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Abstract

Dislocations intersecting free surfaces present a challenge for numerical
implementation of traction-free boundary conditions in dislocation dynamics
simulations. The difficulty arises when singular analytic expressions of
dislocation stress fields need to be used in combination with numerical methods
to calculate image stress fields due to the free surfaces. A new hybrid method is
developed here in which the singular and non-singular parts of the image stress
are dealt with separately. The analytic solution for a semi-infinite straight
dislocation intersecting the surface of elastic half-space is used to account for
the singular part of the image stress, while the remaining non-singular part is
treated using the standard finite element method. The numerical advantages of
this decomposition are demonstrated with examples.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

During the last decade dislocation dynamics (DD) simulations have emerged as a useful
numerical approach for studying the mechanical behaviour of crystals based on the fundamental
mechanisms of dislocation motion (Kubin and Canova 1992, Tang et al 1998, Zbib et al 1998,
Ghoniem et al 2000, Schwarz 1999). For example, direct simulation of dislocation behaviour
in thin films and microelectronic devices is an appealing application of this relatively new
approach (Schwarz 1999, Wang et al 2004). General aspects of the DD method have been
extensively reviewed in the literature (Bulatov et al 2001, Weygand et al 2002, Devincre 1996).
Briefly speaking, the DD simulations track the motion of dislocation lines, which are usually
represented by a set of inter-connected segments. The dislocations move in response to forces
that are proportional to the local stress field generated by external loads, other dislocations or
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other types of defects, such as cracks. For a bulk single crystal, the major computational time
of DD simulations is spent on the evaluation of the stress field produced by the dislocation
segments themselves. These simulations use the analytic expressions for the dislocation stress
field in an infinite elastic medium (Hirth and Lothe 1982, Devincre 1995), which will be
referred to as the canonical solutions of dislocations in the following discussions.

When the canonical solutions are applied to a finite elastic body, traction forces exist on
the boundary surfaces. These traction forces should then be removed if the elastic body is
subjected to traction-free boundary conditions. The image stress is defined as the additional
stress field due to such a correction; the total stress field is the summation of the canonical
and image stress fields. This two-step approach to obtain dislocation stress fields that satisfy
traction-free surface boundary conditions has a long history in the literature (Eshelby 1979,
Van der Giessen and Needleman 1995, Fivel et al 1996, Yasin et al 2001, Lemchand et al
2001). Boundary element method (BEM) and finite element method (FEM) are two standard
numerical methods to compute the image stress, given the spurious traction forces that need to
be cancelled. Both BEM (Fivel et al 1996, Liu et al 2000) and FEM (Martinez and Ghoniem
2002, Tang et al 2003) have been implemented in DD simulations of a finite elastic body.

This approach works well when all dislocation segments are sufficiently away from the free
surface, so that the spurious surface traction forces are slowly varying functions. Unfortunately,
this approach becomes very inefficient when one or more dislocation segments intersect the
surface. Because the canonical stress field is singular on the dislocation line, the spurious
surface tractions are singular at the intersection point. When standard FEM is applied to
solve for the image stress due to such singular traction forces, the result is found to strongly
depend on the mesh size (Tang et al 2003). In principle, the numerical values for the forces on
dislocation segments should eventually converge if the mesh is made fine enough. However,
the numerical convergence is found to be very slow (for test cases whose exact solutions are
available for comparison). When a uniform mesh is used, the total number of mesh points
often becomes impractically large before numerical convergence is reached. Other difficulties
arise when threading dislocations move and overlap with the Gaussian integration points of the
FEM mesh, leading to numerical instabilities. A possible solution is to use adaptive meshes
with multiple resolutions that follow the intersection points (Liu and Schwarz 2005). But
adaptive meshing is a cumbersome and challenging problem in itself, especially for large scale
DD simulations where many dislocations intersect the surface. To speed up the numerical
convergence of image stress calculation, Weygand et al (2002) attempted to make the spurious
surface tractions vary as slowly as possible, by adjusting ‘virtual’ dislocation segments, such
as by the ‘mirror-image’ construction. Unfortunately, the ‘virtual’ dislocation segments do
not completely remove the singularity from the spurious surface traction. Hence the FEM
calculation still faces the same type of problems associated with the singularity. It is worth
mentioning that a different approach using prismatic loops on the free surfaces to account for
the image stress without utilizing FEM was developed for DD simulation (Khraishi and Zbib
2002, Yan et al 2004). However, this method is computationally very expensive.

