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Abstract
We report melting points and other thermal properties of several semiconducting
and metallic elements as they are modeled by different empirical interatomic
potential models, including the Stillinger–Weber, the embedded-atom method,
the Finnis–Sinclair and the modified-embedded-atom method. The state-of-the-
art free energy methods are used to determine the melting points of these models
within a very small error bar, so that they can be cross-compared with each other.
The comparison reveals several systematic trends among elements with the
same crystal structure. It identifies areas that require caution in the application
of these models and suggests directions for their future improvement.

1. Introduction

Empirical or semi-empirical potential models play an important role in computational materials
science because many interesting processes involve the collective dynamics of thousands of
atoms, which is still too expensive for ab initio models. At the same time, due to their (semi-)
empirical nature, the potential models need to be thoroughly benchmarked before they can
be trusted to make reliable, new, predictions. The structural and mechanical properties of a
single phase (liquid or solid) have been extensively studied by computer simulations based on
empirical potentials with considerable success. There is a growing interest in applying these
models to study more complex processes, such as the catalytic growth of a silicon nanowire
from a eutectic liquid droplet, which involves the transformation between different phases.
For these applications, it is very important for the potential models to provide a reasonable
description of the melting point and other thermal properties. But the empirical potential
models have not been extensively tested for these properties, mostly due to the difficulty in
accurately determining the melting point.

0965-0393/08/085005+12$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0965-0393/16/8/085005
mailto: shryu@stanford.edu
mailto: caiwei@stanford.edu
http://stacks.iop.org/MSMSE/16/085005


Modelling Simul. Mater. Sci. Eng. 16 (2008) 085005 S Ryu and W Cai

Generally speaking, there are two ways to compute the melting point of a crystal from
atomistic simulation. In the ‘co-existence method’, the liquid and solid co-exist with an
interface in the simulation cell. The melting temperature is determined by finding the
temperature at which both the liquid and the solid phases are stable. While this method is
easy to set up, fluctuations in the instantaneous temperature and the slow kinetics of solid–
liquid interface motion introduce statistical and systematic errors in the estimation of the
melting point [1, 2]. In the ‘free energy’ method, the Gibbs free energies of the solid and
liquid phases are computed as functions of temperature, and the melting point is determined
by their intersection point. The free energy method has been applied to determine the melting
point of the Stillinger–Weber (SW) model of silicon as early as 1987 [3]. Since then, several
advanced free energy methods have been developed which make free energy and melting
point calculations more efficient [4, 5], and many of them have been applied in melting
point calculations [6]. While the free energy method is more difficult to set up, we find
that it is more efficient than the interface method if we need to determine the melting point
within a very small error bar, e.g. ±1 K. The difficulty in setting up the various free energy
calculations necessary for the determination of melting points is removed by the development
of an automatic computer script [7].

In this paper, we show that accurate melting points can be obtained from the state-of-
the-art free energy methods. For the first time, we present a systematic comparison of the
melting points, latent heat, entropy and thermal expansion coefficients of nine representative
elements described by four different potential models, including SW [8, 9], the embedded-
atom-method (EAM) [10, 11], Finnis–Sinclair (FS) [12] and the modified-embedded-atom-
method (MEAM) [13]. The comparison in this work identifies areas that require caution in the
application of these potential models and also suggests directions for their future improvement.
Before we begin, we shall briefly describe the differences and relationship among these
potential models [22]. All four models are many-body potentials, i.e. they contain terms
that cannot be written as a sum over pairs of atoms. In the SW potential, a sum of three-body
terms is introduced specifically to stabilize the tetrahedral bond angle in the diamond-cubic
crystal structure. Hence the SW potential is designed for semiconducting crystals and is called
a three-body potential. The other three models are called many-body potentials because the
potential energy cannot be written as a sum of two-body and three-body terms. The EAM
model is designed to capture the many-body effect in metals, in which the electrons are more
diffuse and shared by more atoms than the electrons in semiconductors. For each atom, the
EAM potential contains an embedding function that describes the energy to embed this atom
into the electron background generated by its neighbors. The EAM model is widely used to
describe face-centered-cubic (FCC) metals. The FS model can be regarded as a special type
of EAM model, with its specific choice of the embedding function, and is a commonly used
model for body-centered-cubic (BCC) metals. The goal of the MEAM model was to combine
the angular dependence of covalent bonds and the many-body effect for metallic bonds within
a unified scheme, in order to provide a basis for modeling systems (e.g. Si–Au) where both
types of bonding may exist. As a generalization to the EAM model, the embedding energy in
the MEAM model depends not only on the total electron density contributed by neighboring
atoms but also on their angular distribution.

