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Abstract Dislocation dynamics (DD) is a modeling approach for the study of crystal
plasticity wherein individual dislocation lines are discretized and their motion in the
crystal is simulated. This chapter provides an overview of the basic features of the
DD methodology and a guide for how to run DD simulations. Instead of providing a
comprehensive review of available DD codes, the intention of this chapter is to give
a simple overview of the algorithms and ideas comprising the DD approach. Each of
the basic building blocks, in terms of both dislocation physics and numerics, is first
discussed. Three case studies are then presented, showing how to set up a simulation,
ensure solution convergence, and extract key outputs. Finally, the relation of DD to
material models at other length and time scales is discussed, along with current
challenges and research topics.

1 Overview

When crystalline solids undergo plastic deformation, line defects known as disloca-
tions move, multiply, and react with one another. The overall mechanical properties
of the crystal in this plastic regime are governed by these dislocation processes. Dis-
location dynamics (DD) is a modeling approach that aims to simulate the motion
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and interaction of these dislocation lines to gain insights concerning the mechanical
properties of the material.

Dislocation lines are defects whose core widths are at the scale of the crystal
lattice. The length-scale over which dislocation structures evolve is, however, many
orders of magnitude larger than the interatomic distance. A classical example is the
formation of dislocation cells; at moderate to large amounts of plastic deformation,
dislocation networks are known to form cellular structures, with an average cell size
on the order of 1 µm (see Fig.1(a)). Hence, any model which hopes to inform our
understanding of bulk plastic deformation—for example, understanding the temper-
ature dependence of the stress-strain curves shown in Fig. 1(b)—must simulate a
material volume above this length scale. Using an atomistic approach would require
the simulation of more than 1010 atoms, a simulation size which is prohibitively ex-
pensive even for the most modern computational tools. This gap in scale necessitates
a new model at the so-called mesoscale: dislocation dynamics.

The idea behind the DD approach is that because plastic deformation is domi-
nated by the motion and interaction of dislocation lines, one only needs to consider
the dislocation lines, rather than the locations of all of the atoms, to understand the
plastic behavior of a material. Taking such an approach enables simulations with
length scales of 10 µm and time scales of 1 ms. As with all mesoscale approaches,
DD requires the input of multiple physical models to describe the various behaviors
of the dislocation lines, meaning that much information must be provided either
from experiments or more fundamental models. Unlike other mesoscale models of
plasticity which consider the dislocation density in terms of a homogenized field, in
DD dislocation lines are treated explicitly so that individual dislocation-dislocation
interactions can be properly captured.

Much of the theory that feeds into the models that describe the dislocation lines
has been established for many decades, as has the concept of DD itself [33, 52].
However, only recently have large-scale simulations been made possible with the
inception of modern computational tools. Despite these many advances, DD remains
a challenging tool to use, often requiring hundreds of computer cores for a single
simulation of a short duration of physical time relative to experiments.

The remainder of the chapter will be organized as follows. First, in Section 2 we
will discuss the basic features of the DD formulation. In Section 3, we will then
discuss how to run a DD simulation all the way from inputs to outputs, and show a
few examples. Section 4 will discuss DD’s place in the hierarchy of material models.
Finally, Section 5 will present topics of current research and challenges that the DD
community need to overcome to enable more widespread use of the tool.

2 Fundamentals

In order to simulate the motion and interaction of dislocation lines, a number of al-
gorithms, rules, and procedures have been developed. In this section, we break these
features into two groups. First, we discuss the most basic ingredients necessary to
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Fig. 1 Examples of dislocation plasticity. (a) Cellular dislocation structure in single crystal copper
after tensile loading in the [1 1 1] direction at �90�C and (b) stress-strain curves for single crystal
copper at various temperatures. Reproduced from [47] with permission from Elsevier.

conduct a DD simulation: how driving forces are exerted on dislocations (2.2.1),
how to determine dislocation velocities given these forces (2.2.2), discretization
and adaptive remeshing of the dislocation lines (2.2.3), time integration of the equa-
tions of motion (2.2.4), and how dislocations can collide and react (2.2.5). We will
then introduce more advanced aspects of DD simulations: how to handle dislocation
junctions and intersections (2.3.1), different types of boundary conditions (2.3.2),
how screw dislocations can change their glide plane through cross-slip (2.3.3), and
a brief discussion of two-dimensional DD simulations (2.3.4). These features are
presented in the flowchart shown in Fig. 3. We begin, however, with a discussion of
the overall problem formulation.

2.1 Problem Formulation

The basic idea behind DD is to embed the physics of dislocations into a set of
governing equations that can be solved for the positions of a network of dislocation
lines, given an initial dislocation configuration, boundary conditions, and loading
conditions. The positions of the lines are described by the vector r(s, t), where s

is a scalar parameter dictating the location along the lines, as shown in Fig. 2(a),
and t denotes time. Because we seek a tool that can obtain a solution in arbitrary
settings (e.g. many dislocation lines loaded multiaxially), we will need to discretize
our system in both space and time, and employ numerical methods to solve the
governing equations. Fig. 2(b) shows an example of discretization in space.
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Fig. 2 Position of a pair of dislocation loops at time t. (a) Continuous representation described
by position vector r as a function of parameter s. (b) Discrete representation using node-based
discretization (see Section 2.2.3) described by position vectors of nodes r

i

.

As we will discuss, many things can exert forces on dislocations. These forces
can be broken into drag forces, which resist dislocation motion, and driving forces,
which promote it. Additionally, dislocation lines are known to have effective masses,
giving rise to inertial forces [50]. In many crystalline materials under a broad range
of conditions, however, drag forces intrinsic to the crystal lattice are orders of mag-
nitude larger than the inertial forces, making dislocation motion over-damped [50].
This means that in the overall equations of motion, we can neglect inertial terms al-
together, and simply require that the total driving force balance the total drag force,
i.e.

ÂFdrag(v,s)+ÂFdrive(s) = 0 (1)

where v is the dislocation velocity

v =
∂r(s, t)

∂ t

(2)

and the summations are over all drag and driving force contributions. Usually, in
dislocation dynamics, Eq. (1) can be explicitly solved for v and restated as

v = M(F tot
drive) (3)

where F tot
drive[r(s),s ext, ...] = ÂFdrive is the total driving force as a function of pa-

rameter s, dependent upon the dislocation position r(s), the externally applied stress
s ext, and any other features which exert driving forces. The function M(·), which
provides the velocity given a total driving force, is called the mobility law. The final
governing equation of motion can be written as

∂r(s, t)
∂ t

= g [r(s),sext, ...] , (4)
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where g ⌘ M
�

Ftot
drive [r(s),sext, ...]

�

is an operator which computes the velocity v(s)
from a given dislocation structure r(s) and loading condition.

2.2 Basic Features

A flowchart depicting the major steps in a DD simulation is presented in Fig. 3. We
will now discuss each of these steps in turn.

Set initial configuration of 
discretized dislocation lines

Calculate force on each DOF

Calculate velocity of each DOF

Time integrate each DOF
(update positions)

Calculate plastic strain increment 

Detect dislocation collisions

Handle junction formation / dissolution

Remesh (coarsen / refine segments)

Save dislocation configuration 
and other properties to file

Save final restart file

Final time-step?

Yes

No

Fig. 3 Flowchart showing the basic steps for a dislocation dynamics code. Note that the force
and velocity of each degree of freedom (DOF) may be computed multiple times per time step
depending on the time integration scheme used (see Section 2.2.4).

2.2.1 Driving forces

Any number of features of crystalline solids can apply driving forces to dislocation
lines. These forces can be divided into two categories: forces arising from local
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stress fields (Peach-Koehler forces) and forces due to the energy of the dislocation
core.

To determine the driving force exerted on a dislocation by a stress field s (s)
applied at position s, the Peach-Koehler expression is commonly used. It gives that
the force per unit length, F(s), is [41]

F(s) = (s (s) ·b)⇥x (s) , (5)

where b is the Burgers vector of the dislocation and x (s) is the direction of the dis-
location line at s (which varies with position for curved dislocations). Hence, any
feature of a crystalline solid that results in a stress field can exert forces on disloca-
tions. The most common sources of stress in dislocation dynamics simulations are
applied stresses due to loading of the simulation cell and stresses from other dislo-
cations, which decay as 1/r, where r is the distance from the dislocation. The latter
means that to determine the total force on a dislocation segment, we must consider
the force exerted by every other segment in the simulation cell. This gives rise to
an O(N2) computation (N is the number of segments) and makes DD difficult to
implement efficiently. Other possible origins of stress include solute atoms, precip-
itates or inclusions, and free surfaces or secondary phase boundaries. The material
system of interest will decide which of these must be considered.