In this paper, we describe an alternative approach to speed up the numerical convergence of
the image stress calculation. In this approach, the singularity is completely removed from the
FEM calculation, which now converges significantly faster than before and a much coarser mesh
can be used. The idea is to consider the image stress field as the superposition of two solutions.
The first solution is the image stress field of a semi-infinite straight dislocation intersecting
the free surface of a half-space, for which analytic expressions exist. The geometry of this
(auxiliary) straight dislocation is chosen such that its image stress contains the same singularity
as the image stress of the dislocation of interest. The second solution is the difference between
these two image stress fields; by construction it is a non-singular function of space and is
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solved numerically, such as by FEM. Hence the image stress of interest is obtained as the
hybrid of analytic and FEM solutions. Even though the analytic solution used here exists
in an elastic subspace, our hybrid approach can be generalized to a finite elastic body with
multiple free surfaces. The key difference between the present and previous approaches is that
the singularity is completely removed from our numerical calculation, which fundamentally
changes the nature of the problem that FEM needs to deal with.

In the next section, we give a brief overview of the DD and FEM models used in this
work. The new hybrid method is presented in section 3 and some examples are discussed in
section 4. Finally, some conclusive remarks are made in section 5.

2. Methodology

2.1. Dislocation dynamics

In our DD model, the dislocation lines are represented by straight segments connecting a set
of nodes. The nodal position 7; and the Burgers vectors of the segments b;; (i and j refer to the
two ending nodes of the segment) are the degrees of freedom in this model (Cai et al 2004b,
Bulatov ez al 2004). The driving force f; on every node is computed at the beginning of every
time step. Itis the weighted average of the Peach-Koehler (PK) forces acting on the dislocation
segments connected to the node (Cai 2001, Kukta 1998 , Weygand et al 2002), i.e.

fi= [ £ P @Ni(x)dL(x), (1
C

where the integral is along all segments connected to node i. Nj(x) is a shape function that
equals to one at node i and decreases linearly to zero at neighbouring nodes. The PK force
per unit length on a dislocation segment at point x is

FPR@) = (e®) - b) x €M), @

where o (x) and £(x) are the stress tensor and the unit tangent vector at point x on the segment
and b is its Burgers vector. The stress field o (x) is the sum of applied stress and internal
stress field produced by all dislocation segments in the model. In isotropic elasticity, analytic
expressions are available for the stress field produced by an arbitrary straight dislocation in an
infinite elastic medium (Hirth and Lothe 1982). In a finite elastic medium,o (x)should have
several contributions, i.e. o(x) = o®P(x) + ¥ (x) + o™2(x). The first term o*P (x) is the
applied stress, the second term o> (x) is the internal stress field due to all the dislocations in
the system and the third term '™ (x) is the image stress due to the free surfaces. In this paper,
no applied stress is present.

Because the dislocation stress field is singular on the dislocation lines themselves, some
truncation has to be applied to avoid this singularity. In this study, we adopt a simple approach
proposed by Brown (1964), in which the stress field is never computed on the segment itself.
Instead, stress is computed first on both sides of the segment on the glide plane at a distance p
to the segment and then the average of the two stress values is used for computing the PK force
f PX(x) (Schwarz 1999). There are several limitations to Brown’s approach. For example,
one needs to specify a plane on which the two stress evaluating points are located, which
may be ad hoc for screw dislocations or non-screw dislocations undergoing climb. Brown’s
approach was also shown to lack self-consistency (Gavazza and Barnett 1976) and alternative
approaches have been proposed (Lothe 1992, Cai et al 2005). Because the focus of this paper
is on image stress calculation, we adopt Brown’s approach for simplicity and constrain all
dislocation segments to a pre-specified glide plane.
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Following nodal force is the calculation of nodal velocities. In most cases of interest,
the effect of inertia on dislocation motion can be ignored so that the equation of motion is
first-order, i.e. the driving forces determine the instantaneous velocities through a mobility
function (Cai and Bulatov 2004, Cai et al 2004a). For simplicity, we use a linear mobility
function