The paper is organized as follows. In section 2, we present the comparison between the
predictions from different potential models with experiments. In section 3, we describe the
important details in our free energy calculations for the accurate determination of melting
points. We organize the paper in this way because we think the results themselves, compared
with the computational methods that enabled such calculations, should be of interest to a wider
audience. A brief summary and outlook for the future research is given in section 4.
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Table 1. Thermal properties of various elements as predicted by several empirical potentials and
compared with experiments [14–16]. The properties include the melting point Tm (K), latent
heat of fusion L (J g−1), solid and liquid entropy at melting point, SS and SL (J mol−1 K−1), and
thermal expansion coefficient α (10−6 K−1) at 300 K. The MEAM∗-Au and MEAM∗-Cu entries
correspond to a modification of the original MEAM model by changing cmin from 2.0 to 0.8. The
MEAM† entries of BCC metals are computed by the new MEAM model that includes second
nearest neighbor interactions [17, 18].

Model Tm L SS SL α

Si MEAM 1411.3 ± 0.4 1309 48.74 74.79 13.6
Si SW 1694.7 ± 0.5 1111 58.02 76.45 3.9
Si Exp 1687 1650 61.765 91.562 2.6

Ge MEAM 1216.2 ± 0.6 427 58.34 83.84 16.2
Ge SW 2898.0 ± 1.7 847 84.07 105.30 5.8
Ge Exp 1211 465 66.77 97.34 5.8

Au MEAM 1120.0 ± 0.6 92 77.47 93.72 2.0
Au MEAM∗ 995.3 ± 1.3 52 84.18 94.47 16.5
Au EAM 984.3 ± 2.3 41 85.73 94.03 13.5
Au Exp 1337.3 64.9 — — 14.2

Cu MEAM 1350.0 ± 1.0 368 62.70 80.19 4.5
Cu MEAM∗ 1182.9 ± 2.2 205 69.69 80.68 16.0
Cu EAM 1239.6 ± 2.3 164 71.78 80.17 17.3
Cu Exp 1357.8 205 74.30 83.97 16.5

Ag MEAM 987.1 ± 0.9 158 66.21 83.49 5.1
Ag Exp 1234.9 103 — — 18.9

Pb MEAM 674.7 ± 1.0 57 76.17 93.59 3.3
Pb Exp 600.6 23.2 84.34 92.31 28.9

Mo MEAM <1000 — — — 8.6

Mo MEAM† 2778.0 ± 10.1 153 91.98 97.28 5.3
Mo FS 3062.6 ± 7.6 284 91.85 100.75 2.9
Mo Exp 2896 290 98.10 110.52 4.8

Ta MEAM <1000 — — — 9.1

Ta MEAM† 2884.3 ± 7.9 115 102.56 109.75 5.7
Ta FS 3935.7 ± 6.7 190 104.8 113.54 6.3
Ta Exp 3290 174 111.26 122.48 6.3

W MEAM <1000 — — — 6.1

W MEAM† 4389.0 ± 9.1 161 106.24 112.98 4.2
W FS 4125.6 ± 8.0 184 103.81 112.03 3.9
W Exp 3695 192 108.90 118.52 4.5

2. Comparison between model predictions and experiments

Table 1 summarizes all the numerical results in this work. The melting point Tm, latent heat
of fusion L, and entropy of solid and liquid at melting point, SS and SL and thermal expansion
coefficient α are computed for nine pure elements. The elements are organized into three
groups: semiconductors (Si, Ge), FCC metals (Au, Cu, Ag, Pb) and BCC metals (Mo, Ta, W).
MEAM is the only model that has been fitted to elements in all three groups. SW, EAM and
FS models are fitted to semiconductors, FCC metals and BCC metals, respectively. In the
following we compare the predictions from different potential models with experiments in
these three groups separately.
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2.1. Semiconductors: Si and Ge

The melting point of Si predicted by the MEAM model is 16% (277 K) lower than the
experimental value, whereas the prediction from the SW model is less than 1% away from the
experimental value. But the SW model for Si is fitted to the melting point [8]. On the other
hand, the SW model for Ge is not fitted to the melting point and it grossly overestimates the
melting point (by more than 100%) [9]. In comparison, the MEAM prediction of Ge melting
point is very accurate (less than 1%). The MEAM model also correctly predicts that Si has
a higher melting point than Ge. The melting point of the SW-Si model is consistent with
the earlier report of 1691 ± 20 K, also using the free energy method [3]. The melting point
of the MEAM-Si model is somewhat lower than the earlier report of 1475 ± 25 K, using the
co-existence method [1]. This is due to the difference in the potential models used in both
studies3.