With nanomaterials, free surface effects are especially important, since the small
specimen size means every dislocation is near a free surface. For this reason, we will
briefly discuss the nature of forces generated by free surfaces. In elasticity theory,
for simplicity, stress expressions for dislocations are usually derived in a homoge-
neous, infinite medium. When these expressions are then used in finite media, they
result in nonzero traction forces at the surfaces, violating the traction-free boundary
condition at the surfaces. To correct this, a set of so-called image tractions must
be applied to the surface. These image tractions render the surface traction-free,
but additionally produce their own image stress field, which can also exert forces
on dislocations. Thus, the problem of a finite solid requires that the image stresses
be determined for the given geometry and distribution of dislocations; this gener-
ally has to be done numerically, and we defer further discussion of image solvers
(which compute the image field) to Section 2.3.2. We will discuss an example with
a cylindrical specimen in Section 3.5.

The above discussion applies to forces arising externally from the dislocation
line. In addition to these effects, the dislocation line can exert a force on itself. This
self force can be thought of as resulting from the energy of the dislocation line, and
has two contributions. The first contribution is elastic, and can be computed using a
number of approaches, such as the non-singular theory of dislocations [14]. The sec-
ond contribution is due to nonlinear interatomic interactions at the dislocation core,
and we shall refer it as the core force. Core forces can influence the dislocation line
in two ways. First, the core force will try to reduce the length of the dislocation
line, since the total core energy scales with the line length. Second, because the core
energy varies with line character (i.e. edge and screw dislocations have different
energies), the core force will exert a torque on the line, trying to rotate it into its ori-



Fundamentals of Dislocation Dynamics Simulations 7

entation of lowest energy. One approach for determining the core force is to derive
it from the core energy. The core energy per unit length, E

c

, of a dislocation line can
be calculated using atomistic or first-principles methods as a function of the charac-
ter angle q (the angle between the Burgers vector and line direction). Alternatively,
it is common in DD simulations to use an approximate analytical model to describe
the core energy. For example, in the deWit and Koehler model [24] the core energy
varies as

E

c

(q) = E b

2
✓

1
1�n

sin2
q + cos2

q

◆

(6)

where n is Poisson’s ratio, b is the magnitude of the Burgers vector, and E is a pa-
rameter that controls the magnitude of the core energy; this is the same way the line
energy varies according to elasticity theory for an isotropic solid. Often E is approx-
imated as E ⇡ aµ , where µ is the shear modulus and a is a material parameter in
the range 0.1�0.5 [44]. Given this function E

c

(q), the core force can be determined
using a number of approaches. Our preference is to calculate the core force after the
dislocation lines have been discretized, and hence we postpone further discussion
of core forces until Section 2.2.3.

2.2.2 Mobility laws

As we discussed in Section 2.1, mobility laws serve as constitutive equations in
dislocation dynamics simulations, relating the total driving force per unit length
acting on a dislocation line to its velocity. Since the movement of a dislocation
is strongly material-dependent, mobility laws must be constructed with a specific
material system in mind [8, 13]. The mobility of a dislocation line is commonly
dependent upon the dislocation character, direction of motion, the crystallographic
plane on which the dislocation can move conservatively — known as the glide plane

— and the temperature; the goal of a mobility law is to express these dependencies
in terms of an explicit function for the velocity given a total driving force per unit
length. Usually, this means determining the drag force exerted by the crystal lattice
on a dislocation. In this section we explain how mobility laws can be obtained, and
provide an example of a mobility law for face-centered cubic (FCC) crystals.

Linear mobility laws are commonly used. The viscous drag forces experienced
by dislocations in crystalline solids, due for instance to phonon dispersion, are often
proportional to the dislocation velocity [44]. Hence, a linear mobility model can be
written as

M(F tot
drive) = B�1(s) ·F tot

drive(s), (7)

where B(s) is a drag coefficient tensor (with dimensions [mass]/([length][time]))
and is strongly material dependent. The components of B(s) account for the vari-
ous features affecting the dislocation drag coefficient. If more than one mechanism
exerts linear drag on a dislocation, the net drag coefficient is the sum of the drag
coefficients for each mechanism.
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As an example of a linear mobility law, we consider the case of FCC crystals
(using the same model as [11]). Excluding the possibility of cross-slip (to be dis-
cussed separately in Section 2.3.3), dislocations in FCC metals are confined to glide
on {111} planes; climb motion out of the glide plane requires the diffusion of va-
cancies into or out of the core, and is generally negligible at temperatures less than
one-third of the melting point [41]. This glide confinement is a reflection of the
dissociated core structure in FCC metals. The glide constraint can be enforced by
setting the components of B coupled to out-of-plane motion to very large values.
This can lead to an ill-conditioned system, however, and it is numerically easier to
project out climb motion by simply zeroing the velocity components in the direction
of the glide plane normal; we will represent motion within the glide plane with the
superscript g. Additionally, we often find with FCC metals that the drag coefficient
is isotropic with respect to dislocation character (screw versus edge). Therefore, we
can write the FCC mobility law as

v = vg =
Fg

B

, (8)

where B is the isotropic drag coefficient and is typically between 10�5 and 10�4

Pa·s for FCC metals [51]. With other materials, such as body-centered-cubic (BCC)
crystals, the drag coefficient is not isotropic and the glide constraint is not as strictly
obeyed (for screw or near-screw dislocations), so that B will have to take a more
complex form [11].

In many settings, a linear mobility law is inappropriate. For example, at low-
to-moderate temperatures with BCC metals, the motion of screw dislocations is a
thermally-activated process; it occurs by the formation and movement of so-called
kink pairs in the dislocation line. In this case, thermal activation theory should be
used [51], which generally leads to a nonlinear mobility law. Nonlinear mobility
laws have also been proposed to incorporate material effects besides lattice fric-
tion. For instance, solute atoms are known to exert drag forces on dislocations. A
number of researchers have proposed nonlinear mobility laws that incorporate these
effects [61, 94], and DD simulations have been conducted by approximating solute
drag as a constant “back stress” which is subtracted from the driving force [68] (i.e.
a ramp function mobility law).

2.2.3 Line discretization and remeshing

To employ numerical methods, we need to discretize the dislocation lines so that
the overall dislocation structure is characterized by a set of nodes (or segments)
and a data structure defining the connectivity between them. Discretization allows
us to focus on a finite number of degrees of freedom (DOF), rather than an infi-
nite number of points along the dislocation lines. Since dislocation lines can change
their shape significantly during a simulation, and the total length of dislocation lines
often increases, we also need to implement remeshing algorithms to modify the
discretization when necessary. Dislocation lines can be discretized in a number of
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ways. Across the major DD codes, there are two general approaches to line dis-
cretization: lattice-based discretization and node-based discretization. Here we will
discuss both. Major features of the two approaches are shown in Fig. 4.

In the lattice-based approach (used in the codes microMegas [23] and TRIDIS [102]),
a grid of computational points, i.e. a lattice, often with a simple cubic structure of
spacing a, is predefined throughout the simulation cell. Based on the structure of
this lattice, a finite set of dislocation orientations is then selected and only these ori-
entations are considered, as shown in Fig. 4(a). These orientations define a unique
set of straight line segments used to represent the dislocation lines (denoted as t

i

in Fig. 4(a)). Dislocation motion is only considered in the direction orthogonal to
each of these orientations (denoted as d

i

in Fig. 4(a)). In this way, the segments
are the degrees of freedom of the model. As the dislocation structure evolves, two
different configurations of the dislocation lines are considered. The actual configu-
ration is stored as the segments move continuously through space. When computing
interaction forces and considering dislocation junctions, however, the actual config-
uration is projected onto the nearest set of lattice grid points in order to simplify
the computations. Remeshing proceeds by dividing segments into smaller segments
connected by “pivot segments” based on the user-specified average segment length,
l. The pivot segments initially have zero-length and extend along the direction set
by the motion of their neighbors, allowing segments of new orientations to form, as
depicted in Fig. 4(b). In the lattice-based approach, the fidelity of the discretization
is controlled by the spacing of the lattice grid, a, the number of line orientations
allowed, and by the specified average dislocation segment length, l.