v; = Mg;H(gt, 3)
t=1/1f]. @
g = |fi| /Li — b, (5)

where v; is the velocity of node i, ¢; is the unit vector along f;, M is a mobility constant, and L;
is half of the total length of all segments connected to node i, 7, is the minimal stress required
for dislocation motion (i.e. Peierls stress) and b is the magnitude of the Burgers vector. H(x) is
a step function that equals one if x > 0 and equals zero if x < 0. The step function guarantees
that the velocity is zero when the driving force per unit length is smaller than the resistance
force due to the Peierls stress. Notice that here vi, t; and f; are all two-dimensional vectors on the
glide plane. The Burgers vectors remain unchanged during nodal motion, unless dislocation
reaction occurs, such as when two dislocation segments combine into one. In this case a new
segment appears with the Burgers vector being the sum of the two original Burgers vectors.

2.2. Finite element method

The FEM is a standard approach to solve boundary value problems in elasticity (Hughes 2000,
Smith and Griffiths 1998). In this case, it is used to solve for the image stress field due to
the surface tractions for correcting the canonical stress field. The FEM code used in this
work relies on direct and conjugate gradient iterative solvers. The latter is considerably more
efficient for large systems with thousands of elements or more. Regular meshes (i.e. 8-node
linear cubic brick elements) are used throughout this study with the mesh size ranging from
0.1 to 0.6 nm. The largest system reported here contains 10.8 million elements. For simplicity,
the stress field is sampled at one Gaussian point in each element. This means that the stress at
any point in space is taken as the stress value in the element that contains this point. We have
also implemented a scheme in which the stress at a given field point is interpolated based on
the stress values of the nearest 8 Gaussian points around the field point. This does not change
the general conclusion of this paper.

All the calculations discussed here use rectangular simulation boxes with larger x and y
dimensions and a smaller z dimension. For the cases with only one free surface at the top
(with z axis as the normal direction), zero-displacement boundary conditions were applied to
all the other five surfaces unless otherwise noted. For the cases with two free surfaces, one at
the top and the other at the bottom, the zero-displacement boundary conditions were applied
to the four side surfaces.

3. The hybrid method for image stress calculation

Consider the case of a curved dislocation, discretized into a set of straight segments, intersecting
the free surface of an elastic half-space, as shown in figure 1(a). Our task is to find the stress
field o (x) inside the elastic medium, so that we can evaluate the forces on the dislocation
segments for DD simulations. This is usually done by first imagining that the dislocation
actually exists in an infinite elastic medium. For this purpose we also need to continue the
dislocation beyond node O to infinity, usually as a straight line, so that the dislocation does
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Figure 1. Decomposition and superposition used to formulate the hybrid method are illustrated
schematically for a half-space with only one free surface. As a source of stress, an arbitrarily
shaped dislocation (@) terminating at the free surface is viewed here as a sum of two configurations,
i.e. (b) and (c). The Yoffe solution applies directly to (b) and the standard FEM is used to calculate
the image stress for (c).

not end inside the elastic medium. Let the corresponding stress field be o°>°(x). The traction
force on the boundary surface is F(x) = o™ (x) - n, where n is the surface normal vector. If
we wish to apply a traction-free boundary condition to the surface instead, we will need to find
the image stress o'™&(x) generated in the elastic half-space, with the traction force boundary
condition as T(x) = —o*°(x) - r applied to its surface. The total stress is the sum of the two:
o(x) = @) + 0™ (x). As stated above, given T'(x), the difficulty of solving for o™ (x)
numerically is that T'(x) is singular at the point where the dislocation intersects the surface.
Consequently, o™ (x) is also singular at this point.

However, if the dislocation is perfectly straight, as shown in figure 1(b), then we do
not need to solve this problem numerically. Analytical expressions have been derived by
Yoffe (1961), with several misprints later on corrected by Shaibani and Hazzledine (1981) and
Hazzledine and Shaibani (1982). In the following, we will refer to the total and image stress
for this configuration as o”(x) and o” —img (y), respectively.

