial arrangement of dislocations. (b) An

intermediate configuration where they are in a nearly square configuration but not on the same plane. (c) The final configuration showing a planar
rectangular array of screw dislocations.

It is generally believed that the low angle twist boundary will form from dislocation motion under the applied torque. This
suggests that the organization of the dislocations is largely based on elasticity. To test this theory, dislocation dynamics is used to
simulate a wire under torsion. However, since dislocation dynamics cannot model nucleation, we start with an initial dislocation
array. We choose to model four dislocations, two with each Burgers vector described above and on each of the individual slip
planes. The dislocations are then allowed to move on their glide planes until equilibrium is reached. The evolution of the
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dislocation structure is shown in Fig. 12. The simulations shows that under an applied torque, the dislocations rotate to screw
orientation, form a grid, and eventually move onto the same plane, perpendicular to the wire axis.

4. Discussion

The issue of strain rate is always important in MD simulations since high strain rates (~ 10% s—1) cannot be avoided.
Certainly the strain rate will affect the strain at which the dislocation nucleate (Zhu et al., 2008). However, the more
important question is whether the high strain rate changes the deformation mechanism. To address this question, we have
first carried out simulations with the number of time steps increased from 5000 to 25000 for 5nm diameter gold
nanowires. This drops the strain rate from nominally 4 x 10® to 8 x 107 and there are no changes in deformation
mechanisms. Of course, a brute force approach is limited by computer resources. That is why it is important to note that
the mechanisms by which the structures dissolve are the same when they form. During the dissolution, the applied torque
is usually much lower than when the dislocations originally nucleate, showing that their occurrence is not due to the high
stresses. Furthermore, dislocation dynamics simulations also support the structures that form and are in agreement with
classical models. This suggests that our results are not strongly dependent on the applied strain rate.

The results presented here are for pristine wires without surface or other defects. A question that arises is how surface
defects affect the homogeneity of the deformation. We expect that defects will cause the deformation to be come more
heterogeneous, localized around the defect. To address this we have also carried out simulations of 5 nm diameter gold
nanowires with surface vacancies where 6 atom clusters were removed on the wire surface. The results show that the
vacancy clusters are where dislocations originally nucleate, as commonly expected. However, since the <111 and
{100} oriented nanowires already show heterogeneous deformation, it does not change the deformation mechanisms.
For the (110 orientations, the dislocations start to nucleate at the vacancies, but also nucleate at other sites later in the
deformation. Even if a vacancy was a continued site for nucleation for perfect dislocations, it would still likely result in
homogeneous deformation since the nucleated dislocations would spread out in the interior, as illustrated in our DD
simulations. Thus, while surface defects can act as preferential sites for nucleation, they do not tend to alter the plastic
deformation that occurs.

Even though the wires are under (torsional) periodic boundary conditions along their length, the question of length
does arise. In our simulations the length of the wire was twice the diameter, or an aspect ratio of two. Simulations were
also carried out for wires that are twice as long, for aspect ratios of 4. These simulations also show no change in the
mechanisms of plastic deformation. The deformation for the (110) and (111 are essentially limited to a plane, so the
length would appear to have little effect. For the (100}, we may expect to see a few more dislocations along its length if
initial nucleation does not occur near a single boundary. However, after a boundary forms, further deformation occurs only
on this boundary regardless of length.

These simulations show that wires under torsion can deform either through the formation of twist boundaries, as
expected, or through coaxial or Eshelby dislocations. When the deformation is through coaxial dislocations, the
deformation is homogeneous and potentially reversible if the wires are small enough to nucleate only partial dislocations.
Furthermore, <(110) wires deform in such a way that they maintain a significant fraction of their strength while in other
directions there is a significant strength loss.

This orientation dependent plasticity under strain gradients has important implications for strain gradient theories. This
work suggests that different dislocation networks can form, with different densities, that all accomodate the plastic twist
but depend only on wire orientation. Orientation dependent strain gradient plasticity models, as suggested by these
results, may overcome some of the limitations of existing theories (Kubin, 2003).

There is no reason to expect that these results, except for reversibility, should be limited to nanowires. Since the
mechanisms do not appear to be size dependent, we expect the results to be applicable to single crystal microwires as well,
as long as the wires are initially dislocation free. The existence of initial dislocation networks may alter how the wires
deform, since networks will likely evolve out of the multiplication of the statistically stored dislocations inside the wires.
Dislocation dynamics simulations can help answer these questions in the future.

5. Conclusion

We have shown that the plasticity of pristine single crystal FCC metallic wires in torsion is orientation dependent. For
wires oriented along the (110), coaxial dislocation nucleate causing the plasticity to be homogeneous. For the (111}
and ¢(100) orientations, twist boundaries form which localizes the deformation. The {(110) wires also maintain a
significant fraction of their strength after yield, while the other directions lose most of their strength.