With the node-based approach, dislocation lines are discretized according to a set
of nodes and shape functions that connect the nodes, with the simplest case being
linear shape functions that result in straight line segments. In this approach, any dis-
location orientation is allowed and dislocation segments can move in any direction
(consistent with their mobilility law). In contrast to lattice-based discretization, in
the node-based approach the nodes are the fundamental degrees of freedom. Only a
single dislocation configuration is considered at a given time; the same configuration
which is evolved in time is used for force calculations. Node-based codes have been
written using linear segments (MDDP [63], NUMODIS [72], ParaDiS [4] , PARA-
NOID [88]) and cubic splines (PDD [34]) to connect the nodes. Given the greater
versatility of the node-base approach, a larger set of remesh rules must be specified.
For example, in ParaDiS two criteria are used for remeshing: segment lengths and
the area enclosed by adjacent segments [8]. Both minimum (lmin, Amin) and maxi-
mum (lmax, Amax) values are specified for each, and nodes are added or removed to
bring the dislocation structure into compliance with these ranges (see Fig. 4(c)).

In order to evolve the dislocation structure, we need to compute the forces acting
on the segments or nodes. Generally, the forces per unit length discussed in Sec-
tion 2.2.1 vary with position along the lines. To get the total force acting on node
or segment i, we need to integrate the force along the line. In this respect, lattice-
based and node-based discretization differ slightly. With lattice-based models, since
the segments are the fundamental degress of freedom, we need to calculate the total
force acting on a segment with the line integral
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f
i

=
Z

C

i

F(s)dL(s) (9)

where C

i

denotes segment i. Note that a lower case f denotes a force, and an upper
case F denotes a force per unit length. Node-based codes, on the other hand, require
the total force acting on the nodes. This is determined in terms of the line shape
function N

j

i

(s) which describes the contribution to node i from segment j as

f j

i

=
Z

C

j

N

j

i

(s)F(s)dL(s). (10)

For example, with linear segment j connecting nodes i and k, N

j

i

(s) = s where s = 0
at node k and s = 1 at node i. The total force on node i is then the sum of the
contributions from each of the segments it is attached to:

f
i

= Â
j

f j

i

. (11)

These expressions are valid if the force per unit length acting along the line is
known. However, in the case of the core force, determining the force per unit length
is not very straight forward. Instead, it is easier to derive the force acting on a seg-
ment or node directly from the core energy per unit length expression, E

c

(q) [8].

Glide Plane

Remesh

Pivot
segmenta

t3

d3

t7

d7

t8
d8

t6
d6

t4

d4
t2

d2

t1d1 t5 d5

Δt

(a) (b)

Remesh Δt

A < Amin
dA / dt < 0

A > Amax

l > lmax

l < lmin

(c)

Fig. 4 Schematic depictions of (a,b) lattice-based and (c) node-based discretization. (a) The lattice
grid used to define the segment directions t

i

and movement directions d
i

. (b) Remeshing when a
segment exceeds twice the average length l, and response of pivot nodes after a time step D t is
taken. (c) Nodes are inserted (bullseye nodes) when l > lmax or A > Amax, and removed (unfilled
circles) when l < lmin, or A < Amin with the area shrinking (dA/dt < 0).
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Given E

c

(q), we can compute the total core energy Ecore for a given discretized
dislocation structure by summing the contribution from each segment, and then find
the corresponding nodal or segment forces with

f
i

=�∂Ecore

∂r
i

. (12)

Summing the Peach-Koehler and self force contributions gives us the total force
acting on a node or segment. However, mobility laws are usually written in terms
of the force per unit length acting on the line. The force per unit length needed to
evaluate the mobility law can be determined with

F
i

=
f
i

L
i

, (13)

where L
i

is a line length that depends on the discretization method. For the lattice-
based approach, L

i

is simply the length of segment i, L
i

= l

i

. With node-based dis-
cretization, the following approximation1 is commonly used: L

i

= Â
k

l

ik

/2, where
l

ik

is the length of the segment connecting nodes i and k and the summation is over
all nodes k connected to node i.

Now we have discretized the dislocation structure, and discussed the calculation
of driving forces and subsequent velocity determination through the mobility law.
Next we need to focus on evolving the positions of the nodes or segments, and the
underlying dislocation structure they represent, in time.

2.2.4 Time integration

As shown in Section 2.1, dislocation line motion is governed by a partial differential
equation (PDE) in time (Eq. 4). After discretizing the dislocation lines, we can write
this governing equation in terms of the motion of the nodes or segments, converting
the PDE into a coupled system of N ordinary differential equations (ODEs). For
example, in the nodal representation we have

dr
i

dt

= g
i

��

r
j

 

,s ext, ...
�

(14)

where r
i

is the 3⇥ 1 position vector of node i and brackets denote the set of all
nodes. In DD, we solve these ODEs using time integration, an approach where the
solution is found over a series of sequential time steps. Many methods exist for
time integrating coupled systems of ODEs, and in this section we discuss a few in
the context of DD. In the following, for clarity we will assume

�

r
j

 

is the only
argument of g(·).

The simplest time integration scheme is the forward Euler method, which has the
following form:

1 A more rigorous definition can be written in terms of the line shape functions [34, 8].
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rk+1
i

= rk

i

+Dt g
i

⇣n

rk

j

o⌘

. (15)

Superscripts denote the time step number and Dt is the time step size. In this scheme
we assume that the nodes maintain their current velocities over the duration of the
time step, and update their positions accordingly. The forward Euler method is com-
monly used in DD simulations. One issue with this approach is that the error it in-
troduces is unknown (without additional numerical methods). All time integration
schemes introduce error and we must ensure this error does not overwhelm the so-
lution. A simple method that provides an error estimate is the Heun method:

rk+1
i,0 = rk

i

+Dt g
i

⇣n

rk

j

o⌘

(16a)

rk+1
i,l+1 = rk

i

+
Dt

2

h

g
i

⇣n

rk

j

o⌘

+g
i

⇣n

rk+1
j,l

o⌘i

(16b)

e = max
i

krk+1
i,l+1 � rk+1

i,l k. (16c)

Eq. (16a) is the forward Euler “predictor” and Eq. (16b) is the trapezoidal method
“corrector.” The corrector can be applied arbitrarily many times using a fixed-point
iteration, with the second subscript denoting the iterate number, until the error esti-
mate of Eq. (16c) falls below some user-specified tolerance. If the solution does not
converge in a prespecified number of iterations, the time step must be reduced and
the method applied anew. Note that in addition to providing an error estimate, the
Heun method is globally second order accurate, meaning the solution converges as
O(D t

2), whereas the foward Euler method is only first order accurate, O(D t). The
Heun method is the default time integrator in ParaDiS.

Time integration turns out to be a challenging problem in DD, and is an active
area of research. We defer discussion of more advanced topics, such as implicit time
integration and subcycling, to Section 5.

2.2.5 Dislocation collisions

When dislocation lines collide, they can react and form junctions or annihilate. The
resulting junction formation and annihilation events can significantly influence the
evolution of the dislocation structure. Hence, detecting and handling collision events
reliably is important. To detect the collision of dislocation lines, a number of ap-
proaches have been developed. The simplest is a proximity-based algorithm, which
assumes two lines have collided if they come within a user-defined minimum dis-
tance of each other. This approach can miss collisions, however, if dislocation lines
are displaced too far in a time step. More advanced algorithms can safeguard against
missing collisions [95]. Once a collision is detected, the appropriate topological
changes must be made. The conservation of the Burgers vector must be envoked to
determine the Burgers vectors of resulting segments. For instance, if two segments
with opposite Burgers vectors collide they will annihilate with each other.
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2.3 Additional Aspects

The fundamentals presented in Section 2.2 provide the basic tool set necessary to run
a simple DD simulation. For example, the Frank-Read source simulations presented
in Section 3.5.1 can be conducted using these methods. More advanced simulations
require additional details, some of which are presented in this section.