Let us return to the problem of solving for the image stress o™ (x) in figure 1(a). We
notice that the difference between o'™(x) and o”~'™&(x) is exactly the image stress of a
different dislocation, shown in figure 1(c), which does not intersect the surface. Let us call the
image stress of this dislocation oOTime () The image stress in figure 1(a) can be obtained
as oME(x) = oV M (x) + oM (), where o ™ (x) is available in analytic form and
oM (x) can be computed numerically such as by FEM. The important point is that, in
this approach, FEM does not need to deal with a singular surface traction any more. Hence
the numerical convergence is much faster and a much coarser mesh can be used than before.
In the following, we describe some benchmark results and further generalizations of this
idea.

3.1. Validation of Yoffe solution implementation

First, we validate our numerical implementation of the Yoffe image stress solution, by
comparing it with a direct FEM calculation. The FEM calculation deals with a rectangular
solid with x, y and z dimensions at 60 nm, 60 nm and 6 nm, respectively. The top surface at
z = 6nm is subjected to free-surface boundary condition. The Burgers vector is along the
[111] direction and its magnitude is 0.286 nm. The dislocation line is at 5° with the z-axis (i.e.
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Figure 2. Six components of the image stress tensor as a function of y beneath the surface of an
elastic half-space, for a straight semi-infinite mixed dislocation intersecting the surface at 5° to the
surface normal. Stresses are in units of MPa and length is in units of nm. The solid lines are for the
Yoffe solution and the dashed lines are for the direct FEM calculation. The inset in top left panel
shows the position of the line along which the stress values are shown.

[001] direction). The FEM mesh is formed by cubes of 0.2 nm in length. The Yoffe image
stress solution and the image stress obtained by direct FEM are compared along a line parallel
to the y axis atx = 30 nm and z = 0.6 nm (see the inset in figure 2). The six stress components
from the two approaches are plotted in figure 2.

In the FEM calculation, only the top surface is assumed to be free of traction. Zero
displacement boundary conditions are applied at four side surfaces. To minimize possible
artefacts, a fixed surface traction boundary condition is used at the bottom surface with the
tractions computed from the Yoffe total stress analytic solution. This was found to have a better
agreement with the Yoffe image stress solution for the stress field close to the bottom surface.
As shown in figure 2, the FEM results agree well with the Yoffe analytic solution except close
to the side surfaces, which is an artefact of the zero-displacement boundary condition used in
the FEM calculation. As an additional test for consistency, we verified that, when a dislocation
is perpendicular to the free surface, the stress field reduces analytically from the general Yoffe
solution to the one found by Honda (1979).

3.2. Comparison between hybrid and direct FEM approaches

A simple test to benchmark the hybrid approach for image stress calculation is shown in the
inset of figure 3. It consists of a curved semi-infinite dislocation represented by three segments
in an elastic half space. The lengths of the segments, 0—1, 1-2 and 2-3 are 2 nm, 2 nm and
infinite, respectively. Segments 0—1 and 2-3 are parallel to the z-axis, while segment 1-2 is
at 30° to the z-axis. The Burgers vector is [111] and all segments are in the (110) plane. The
FEM calculations use a rectangular box with x, y and z dimensions at 30 nm, 30 nm and 12 nm,
respectively. Figures 4 (a) and (b) plot the image force on node O and 1, respectively, as a
function of the FEM mesh sizes, using both the hybrid and the direct FEM approaches.
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Figure 3. Inset: a three-segment configuration to benchmark the performance of the hybrid method
for image stress calculation. The nodal force on nodes 0 and 1 are calculated using image stresses
from both the hybrid method and the direct FEM. The magnitude of the nodal force is shown in (@)
for node 0 and in (b) for node 1. The squares are for the hybrid method and the circles are for the
direct FEM. The nodal force is in units of ub?, where y is the shear modulus.