When <(110) wires are small enough, only partial dislocations nucleate and the deformation becomes reversible since
partial dislocations are unstable in torque free wires. For thick <110} wires, perfect dislocations nucleate and our DD
simulations show that many screw dislocations can co-exist in the wire even in a torque-free state. For (111} wires, the
hexagonal dislocation network that forms the twist boundary is stable in the wire only when the applied torque exceeds a
critical value. Finally, DD simulations show that rectangular dislocation networks in {(100)» wires can be formed by
rotation of existing dislocations under the inhomogeneous stress field from the applied torque.
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Appendix A. The stability of a partial dislocation pair

This appendix addresses the stability of a partial dislocation pair in a wire. The wire lies along a <110 direction and
the two partial dislocations will have equal and opposite edge components, b, and equal screw components, b,. The force
on the two dislocations can be written in terms of their center of mass and separation distances as shown in Fig. 5(a). The
edge components of dislocations 1 and 2 are b, and —b,, respectively. The force on dislocation 1 is

fl= pbg n+E | =O=H0+O)-R 2R A-H(1+O)-R)-40-OR* 1

X 2n(1-v) RZ_(’,I+€)2 (Rz—(n+é)2)3 3¢
#bf n+< n—<¢ i_ 2(11+§)(R2,(,7+@2) ~ 2(1’]+f)(R2*(7’I*f)2) B _%’7+€b . a1
21 |R—(+&7  R++9n=0) " 2¢ 2 R )=~ pabs :

where 7 is the center of mass of the dislocation pair, ¢ is the separation half width, R is the radius of the cylinder, y is the
stacking fault energy, u is the shear modulus, v is Poisson’s ratio, and 7 is the applied torque, negative in the z direction in
the sense of a right hand rule. This means that a positive applied torque will tend to drive the dislocations into the cylinder.
The three terms coupled with the edge Burgers vector are from the image field of dislocation 1, the image field of
dislocation 2 and the stress field of dislocation 2 in an infinite medium. The first three terms with the screw dislocation are
the same for the edge dislocation, except they are associated with screw dislocations which both have Burgers vectors bs.
The fourth and fifth terms are associated with the image torque required to make the cylinder torque free. The penultimate
term in Eq. (A.1) is the force associated with the stacking fault and the last term is from the applied torque. The force on
dislocation 2 may be found in a similar fashion.

From the above elastic solution, we can solve for the cases in which the dislocations are no longer stable inside the
cylinder. For the dislocations to be stable in the wire we require 8E/dn = 8E/8¢ = 0 with (62E/n?)0E2 /0% —(0E2 Jaéan)® > 0
and &2E/on? > 0. These quantities can be found by noting that f,=—0E/on=f!+f2? and f: =—0E/o¢ =fl—f2. From
analyzing the stability of the dislocation pair, one finds that the only stable equilibrium position is when the center of mass
is at the center of the wire. There are two other possible equilibrium positions, but they are unstable with respect to
perturbations in #.

A negative applied torque may destabilize the dislocation pair. If the dislocation pair sits at the center, then a negative
applied torque can either pull the partial dislocations our separately, leaving a stacking fault, or make the dislocation
dipole unstable with respect to perturbations of its center of mass. Which path the dislocations take depends on which one
has a lower critical torque. If the center of mass is at # =0 it can be shown that 6E%/8&an = 0. The loss of stability of the
dislocations reduces to the conditions that 82E/a52 = 0 or 6E2/0¢* = 0 and 0E/én = 6E/o¢ = 0. Numerical solutions to these
equations show that the critical torque is always lower when 8*E/on? = 0, which means the dislocation pair will always
tend to leave together rather than be pulled apart. This makes sense since if the two partials are pulled apart they will leave
behind a stacking fault which will have a higher energy that a defect free wire. A positive applied torque will only further
stabilize the center position and push the partials in closer.

Appendix B. Critical torque derivation for a Y junction

The change in energy and the work done on a Y junction is zero to first order, which confirms that the structure is in
static equilibrium. Therefore, to investigate the stability of the network and establish a critical torque, the configuration
must be analyzed to second order in dy. The change in line length of the vertical segment is 5L, = dy to second order since it
exactly changes length oy in the perturbation. The length change of other two arms are

a1 (5hy?
5L2_5L3_—7§5h— 5R (B.1)
where 5h = (+/3/2)dy. Thus, the total change in length is
Shy?
oL =~ (B2)
Using the line tension approximation and an energy per unit length of E = (ub?/4m)log(R/b) the change in energy is
B ub?(5hy? R
OE =— Wlog b (B.3)

which says that the junction is in an unstable equilibrium if no torque is applied.
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The work can be computed from W = [, ;;b;n; dA. This integral can be evaluated using cylindrical coordinates as

R (Oh)/r R oh/r
SW=_2 / r / y,bsin0d0dr = —2 / r / Thododr = — 2R (sny? (B.4)
JO JO JO JO .] ]

The integral is carried out from r=0 to R. This is again an approximation which can be corrected by removing the integral
from r=0 to oh/2 and replacing it with a more correct form, where 6 would have constant limits of integration from 0 to
7/3. However, this correction is of order (h)3, so it is inconsequential for this derivation.

The critical torque can now be obtained by equating the work, Eq. (B.4), to the change in energy, Eq. (B.3)

_ Jub R
o= iz '8 (B.5)
and noting that the polar moment of inertia is J = (7/2)R*
R2ub R
fe= ; log (E) (B.6)

The critical torque derived here is based on line tension arguments which should give us the correct scaling behavior. The
exact expression may need to be modified to account directly for elastic interactions.
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