2.3.1 Junctions and dislocation intersections

The discussion of dislocation collisions in Section 2.2.5 does not consider how to
handle the formation and dissolution of dislocation junctions; we will elaborate
these details here. When two dislocation lines moving in different planes collide, one
of two things may occur. They may cut through each other and continue their mo-
tion, potentially producing Burgers-vector-sized steps on the lines known as jogs or
kinks (depending on whether they are out-of or within the glide planes, see Fig. 5).
Or, they may zip together and react to annihilate or form a junction. Even if a junc-
tion does form, it may be ripped apart if a large enough force is applied, and the lines
may cut each other and continue on as if the junction had never existed; this process
is depicted in Fig. 5. Accurately capturing these behaviors is important because ses-
sile (immobile) junctions (often referred to as locks) and dislocation intersections
are thought to play vital roles in work hardening.

Considering this process in the context of DD, there are (at least) three different
steps that need to be considered. First, the collision of dislocation lines needs to be
detected, the result of which is a point junction between the two lines. The resulting
point junction can then either zip together and form a proper junction, or split apart
and possibly produce jogs and/or kinks. In some codes, the lines never formally
react, and instead simply approach each other closely and align parallel to each
other when forming a junction [23]. If the lines do formally react, the code must
be able to detect whether the formation of a junction is favorable. This is typically
done by applying an energy criterion to ensure that the system moves towards a
state that maximizes its dissipation rate. Common examples include approximations
based on line energy arguments [107], tests to see if the involved lines are moving

b

b ξξ
Collision Zipping Unzipping Cutting

Kink
Jog

Fig. 5 Schematic showing the process of dislocation line collision, the zipping of a junction, subse-
quent unzipping, and then final dissolution after the dislocations cut each other. The cutting results
in the formation of a jog and a kink.
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apart [89], and the principle of maximum dissipation [8], which approximates the
dissipation rate as the dot product of the nodal force with the velocity and seeks to
maximize it. If it is decided that the point junction should instead split in such a way
that lines cut each other, there may be an energy barrier inhibiting this split due to,
for example, the formation of jogs. This barrier can be accounted for in terms of
a splitting rate through the use of thermal activation theory (see Section 2.3.3), or
athermally in terms of a junction strength dictating the minimum stress that must be
applied for the split to occur. As an example for the latter scheme, Kubin et al. [53]
have developed the following law to determine the strength of a junction:

tj =
b µb

lu
(17)

where µ is the shear modulus, lu is the length of the dislocation arms surrounding
the junction, and b is a material constant that must be determined from experiments
or atomistic simulations. If a cutting event like this does occur, the resulting jogs
can influence the mobility of the dislocation lines [41]. However, most DD codes do
not account for the presence of jogs.

2.3.2 Boundary conditions

As with any initial-boundary value problem, the boundary conditions (BCs) need to
be stated in order to have a well-defined problem. The specific form of the BCs is
dictated by the geometry of interest. The types of BCs used in DD simulations can
be categorized into three groups as shown in Fig. 6: (a) infinite BCs, (b) periodic
BCs, and (c) heterogeneous BCs.

∞

∞

∞

∞

(a) (b) (d)

(c)

∞

∞

∞

Free Surface

Free Surface

∞ ∞

Fig. 6 Schematic depictions of different types of boundary conditions. (a) Infinite BCs, (b) peri-
odic BCs, and heterogeneous BCs with (c) a free standing film with in-plane periodic BCs and (d)
a bimaterial interface in an infinite medium. For simplicity, the dislocations are represented by the
? symbol, even though the figure refers to 3D DD simulations.
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Infinite BCs (Fig. 6(a)) are the simplest, and correspond to the simulated dislo-
cation lines being embedded in an infinite medium. Enforcement of an infinite BC
in any coordinate direction requires simply that we allow dislocations to move an
arbitrary distance along that axis. The stress expressions for dislocation lines (and
even other defects) are known for an isotropic, homogeneous, infinite medium, so
they may be implemented readily.

While infinite BCs provide a reasonable model for the behavior of dislocation
lines far from free surfaces (i.e. in the bulk), it is computationally infeasible to keep
track of all dislocation lines in an infinite medium that has a finite average dislo-
cation density. This makes infinite BCs primarily useful for idealized test cases.
Periodic BCs, in contrast, mimic an infinite medium while allowing for a nonzero
average dislocation density. With periodic BCs, the simulation cell represents a so-
called supercell which is repeated in all directions ad infinitum—Fig. 6(b) depicts
this idea for a 2D geometry. The replicas surrounding the main simulation cell are
called images. Periodic BCs provide a model for the simulation of bulk metals,
where the material element being simulated is in the middle of a specimen many
times larger than the cell. Any dislocation configuration or pattern, however, whose
characteristic length scale is larger than the supercell cannot be captured with pe-
riodic BCs. To enforce periodic BCs, the total stress field due to every dislocation
line in each of the infinite number of periodic images must be computed to deter-
mine the driving forces. In practice, only a finite number of images is considered,
however care must be taken to ensure the resulting stress field is well-defined (due
to conditional convergence [12, 54]). When a dislocation line crosses the supercell
boundary, its next image over will enter the supercell from the opposing boundary.
See [8] for a more detailed discussion of periodic boundary conditions.

The final type of boundary condition we will discuss applies to a much broader
class of problems. In the case of a heterogeous BC (Fig. 6(c)), some feature of
the geometry breaks the homogeneity of the domain. Common examples are free
surfaces, with geometries like cylinders, thin films, and half spaces, and bimaterial
interfaces, as in the case of a layered material. As was discussed in Section 2.2.1,
since analytic stress expressions generally only apply to an infinite, homogeneous
medium, a corrective image stress field must be determined. Image stress solvers
have been developed using the finite element method [99, 102, 109, 107], Fourier
methods [104, 106, 31], and boundary element methods [25], as well as various
other methods [40, 28, 48] to solve for the image field.

As a final note, we point out that these BCs can be combined. For instance, we
may simulate a freestanding thin film [106] by employing periodic BCs in one or
two coordinate directions and free surface BCs in the others (Fig. 6(c)).

2.3.3 Cross-slip

Conservative dislocation motion occurs when no atomic diffusion is required and is
termed dislocation glide. Nonconservative motion, on the other hand, requires the
diffusion of vacancies and is referred to as dislocation climb. Assuming a disloca-
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tion only moves by conservative glide (i.e. no climb), it is confined to motion within
the plane that contains both its Burgers vector and its line direction—this defines its
glide plane. In the case of a screw dislocation, because the Burgers vector is parallel
to the dislocation line, a unique glide plane cannot be defined. In principal, a screw
dislocation can move in any plane that contains its Burgers vector. Most of the time,
however, dislocations prefer to glide along a few families of crystallographic planes
that minimize their core energy, and this sets the slip systems for that metal. For in-
stance, in FCC metals dislocations usually glide in {111} planes, giving each screw
dislocation two viable glide planes. The process of a screw dislocation changing
from one glide plane to another is called cross-slip. Cross-slip is thought to be an
important feature of dislocation motion, and in this section we will briefly outline
the key aspects relevant to DD.

Cross-slip is known to be a thermally-activated process [78]. This means that
there is an energy barrier associated with its occurrence, and this barrier can be
overcome by thermal fluctuations. The rate at which a thermally-activated event
occurs can be approximated with an Arrhenius-type relationship [50]:

R = n0 exp
✓

� E

b

kBT

◆

(18)

where R is the rate in number of events per unit time, E

b

is the energy barrier,
kB is Boltzmann’s constant, T is the absolute temperature, and n0 is the attempt
frequency. Often, the attempt frequency is approximated as n0 = n

D

(L/L0), where
n

D

is the Debye frequency, L is the length of the dislocation segment, and L0 is a
reference length. Thus, in order to determine the cross-slip rate at a specified tem-
perature, one needs to know the energy barrier and the attempt frequency. Atomistic
simulations have commonly been used to determine these quantities, often finding
that the energy barrier is sensitive to the local stress state (see Section 4.1).

Using thermal activation theory, cross-slip can be implemented in DD as follows.
We test for cross-slip events once during each time step. We loop over all dislocation
lines, looking for segments that are of screw character. If a screw segment is found,
the energy barrier is calculated based on the local stress state at that segment, with
which the cross-slip rate can be determined using Eq. (18). The cross-slip proba-
bility is then simply RD t, where D t is the time step size. We then select a random
number z uniformly distributed in [0,1], and cross-slip occurs if RD t > z . The most
difficult aspect of implementing this model is determining how the energy barrier
depends on the local conditions (e.g. stress, temperature, local configuration, etc.).