The most notable feature of these plots is that, the hybrid method based on the
‘singular/non-singular decomposition’ shows nearly no mesh dependence, whereas the direct
FEM approach shows strong mesh dependence. Even when the finest mesh is used (that is still
affordable within our computational resources), the results from the direct FEM approach is
still far away from the correct, converged values. Analysis shows that the major contribution
to the forces on nodes 0 and 1 comes from the image stress of segment O—1. In the hybrid
method, this contribution is computed using the Yoffe analytic solution and is obviously mesh-
independent, whereas the direct FEM calculation shows strong mesh dependence due to the
difficulty in resolving the singularity. The direct FEM approach significantly underestimates
the nodal force because of the insufficient sampling of the singular image stress. The same
behaviour was also seen in the ideal case of a straight semi-infinite straight dislocation in an
elastic half space, when direct FEM results are compared with the Yoffe analytic solution (Tang
et al 2003). Although not visible in the figure, the results from the hybrid method also show a
very weak dependence on the mesh size. This comes from the non-singular part of the image
stresses due to the dislocation segments that are not intersecting the surface. Over the entire
range of mesh size considered, the magnitudes of the forces on nodes 0 and 1 only vary by
0.3% and 0.7%, respectively.

3.3. Generalization to multiple free surfaces

So far we have demonstrated the effectiveness of the hybrid method for a curved dislocation
in an elastic half space. We have not discussed whether the same method can be generalized
to dislocations in elastic bodies with other geometries, such as a finite body with multiple
surfaces, as shown in figure 4. Indeed, it may not seem clear whether or not this can be done at
all, since the key of the hybrid method is to use the Yoffe analytic solution, which corresponds
to an elastic half-space. The hybrid method also requires an auxiliary semi-infinite dislocation
segment such as BB’ in figure 4. And the concern is that, if this auxiliary segment intersects
another surface, e.g. surface 3, it may exacerbate the situation by introducing yet another
singularity. Fortunately, all of these problems can be resolved. In the following, we describe a
method that can remove all the singularities from FEM calculations of image stress when the
elastic body has multiple surfaces.
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Figure 4. An elastic body with 4 surfaces (1,2,3,4) containing a dislocation line A-B-C-D. When
solving for the image stress due to segment A—B, we will make use of the Yoffe solution of a straight
semi-infinite dislocation A-B’ in an elastic half space whose surface overlaps with surface 1.

Because the total stress field is the superposition of contributions from all segments,
without loss of generality, let us consider the stress field generated by segment A-B, which
intersects surface 1 of an elastic body shown in figure 4. Let o sp be stress field of this segment
inside the finite elastic medium, o} be the stress field of this segment in an infinite medium,

and o'g:llf be the image stress, thus,

OAB = OS5+ Onp- 6)
o, is the stress field inside the elastic medium when its surfaces are subjected to traction
forces

Ti(x) = —o5p () - n;, 7

where n; is the normal vector of surface i. Again, because o35 (x) contains a singularity
on surface 1, the convergence of direct FEM approach will be very slow. Let us make use
of the Yoffe analytic solution a;‘,";mg, the image stress field of a hypothetical, semi-infinite
dislocation AB’, in an elastic half-space, whose surface overlaps with surface 1, as shown in
figure 4. Obviously, a;‘;_Bi,mg is a valid solution inside the finite elastic medium, which is a
subset of the elastic half-space in which O’i;mg is defined. The total stress contribution from
segment A—B can be re-written as

0o y—img corr—img
OAB =0 g +04p +0,p . 8)
The new image stress oy * is the stress field inside the elastic medium when all of its

surfaces are subjected to traction forces
Ti(x) = —(033®) + ok ™ () - mi. ©)

Since both stress terms in the bracket are non-singular on all surfaces except surface 1, the
traction forces in equation (9) are non-singular on those surfaces. Because the Yoffe solution
satisfies traction free boundary condition on surface 1, i.e.

(OB +oy +oug 5) -0 =0, (10)
on surface 1 equation (9) can be re-written as

T\(x) = —ofs() - ni, (11)
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which is also non-singular, because segment B—B’ does not intersect surface 1. Therefore,
the new correctional image stress field o®" '™ can be computed using FEM, for an elastic
medium subjected to the boundary conditions specified by

{Ti(x) = (@ + oG @) 0y i =2,3,4

(12)
Ti(x) =—og(x) -ny.

Because the traction forces are non-singular on all the surfaces, the FEM calculation is expected
to converge very rapidly.

The image stress field of segment BC is simply obtained using the FEM since no singular
traction force is involved. The image stress field of segment CD can be obtained similarly as
segment AB by applying the Yoffe image solution at surface 4.

In a brief review, this method can be easily generalized to situations where multiple
dislocation segments intersect different free surfaces of an elastic medium. In the FEM
calculation, the elastic body is subjected to surface traction due to every dislocation segment.
Equation (7) is used when a segment does not intersect any surface; equation (12) is used when
the segment does intersect a surface. The final image stress is the sum of the FEM result and
the Yoffe image solutions of all segments that intersect a surface.

4. Applications

This section discusses two examples of the application of the hybrid method presented above.
Both examples are related to dislocation behaviour in a confined space. The first one examines
the stress fields produced by a single dislocation threading a thin freestanding film with two
free surfaces. The second example is a dynamic simulation of a dislocation half-loop near the
surface of an elastic half-space. In both cases, we use the Yoffe solution to obtain accurate
image corrections for stress and PK forces on dislocations. The hybrid method allows us to use
rather coarse FEM meshes keeping the overall cost of the FEM calculations small compared
with the DD part of the problem. To highlight the significance of the image effects, we compare
the results with and without the image stress corrections in both examples. In both examples,
the major image stress effect is captured by the Yoffe image stress solution alone. We use the
mesh size of 0.2nm to carry out these calculations. The contribution from the correctional
image stress by FEM is negligible. One could use a much larger mesh size than 0.2 nm. In
fact, we have re-run the example in figure 7 with the Yoffe image stress only, where we have
seen the same behaviour.

The first example is a calculation of the stress fields produced by a single screw or edge
dislocation in a free standing thin film. The dislocation is straight and threads along the z
direction, perpendicular to the top and the bottom free surfaces where traction-free boundary
conditions are applied. To gauge the importance of the image stress to dislocation behaviour
in thin films, we note that the PK interaction force per unit length between a pair of parallel
screw dislocations is f = b(oy,i — ox,j), where i and j are the unit vectors along x and y
direction, respectively. Figure 5 shows contour plots of the stress component o, (in units of
shear modulus ) in the middle plane of the simulation box. The results are similar for oy,.
From (a) to (c), the film thickness changes from 2 to 4 nm to infinity. We can observe that
the stress field is confined to a local region whose range is comparable to the film’s thickness.
This means that the elastic interaction among screw dislocations is significantly modified in
the films where it becomes short-ranged. This is because the direction of the Burgers vector
is normal to the traction-free surface. A similar observation was made by Eshelby and Stroh
(1951). In figure 5, we also plot the stress field of a finite dislocation segment when the image
stress is not included, i.e. the canonical solutions only. Although certain size effects can be
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Figure 5. The stress contours computed for a single screw dislocation. The simulation box is 20 nm
along the x and y directions. The dislocation lies along the z direction and its Burgers vector is
along [001]. The stress contours are computed in the middle plane at x = 10 nm. (a) and (b) show
the stress contours in 2 and 4 nm films with the image stress corrections obtained by the hybrid
method while (c) shows the stress contours due to an infinite screw dislocation. (d) and (e) show
the stress contours of a finite screw segment terminating at the free surfaces in 4 and 2 nm films,
but without the image stress correction. Note that the slight asymmetry is due to the fact that the
dislocation position is shifted off-centre by 0.05 nm in the positive x and y directions.

observed, the stress distributions are noticeably different from the correct results and violate
the traction-free boundary condition at the top and bottom surfaces.

The results for the edge dislocation are qualitatively different. The PK force per unit
length between a pair of parallel edge dislocations is f = b(oy,i — oj). Figure 6 plots the
contour plots of oy in the middle plane of the simulation box. The results for oy are similar.
Comparing (a) and (b) with (c), we see that the effect of the free surface is much smaller
than the case in figure 5. The dependence on the film’s thickness is also much weaker. This
is because, in this case, the dislocation Burgers vector is the same plane as the traction-free
surface. Figures 6(d) and (e) plot the stress distribution when the image correction is not
included. In this case, they appear to be overly confined compared with the correct stress
distribution.