2.3.4 2-dimensional dislocation dynamics

As we have shown, fully three-dimensional dislocation dynamics simulations are
complex and computationally expensive. Consequentially, many researchers have
sought to develop dislocation dynamics in two-dimensions [2, 99, 17, 71, 7, 92,
110, 20, 36, 38]. In two-dimensional dislocation dynamics (2DDD), dislocations
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are assumed to be infinitely long and straight, so that they can be represented by
point objects in the plane perpendicular to the dislocation line; this approximation
greatly reduces the number of degrees of freedom and removes the need to track the
complex topology present in three dimensions. 2DDD codes run much faster and
can achieve much larger amounts of plastic deformation than 3D codes. However,
these advantages are offset by the limited subset of problems that can be faithfully
represented in two-dimensions (e.g. fatigue problems where dislocations are often
long and straight). Because many physical phenomena are absent in the 2D pic-
ture, additional physics, such as sources for multiplication and obstacles [99, 7, 15],
must be added. While many important contributions to DD have been made in a 2D
setting, we will not elaborate on 2DDD further.

3 Running a DD Simulation

Over the past several decades, DD has been utilized to study a range of problems
in crystal plasticity. While the specific details surrounding each of these simulations
vary, they all share a number of basic ingredients. In this section we will briefly
discuss each of these ingredients, and then provide several case studies.

3.1 Types of simulations

DD simulations can be categorized into two groups: 1) small-scale—those inter-
ested in the interactions and behavior of one or a few dislocation lines and 2)
large-scale—simulations examining the collective behavior of many dislocations.
Examples of small-scale simulations include the simulation of intersecting dislo-
cation lines, junction formation, and junction dissolution [59, 57]; the interaction
of dislocations with precipitates [79] and solutes [68, 16]; and the interaction of
dislocations with free surfaces [48, 97, 105]. Simulations of large-scale collective
behavior generally involve simulating the stress-strain response of a material, with
examples including work hardening in bulk metals [21, 10, 4, 95], the plasticity of
micro-pillars [105, 108, 1, 87, 18], and plasticity during nanoindentation [29, 102].
Details below will be presented in terms of the two simulation types.

3.2 DD codes

There are currently about a dozen 3D dislocation dynamics codes in use. Here we
will briefly discuss some of their differences to aid the user in making a selection.
See [27], [51], or [77] for additional reviews of DD codes.
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As discussed in Section 2.2.3, DD codes can be categorized as either lattice-
based or node-based. In practice, each of these discretization schemes has its own
advantages and disadvantages in terms of accuracy, computing efficiency, simplic-
ity, and flexibility. A strength of lattice-based simulations is that force calculations
and tracking of dislocation intersections are simplified, since only a finite set of
dislocation configurations (dictated by the lattice) are considered [23, 51].

With the node-based scheme, since dislocation segments can take any arbitrary
orientation, dislocation lines tend to be smoother. In contrast, with lattice-based
DD, the angles between neighboring segments remain unchanged regardless of how
much the lattice or segment length is refined.

micoMegas [23, 64] and TRIDIS [102, 98] are two examples of lattice-based
DD codes dedicated to the 3D DD simulations of crystalline solids. microMegas,
an open source code written mainly in Fortran, utilizes a base of eight line vectors
per slip system, for describing dislocation lines in FCC, BCC, and HCP crystals, in
addition to a few mineral materials. TRIDIS, suitable for the study of the mechanical
response of FCC and BCC metals and alloys, is a parallel code that uses four line
vectors per slip system and has been coupled to the finite element code CAST3M.

There are many node-based codes available and we briefly discuss a few. PDD
(Parametric Dislocation Dynamics) is the only code which uses curved (cubic) dis-
location segments [34, 76]; it was recently made open-source and renamed MODEL
(Mechanics Of Defect Evolution Library) [66, 76]. MDDP (Multiscale Dislocation
Dynamics Plasticity) [63] is a hybrid code coupling dislocation dynamics, contin-
uum finite elements, and heat transfer models. Its DD code was originally named mi-
cro3d and was later implemented in MDDP. PARANOID [88] is a DD code suitable
for DD simulations of thin films, strained layers, and bulk metals and semiconduc-
tors. ParaDiS (Parallel Dislocation Simulator) [75, 4] is an open-source, massively-
parallel DD code that has mobility laws implemented for FCC and BCC crystals in-
corporating glide and climb. NUMODIS [72] is a recently developed open-source,
parallelized code, with features for simulations of polycrystals and polyphases.

3.3 Input specification

Usually, DD simulations are controlled through two (or more) different input files.
The control file specifies the parameters of the simulation. These include the ma-
terial properties (elastic constants, drag coefficients, etc.), the loading conditions
(strain rate, stress state, etc.), the numerical parameters (time step size, remeshing
parameters, etc.), and output controls (e.g. what output to generate and how fre-
quently). The structure file specifies the initial dislocation configuration and the
geometry of the simulation cell or boundaries. This generally requires specifying
where nodes are located, how segments connect the nodes, and what their Burgers
vectors are. In the next section we will discuss how to select the necessary parame-
ters and design a DD simulation.
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3.4 Designing a simulation

3.4.1 Initial configuration

The initial dislocation configuration will be dependent upon the type of simulation.
In small-scale settings, generally a few initially straight lines are used, and the dislo-
cation character angle is often varied to see the different effects. The specific goals
of the simulation will decide the initial geometry.

In large-scale simulations, initial configuration selection is more complex [70].
Usually, the initial configuration is intended to emulate a specific material state, for
example an annealed or cold-worked metal. The DD simulation would then pre-
dict the response of a material in such a state to the chosen loading. However, the
full three-dimensional detail of dislocation structures in materials is generally not
known; this means the initial configuration will have to be approximated somehow.
Often, the following procedure is used. First, a simulation cell is populated with a
chosen initial density of straight dislocation lines, usually randomly oriented and
positioned. Then, the simulation cell is allowed to relax—equilibrate under zero
imposed stress—until the dislocation structure reaches a meta-stable configuration.
Once relaxed, the configuration may be used for further simulations.

3.4.2 Loads and boundary conditions

As with most solid mechanics simulations (and experiments), there are two com-
mon types of loadings in DD: stress-controlled and strain-controlled. Under stress-
control, often referred to as creep loading, the stress state is specified and the dislo-
cation lines simply respond to the resulting forces. The stress state may be constant
or vary in time.

Under strain-control, usually a strain rate tensor, ė

i j

is specified and the resulting
stress state must be calculated as follows. The total strain at any time t is

e
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Z

t

0
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is a constant, the result is simply e
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. Using the procedure dis-
cussed in Section 3.4.3, the plastic strain due to the motion of the dislocation lines at
time t, e
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suming infinitesimal deformations), which is related to the stress through Hooke’s
law. For an isotropic linear elastic material with Lamé constants l and µ (the shear
modulus), they are related by
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where d

i j

is the Kronecker delta and ē

el = 1
3 (e

el
xx
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zz

) is the hydrostatic elastic
strain. At each time step, the increments of total strain and plastic strain are com-
puted, and then the stress state is updated according to Eq. (20).

The two loading conditions can also be combined. For instance, in the commonly
used uniaxial tension loading condition, a normal strain rate is imposed along the
loading direction while all other stress components are set to zero. In this case,
assuming the imposed uniaxial strain rate is ė

xx

, the externally applied stress state at
any point in time is simply s

xx

= E(t ė
xx

�e

p
xx

(t)), where E is the Young’s modulus.
As discussed in Section 2.3.2, the boundary conditions will depend on the prob-

lem of interest. Periodic BCs are used to simulate bulk material response. Often
infinite BCs are used when we are interested in the behavior of a few isolated dis-
location lines. When running simulations under periodic boundary conditions, the
size of the simulation cell is an important feature of the simulation; any dislocation
structure whose length scale is larger than the simulation cell width cannot be ac-
curately represented. Furthermore, if the cell is too small the interaction between a
dislocation and its own periodic image can yield artifactual behaviors.

3.4.3 Outputs

With DD, the positions of all the dislocation lines are known at each time step. This
means that specific features of the dislocation structure can be extracted directly.
For instance, we can determine how common a particular type of junction is or
how predominant different line orientations are (e.g. edge versus screw). Often, it
is useful to express features of the dislocation structure in terms of their density, r ,
the dislocation line length per unit volume (in units of [length]�2). For example, a
dislocation structure could be characterized in terms of the densities of the different
slip systems. The density of a dislocation population can be computed by simply
summing the length of all relevant segments and dividing by the simulation volume.

An important output for DD simulations is the plastic strain; it is needed for
computing the stress state under strain-control (discussed in Section 3.4.2). In DD
simulations, plastic deformation is produced by the motion of the dislocation lines.
The area swept out by a dislocation segment in a time step is proportional to the
plastic strain produced in the crystal according to the relation [3]
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n

i

2W

dA (21)

where dA is the area swept out by the dislocation segment during its motion, W is
the simulation volume, b is the burgers vector, and n is the slip plane normal. The
total plastic strain produced in a time step is the summation of Eq. (21) over all
dislocation segments.
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3.4.4 Solution convergence

As with any numerical simulation technique, it is important to ensure that the errors
introduced by our discretizations in space and time are sufficiently small so that
the solution converges. In DD, this means ensuring the time step and dislocation
segments are small enough.

Two approaches have been used in DD to confirm that the time step size is ade-
quately small. The first was discussed in Section 2.2.4, and involves approximating
the truncation error of the time integrator, and selecting the time step size so that
it falls below a user-specified tolerance. Another approach is to limit the time step
size so that the dislocation structure does not change too much from step to step.
This usually involves specifying a maximum displacement and/or rotation allowed
for any dislocation segment during a time step, and limiting the time step so they
are obeyed. While this approach does not directly control the error of the solution,
it is commonly used and generally accepted.

Spatial discretization error is dictated by how well the discretized structure ap-
proximates the actual smooth structure of interest. The goal of the remeshing algo-
rithms discussed in Section 2.2.3 is to provide a means for controlling the quality
of the discretization. The remeshing algorithm operates according to the chosen
remeshing parameters—the maximum and minimum segment lengths and areas. As
these parameters are reduced, the discretization becomes more and more refined,
and the discretization error is reduced. A refined structure is more accurate, but is
also more computationally expensive. This is also true when choosing the shape of
the dislocation segments. The cubic segments used in PDD better reproduce smooth
dislocation structures, but at the cost of increased computational complexity. The
user must decide where his or her simulation falls in the trade-off between speed
and accuracy.

3.5 Example Simulations

Here we present three case studies showing the basics of running a DD simulation.
First, we determine the activation stress of a Frank-Read source using the lattice-
based code microMegas and the node-based code ParaDiS. Second, we examine
the activation of a single-arm source in a micropillar using ParaDiS. Finally, we
show results from a few simple work hardening simulations using ParaDiS. All
simulations use the material properties for nickel at T = 300 K, which are given in
Table 1, and the FCC mobility law presented in Section 2.2.2.

2 In ParaDiS, the core energy parameter Ecore controls the scaling of the core energy in the same
way the E parameter does in Eq. (6) (hence it has units of Pa). The Ecore value used here leads to
a core energy per unit length which scales as µb

2
i

4p

, where b

i

is the magnitude of the Burgers vector
of segment i.
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Table 1 Parameters for nickel at T = 300 K used in DD simulations in all case studies. Unspecified
parameters were set to their default values. The mobility or drag coefficients are obtained from
atomistic simulations [74].

microMegas ParaDiS
Property Name Value Unit Name Value Unit
Shear modulus (µ) ModuleG0 76.0 GPa shearModulus 76e9 Pa
Poisson’s ratio (n) DPOISS 0.31 - pois 0.31 -
Burgers vector (b) VecBurgers 2.49 Å burgMag 2.49e-10 m
Core energy parameter 2 - Ecore 6.05e9 Pa
Drag coefficient (B) Coef visqueux 1.61e-5 Pa·s MobEdge 62112.0 (Pa·s)�1

or Mobility (M) MobScrew 62112.0 (Pa·s)�1

Core radius (r
c

) - rc 1.0 b

Error tolerance - rTol 2.0 b

Reference scale Echelle 6.75 - -
Time step size deltat0 1e-12 s variable based on rTol
Line tension type LINTEN 4 (Mohles) -

3.5.1 Case study 1: Activation stress of a Frank-Read source

The Frank-Read source is a canonical case study in dislocation theory, showing how
a single dislocation can multiply indefinitely by simply gliding in its slip plane under
an applied shear stress [44]. A Frank-Read source can be modeled by considering
a straight dislocation line of length L lying in its slip plane that is pinned at both
ends. These pinning points could represent intersections with forest dislocations,
impurities, obstacles, or any number of other pinning sites that occur in real metals.
A force per unit length of tb (b is the magnitude of the Burgers vector) will be
experienced by the dislocation line when a shear stress with magnitude t is applied,
which in turn causes the line to bow out. As t increases, the radius of curvature
decreases until the shear stress reaches tact, the activation stress. Figs. 7(a) and (e)
show the configuration when t = tact from simulations in microMegas and ParaDiS,
respectively. At stresses above tact, the line is able to bow around completely and
partially annihilate with itself, as shown in (b,c) and (f,g). This process produces a
new dislocation loop, shown in (d) and (h), which is free to continue expanding. The
objective of this case study is to determine the activation stress for the Frank-Read
source.

For these simulations, we choose a line direction of [11̄2] and a Burgers vector
of bp

2
[110], corresponding to an edge dislocation in an FCC metal with glide plane

normal (1̄11). The x-, y-, and z-axes of the coordinate system are along the [100],
[010], and [001] directions, respectively. The end nodes are flagged as immobile
(velocities set to zero). Simulations were run under stress-control, with s

yy

applied
to produce a resolved shear stress on the glide plane of t , and all other stress com-
ponents were set to zero. By slowly increasing the applied stress with increments
of Dt = 0.5 MPa and monitoring for activation, we can determine the activation
stress to within ±Dt/2. To detect activation, we can simply watch for whether acti-
vation occurs, or examine the plastic strain as a function of time — the plastic strain
will plateau if the source is not activated. This is by no means the only possible
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 Snapshots from Frank-Read source simulations using (a-d) microMegas with L/l = 2.4 and
(e-h) ParaDiS with L/lmax = 2.4, where L = 0.596µm (2400b) is the distance between the pinning
points. ParaDiS graphics made with AtomEye [58].

approach for computing the activation stress, and strain-control or a combination of
stress- and strain-control (like with microMegas deformation mode 6) could also be
used.

The coarseness of the representation of the Frank-Read source will affect the
activation stress. As the segment length is reduced, the activation stress should reach
a converged value. Fig. 8(a) shows the effect of the segment length on the activation
stress with source length L = 0.596 µm (2400b) in both codes. It is clear from the
figure that the solution converges as smaller segments are used in both codes, and
large segment lengths overestimate (in ParaDiS) or underestimate (in microMegas)
the activation stress by up to 10% in the parameter space considered here.

We can also study the effect of the source length, L, on the activation stress.
Fig. 8(b) shows the results for L ranging from 0.298 to 1.79 µm (1200b to 7200b)
when L/l = L/lmax = 10. The activation stresses estimated by the two codes differ
by at most 2.2% for all source lengths tested here. Also provided is the fit utilized by
Foreman [30] of the form tact = [(Aµb)/(4pL)] ln(L/r

c

) where r

c

is the core radius,
with A = 1.2, close to unity as Foreman found for an edge source.

3.5.2 Case study 2: Spiral arm source activation in a cylinder

In nanomaterials, the small specimen size allows spiral-arm or single-arm sources
to operate. This type of source is similar to a Frank-Read source, except that only
one end of the source is pinned in place; the rest of the source is free to rotate about
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Fig. 8 (a) Activation stress tact of an edge Frank-Read source with L = 0.596µm (2400b) as
a function of the inverse of the segment length. The maximum segment length in ParaDiS and
microMegas is respectively controlled by maxSeg (lmax) and Ldis (l). Error bars show the in-
accuracy caused by Dt , the stress increment used. (b) Activation stress tact as a function of the
source length with L/l = L/lmax = 10. Error bars include the differences between microMegas and
ParaDiS as well. See text for explanation of Foreman fit.

the pinning point under an applied stress. The result is a spiral-shaped dislocation
line generating plastic strain with each revolution.

We here study the behavior of a single-arm source in a cylindrical specimen of
radius R oriented along the [001] direction, imitating a source in a micropillar. For
our source geometry, we choose a screw dislocation in an FCC metal with Burgers
vector and line direction [011̄] and glide plane normal (111) that has a Lomer
jog at its mid point. The Lomer jog is a section of dislocation with line direction
[01̄ 1̄] which is out of the glide plane and treated as sessile in our simulation; in this
way, the jog provides the pinning points for the source. Lomer jogs can form during
plastic deformation when dislocations react and are often thought to act as immobile
locks. We choose a jog height of 0.141µm (566b) for all simulations.