The second application concerns the stability of a dislocation half-loop beneath a traction-
free surface of an elastic half-space. The surface normal is along [001] and coincides with the
z = 0 plane. The initial condition of the half-loop consists of three straight segments: two
edge segments of length 200 b and one screw segment of length 282 b. The Burgers vector is
along [110] and parallel to the free surface. Its magnitude is 0.286 nm. A long straight screw
dislocation is placed beneath the half-loop at z = —300 b with an opposite Burgers vector, so
that the half-loop and the screw dislocation should attract each other. The length of the screw
dislocation is 707 b and its length is fixed. No cross-slip is allowed so that the segments of both
dislocations can move only in the (110) glide plane. Counteracting the attraction between the
half-loop and the long screw dislocation is the image stress from the free surface that pulls the
half-loop towards the surface. In these simulations, the dislocation mobility constant M is the
same for both screw and edge dislocations (the results are found to be insensitive to the choice
of M) and the Peierls stress is 1.5 x 107 .
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Figure 6. The stress contours computed for a single edge dislocation. The simulation box is 20 nm
along the x and y directions. The dislocation lies along the z direction and its Burgers vector is
along [100]. The stress contours are computed for the middle plane at y = 10nm. (a) and (b)
show the stress contours in 2 and 4 nm films with image stress corrections computed by the hybrid
method while (c¢) shows the stress contour of an infinite edge dislocation. (d) and (e) show the
stress contours of a finite edge segment terminating at the free surfaces in 4 and 2 nm films, but
without any image stress correction.

In the first simulation, the image stress field is computed using the hybrid method. The
half-loop first turns into a more semi-circular shape, mainly due to line tension effects. Due
to the image stress, the half-loop eventually shrinks and disappears at the surface. Snapshots
from this simulation are plotted in figure 7(a). Next, we repeat the simulation but ignore
the image stress field. The behaviour becomes very different. As shown in figure 7(b), after
some initial relaxation period, the half-loop and the screw dislocation move towards each other
and eventually recombines, giving rise to two threading dislocations intersecting the surface.
These two simulations illustrate the importance of image stress corrections on the fate of a
dislocation half-loop near the surface, which can be important for the nucleation of threading
dislocations for stress relaxation in thin films.

5. Summary

In this paper, we presented a new method for computing the image stresses produced by an
arbitrary dislocation arrangement in a finite isotropic elastic body with one or more traction-
free surfaces. The method is based on a special treatment of the singular part of the image
stress for dislocation segments intersecting traction-free surfaces. The hybrid method achieves
a high accuracy and computational efficiency by dispensing with the need for excessive mesh
refinement near the termination points. At present, our approach relies on the standard
framework of the singular continuum theory of dislocations. Further development is underway
to extend this approach to a non-singular version of the continuum theory (Cai et al 2005).
The examples given in this paper demonstrate the importance of the image stress in
confined spaces. In a freestanding thin film, when the Burgers vector is normal to the surface,
the image stress is found to significantly alter the interaction range between two dislocations.
A much weaker effect is found when the Burgers vector is in the plane parallel to the free
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(b)

Figure 7. Snapshots from DD simulations of a dislocation half-loop and an initially straight
dislocation beneath a free surface. The two ends of the straight dislocation are fixed in space. Time
proceeds from left to right. The dashed line indicates where the free surface is. (@) When the image
stress is fully accounted for, the half-loop eventually disappears at the free surface. (b) When the
image stress is ignored, the half-loop eventually recombines with the dislocation below, leaving
two threading dislocations intersecting the free surface.

surface. In the case of a dislocation half-loop beneath the surface of an elastic half-space,
the image stress is found to be important in the fate of the half-loop. Further calculations are
underway to study the effect of image stresses on dislocation behaviour in small systems with
more complex geometries. We expect that this method will be useful for the study of size
effects of crystal plasticity at small scales.
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