The simulation geometry is shown in Fig. 9. Initially, the arms are straight
(Fig. 9(a)). Under an applied compressive stress s

zz

, the source will begin to ro-
tate. Once again, the application of a stress greater than the activation stress sact is
necessary for the source to activate and rotate freely about the jog. Fig. 9(b) shows
the configuration at activation when R = 0.37µm (1500b). For this case study, we
will again examine the activation stress, but now focusing on the effects of the free
surface. The same procedure with stress-control taking steps of Ds = 0.5 MPa is
employed. We use ParaDiS to simulate the activation process, with a Fourier based
image stress solver [104]. A fast Fourier transform is used over a uniform grid on the
surface of the cylinder to determine the image stress field. As with the discretization
length, this grid spacing must be small enough to acheive a convergent solution. Pe-
riodic boundary conditions are used at either end of the cylinder, with a cell height
of 6R, which gives us an approximately square n⇥ n grid. The maximum segment
length was set to lmax = 2R/15.

First we examine the convergence behavior of the image stress solver. Fig. 9(c)
shows how the activation stress varies with the number of grid points. We see that
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about a 40⇥ 40 grid is required to acheive a converged result. Fig. 9(d) demon-
strates the dependence of the activation stress on the cylinder radius in the range
R = 0.124�1.24µm (500b�5000b) using n = 50 for the image stress calculation.
At the larger radii, the activation stress again follows the Foreman behavior with
A = 2.15 (using R in place of L), however the smaller cylinders yield slightly higher
values than the Foreman estimate.
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Fig. 9 Snapshots and results from single-arm source simulations using ParaDiS. (a) Initial con-
figuration. (b) Configuration slightly below the activation stress when R = 0.37µm (1500b). (c)
Convergence of the activation stress as the number of grid points used for image stress calculation,
n, is increased, with R = 0.37µm (1500b). (d) Activation stress as a function of the cylinder radius.
See text for the definition of Foreman fit. Graphics made with AtomEye [58].

3.5.3 Case study 3: Bulk plasticity simulation

During plastic deformation the dislocation density tends to increase, causing the
material to strengthen. This behavior is called work-hardening or strain-hardening.
The study of work hardening is a key research area ripe for DD simulations. We
close out this section with a few work hardening simulations.

For our work hardening simulations we use a 10⇥ 10⇥ 10µm simulation cell,
imposing periodic boundary conditions in all directions. No cross-slip was allowed.
The remesh parameter lmax (maxSeg) was set to 1.25 µm (5000b) (other remesh
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parameters were set to defaults). We start with 50 straight dislocation lines with a
60� character angle, random glide plane, and random Burgers vector, as depicted in
Fig. 10(a), and then allow the system to relax under zero applied stress until it has
reached the equilibrium configuration shown in Fig. 10(b).

(a) (b) (c)

Fig. 10 Snapshots of work-hardening simulation performed on nickel at 300 K. (a) Initial con-
figuration, (b) after relaxation, (c) dislocation microstructure at 0.5% strain with [0 0 1] uniaxial
loading. Graphics made with AtomEye [58].

We study the response of the system under uniaxial tension with a constant strain
rate of 103 s�1 applied in the [001] and [102] directions. A recently developed
subcycling-based time integrator was used [95], with simulations run for 40 and 7.2
hours on a single CPU for [001] and [102] loading, respectively. The resulting dis-
location configuration after a total strain of 0.5% in the [001] direction is shown in
Fig. 10(c). Fig. 11 shows the evolution of stress and dislocation density with respect
to total strain. The initial yield strengths are similar for both loading directions.
However for the [001] loading the crystal hardens with plastic strain as the disloca-
tion density increases. In comparison, the flow stress and dislocation density remain
relatively unchanged for the [102] loading.
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Fig. 11 Stress-strain and dislocation density-strain curves for the different loading directions.



Fundamentals of Dislocation Dynamics Simulations 27

4 Relation to Models at Other Length/Time Scales

Dislocation dynamics is just one of many tools that can be used to study the defor-
mation behavior of materials. As this book demonstrates, these various models can
be organized into a hierarchy that spans many orders of magnitude in both length
and time scale. It is important to understand where a given model falls in this hi-
erarchy, so that its connections to other models can be assessed. As discussed in
the introduction, DD simulations are generally run at the length scale of about 0.1–
10µm and at time scales in the range of 1µs to 1 ms, depending on the material. In
this section, we will briefly discuss how DD relates to other material models, and
examine a few examples of information propagation from one length/time scale to
another.

4.1 Lower scale models

By its nature as a mesoscale modeling approach, DD requires numerous inputs that
describe the physical behavior of dislocation lines. Elasticity and dislocation theory
provide much of the information needed to define these models (e.g. Peach-Koehler
forces, stress fields of dislocations, etc.). However, certain basic features of the be-
havior of dislocations are simply out of reach of these types of continuum models. A
common example is the dislocation core. Many aspects of a dislocation’s behavior
are controlled by the structure at the dislocation core. Because the core is composed
of a small number of atoms that are displaced far from their equilibrium positions,
continuum models are often highly inaccurate. Where these models fail, experi-
ments can be used to inform dislocation physics. However, it is usually challenging
to extract information on individual dislocations from experiments.

Atomistic simulations, on the other hand, are well-suited to informing DD mod-
els. Because the atomistic approach is closer to a “first principles” model, it can
be used to study the fundamentals of dislocation physics. Atomistic simulations of
one or a few dislocations can be conducted to study basic behaviors with different
geometries, loading conditions, and temperature regimes, and this information can
be included in the DD framework. Thus, we can think of DD as a model occupying
the next larger length/time scale tier above atomistics. Common examples of the
transfer of information from atomistic to DD include:

• Dislocation mobilities – This can be in the form of drag coefficients [74, 35, 82]
or energy barriers [35, 37, 73, 82].

• Core energies – The core energy affects a number of features, including the core
force (as discussed in Section 2.2.1). Core energy calculations have been carried
out for a number of materials [9, 103, 113].

• Strength of junctions – In addition to using the scaling law discussed in Sec-
tion 2.3.1, junction strengths can be calculated directly [9, 39].
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• Cross-slip rate – Usually, this is calculated in the form of an energy barrier
(as discussed in Section 2.3.3). Examples include the effects of different stress
components [46, 55], intersection with forest dislocations [84], the presence of
jogs [101, 86], and nucleation at the surface [85]. Many of these results have
been incorporated in DD simulations [45].

4.2 Higher scale models

In the same way that MD can provide inputs for DD simulations, many researchers
hope to use DD as a tool for informing higher length/time scale models. For exam-
ple, a model residing at a larger length/time scale than DD is crystal plasticity (CP).
In CP’s continuum approach, constitutive laws are defined in terms of phenomeno-
logical models based on densities of different dislocation populations (e.g. forest
and mobile dislocations). These dislocation densities are tracked at the continuum
scale and dictate the loading response of each material element. DD can be used to
develop the models which describe the relationship between dislocation densities,
stress, and strain, thereby informing CP models.

An example of this transfer of information is the calculation of interaction co-
efficients in the Taylor hardening model. The generalized Taylor hardening law is
commonly used in CP simulations, and states that the flow stress on slip system i is

t
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= µb

r

Â
j

a

i j

r

j

(22)

where the summation is over all slip systems j, r

j

is the dislocation density of slip
system j, and a

i j

is a matrix of interaction coefficients between the slip systems. The
interaction coefficients can be determined using specialized DD simulations that
target a specific pair of slip systems. These calculations have been performed for
FCC metals [60, 22] and a-iron [80], and have been used to inform CP models [90].

4.3 Concurrently modeling across scales

The approaches we have discussed so far involve passing information between mod-
eling approaches using independently conducted simulations. However, it is also
possible to transfer information between simulations as they both run concurrently.
This approach may be useful in a number of settings. One example is if we are
only interested in atomistic resolution over a small part of the domain, such as at
the tip of a crack or beneath an indenter. Since atomistic resolution is not needed far
from these regions where events such as dislocation nucleation are not occurring, we
wish to represent the rest of the domain with a less expensive, higher scale model
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like DD. The atomistic and DD simulations would then be coupled at their mutual
boundaries.

Such an approach has been implemented by Shilkrot et al. [91] in two-dimensions
with the coupled atomistic and discrete dislocation (CADD) method for solving
plasticity problems. In the CADD approach, the computational domain is divided
up into atomistic and continuum regions; molecular dynamics is used in the atom-
istic region and 2D dislocation dynamics in the continuum domain [19]. For any
concurrent modeling approach, the most challenging aspect is coupling the models
at their shared domain boundaries. For instance, with CADD the code must detect
when dislocations transmit between the domains. CADD has been used to study
nanoindentation [65, 91, 92] as well as fracture and void growth [92].

5 Challenges and Current Research Topics

Here we will briefly list and introduce a few active research topics in the DD com-
munity. Some of the issues driving this research are purely mathematical or numer-
ical in nature—for example, the fact that dislocation interactions cannot be calcu-
lated analytically in anisotropic elasticity. Other issues stem from the difficulty of
accurately representing atomic-scale phenomena in a mesoscopic framework—for
example, accounting for effects of the dislocation core structure. The following list
is by no means comprehensive.

• Time integration – Efficiently time integrating the equations of motion in DD,
i.e. taking a large time step with minimal computational expense, is a challeng-
ing but necessary task. Recent work examined implicit time integration meth-
ods [42, 93, 32] and time step subcycling [93, 95]. While larger time steps can
be achieved with implicit methods, the additional computational cost makes per-
formance gains less significant [32]. With subcycling, it has been shown that
100-fold speed-ups can be achieved [95].

• Elastic anisotropy – Most metals exhibit anisotropy in their elastic behavior, and
yet most DD codes use isotropic elasticity to calculate the interactions between
dislocation segments. This is because the analytic expressions for the stress fields
of dislocations in anisotropic media are not known, and their numerical calcula-
tion is very expensive [111]. An approximate method was recently developed
that utilizes spherical harmonics to estimate the interaction forces between dislo-
cations [5]. With this approach, the computational cost can be adjusted according
to the desired accuracy of the approximation.

• Kinematics – DD simulations are usually run under the assumption of infinites-
imal deformations, so that the displacement field surrounding each dislocation
is ignored. There are, however, instances where these displacements are known
to be important. For instance, a symmetric tilt boundary can be thought of as a
vertical array of edge dislocations; however, if the displacement fields of the dis-
locations are ignored then there is no tilt across the boundary. In addition to this
effect, as dislocations move through a crystal, they alter the alignment of the crys-
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tallographic planes, i.e. they shift the connectivity of the planes of atoms. This
means two dislocations which are not coplanar initially may have their planes
intersected by a series of dislocations which shift them onto the same plane [56].
This effect is related to the fact that when dislocations cut each other, jogs and/or
kinks are produced. Incorporation of these effects in DD is challenging.

• Core effects — Some features of dislocation behavior are very sensitive to the
nature of the core structure. These behaviors are challenging to capture in a
framework that smears out all of these details into a simple line object. In some
instances, certain features of the core can be included in the formulation pre-
sented above, for example when constructing the mobility law or determining
the stress dependence of the cross-slip rate. Sometimes explicit treatment of the
core structure is important. For instance, face-centered-cubic metals with low
stacking fault energies have dislocations which are disassociated into Shockley
partial dislocations that can be separated by 10s of nm. This can significantly
influence the dislocation structures that develop. An approach for incorporating
these effects in ParaDiS has been developed [62] .

• Point defects – Dislocations interact in a number of ways with point defects such
as vacancies and solute atoms. These defects arise quite readily through mate-
rial processing, alloying, and contamination, and give rise to many phenomena
in dislocation physics. For example, solute atoms can accumulate on disloca-
tions, forming so-called Cottrell atmospheres, which can slow down disloca-
tion motion. Additionally, at high temperatures, dislocations are known to move
out of their glide planes (climb) by consuming or producing vacancies. Some
models have been developed to account for solutes [68, 16] and vacancy-driven
climb [69, 6], however only a limited set of geometries have been considered.

• Inclusions and precipitates – The interactions of dislocations with inclusions and
precipitates gives rise to important phenomena such as precipitation hardening
and kinematic hardening (Orowan looping). A number of researchers have con-
ducted simulations examining the interaction of dislocations with a few precip-
itates in simplified settings [49, 67, 83, 96, 79], in addition to a few examples
of large-scale simulations [43, 81, 100]. DD models describing the behavior of a
dislocation as it cuts through a precipitate are still lacking.

• Grain boundaries – Most DD codes are only capable of simulating single crys-
tals, whereas most structural materials are polycrystalline. The grain boundaries
separating the individual grains of polycrystals can interact with dislocations in
complex ways. Grain boundaries can both absorb and emit dislocations. A grain
often experiences “misfit” stresses imposed by the surrounding grains during de-
formation, which can exert forces on dislocations. Dislocations can also transmit
across grain boundaries, from one grain to another. As discussed in Chapter 15,
DD simulations have been run with simplified grain and twin boundary mod-
els [112, 26], but a robust DD model for polycrystals still requires further devel-
opment.
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36. Gómez-Garcı́a, D., Devincre, B., Kubin, L.P.: Dislocation patterns and the similitude princi-
ple: 2.5D mesoscale simulations. Phys. Rev. Lett. 96, 125503 (2006)

37. Gordon, P.A., Neeraj, T., Li, Y., Li, J.: Screw dislocation mobility in BCC metals: the role of
the compact core on double-kink nucleation. Modell. Sim. Mat. Sci. Eng. 18, 085008 (2010)

38. Guruprasad, P.J., Benzerga, A.A.: Size effects under homogeneous deformation of single
crystals: A discrete dislocation analysis. J. Mech. Phys. Sol. 56, 132-156 (2008)

39. Hafez Haghighat, S.M., Schäublin, R., Raabe, D.: Atomistic simulation of the a0 < 100 >
binary junction formation and its unzipping in body-centered cubic iron. Acta Mat. 64, 24-32
(2014)

40. Hartmaier, A., Fivel, M.C., Canova, G.R., Gumbsch, P.: Image stresses in a free standing thin
film. Modell. Sim. Mat. Sci. Eng. 7, 781-793 (1999)

41. Hirth, J.P., Lothe, J.: Theory of Dislocations, 2nd edn. Krieger Publishing Company, Malabar,
FL (1992)

42. Huang, J., Ghoniem, N.M.: Accuracy and convergence of parametric dislocation dynamics.
Modell. Sim. Mat. Sci. Eng. 10, 1-19 (2002)

43. Huang, M., Zhao, L., Tong, J.: Discrete dislocation dynamics modelling of mechanical defor-
mation of nickel-based single crystal superalloys. Int. J. Plast. 28, 141-158 (2010)



Fundamentals of Dislocation Dynamics Simulations 33

44. Hull, D., Bacon, D.J.: Introduction to Dislocations, 4th edn. Butterworth Heinemann, Oxford
(2009)

45. Hussein, A.M., Rao, S.I., Uchic, M.D., Dimiduk, D.M., El-Awady, J.A.: Microstructurally
based cross-slip mechanisms and their effects on dislocation microstructure evolution in fcc
crystals. Acta Mat. 85 180-190 (2015)

46. Kang, K., Yin, J., Cai, W.: Stress dependence of cross slip energy barrier for face-centered
cubic nickel. J. Mech. Phys. Sol. 62, 181-193 (2014)

47. Kawasaki, Y., Takeuchi, T.: Cell structures in copper single crystals deformed in the [001]
and [111] axes. Scripta Met. 14, 183-188 (1980)

48. Khraishi, T.A., Zbib, H.M.: Free-surface effects in 3D dislocation dynamics: formulation and
modeling. ASME J. Eng. Mat. Tech. 124, 3, 342-351 (2002)

49. Khraishi, T.A., Yan, L., Shen, Y.L.: Dynamic simulations of the interaction between disloca-
tions and dilute particle concentrations in metalmatrix composites (MMCs). Int. J. Plast. 20,
1039-1057 (2004)

50. Kocks U.F., Argon A.S., Ashby M.F.: Thermodynamics and kinetics of slip. Prog. Mat. Sci.
19, 1-288 (1975)

51. Kubin, L.: Dislocations, Mesoscale Simulations and Plastic Flow. Oxford University Press
(2013)

52. Kubin, L.P., Canova, G., Condat, M., Devincre, B., Pontikis, V., Bréchet, Y.: Dislocation
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