A byproduct from the free energy calculation of the melting point is the slope of the
Gibbs free energy–temperature curve at the melting temperature, for both solid and liquid
phases. From these we can extract the entropy of the solid and liquid phases, SS and SL, at
the melting point, and the latent heat of fusion from L = Tm(SL − SS), all of which can be
compared with experiments. It is interesting to note that SS, SL and L are underestimated by the
MEAM-Si, SW-Si and MEAM-Ge models, even though SW-Si and MEAM-Ge predict melting
points accurately. A similar trend was also reported in the environment-dependent interatomic
potential (EDIP) of Si [6]. This implies the difficulties in describing the solid phase and liquid
phase by a single empirical model due to their fundamentally different bonding mechanisms:
the former is a low coordination semiconductor and the latter is an intermediate coordination
metal.

A point of concern is that the MEAM potential predicts a thermal expansion coefficient
(at room temperature) that is 3 to 5 times larger than experimental values. It is possible that
by adding a short range potential between Si atoms, both the melting point and the thermal
expansion coefficients of the MEAM-Si model may be improved [20]. This possibility will be
explored in a future publication.

2.2. FCC metals: Au, Cu, Ag and Pb

The performance of the MEAM model in FCC metals is generally satisfactory. When
comparison with the EAM model is available (Au and Cu), the MEAM model predicts a
melting point that is closer to the experimental data. However, the MEAM model predicts
a thermal expansion coefficient that is about 4 to 10 times smaller than experimental data,
exactly the opposite to the case of the semiconductors.

Fortunately, by changing the angular screening factor of the MEAM potential from the
default value of cmin = 2.0 to cmin = 0.8, the thermal expansion coefficient is greatly improved,
as shown in the MEAM∗ entries in table 1. This modification also improves the accuracy of
latent heat and entropies of solid and liquid. The generalized stacking fault, an important
property for dislocation modeling, is also significantly improved when cmin is changed to
0.8 [21].

Hence we suggest that the MEAM model for FCC metals can be generally improved by
reducing its angular screening parameter cmin. The corresponding decrease of melting point

3 An earlier version of MEAM [19] without angular cut-off is used in Cook et al [1] and a later version of MEAM [13]
is used in this work. We also computed the melting point of the later version of MEAM [13] using the co-existence
method and the melting point is around 1410 K.
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may be compensated by adding a short range potential. This hypothesis will be tested in a
future publication.

2.3. BCC metals: Mo, Ta and W

MEAM and FS models are examined for three typical BCC metals (Mo, Ta, W). Because
BCC metals generally have much higher melting points than semiconductors and FCC metals,
the simulations here experience larger statistical fluctuations, leading to larger error bars in
the predicted melting points. The FS model overestimates melting points of Mo, Ta and W
by about 10–20%. The latent heat, entropy and thermal expansion coefficient are all in good
agreement with experimental values. Hence the FS model describes the thermal properties of
BCC metal very well.

Unfortunately, the original MEAM model seems to fail dramatically in the prediction of
thermal properties of BCC metals. For all three elements, the MEAM model predicts that the
liquid-phase Gibbs free energy stays lower than the solid-phase Gibbs free energy even at
temperatures down to 1000 K, whereas the experimental temperature is around 3000 K. Due to
the glass transition, we are not able to obtain the true liquid free energy at temperatures lower
than 1000 K. Therefore, we are not able to determine the melting point of the MEAM model
for these BCC metals.

Fortunately, the new MEAM model [17, 18] that includes the second nearest neighbor
interactions (2NN-MEAM) seems to be much more robust than the original MEAM model.
The melting points predicted by 2NN-MEAM fall within 20% of experimental values. The
thermal expansion coefficient also becomes much closer to the experimental values. Hence
2NN-MEAM is a better model for BCC metals than the original MEAM model. It is interesting
to note that for the 2NN-MEAM model, the angular cut-off parameter cmin is also much smaller
than that in the original MEAM model. Therefore, reducing cmin seems to improve the behavior
of MEAM models for both FCC and BCC metals.

3. Free energy method for melting point calculation

Because the melting point is defined as the temperature at which Gibbs free energies of the
solid and liquid phases are equal to each other, the melting point can be determined if we
know the Gibbs free energies of the two phases as functions of temperature accurately in the
neighborhood of the melting point. Since the first calculation of the melting point of Si by
the free energy method two decades ago [3], several advanced methods have been developed,
such as the adiabatic switching (AS) and reversible scaling [4, 5], which has made free energy
calculations much more efficient. Using these state-of-the-art methods, we find that the melting
points can be obtained to a much higher accuracy (e.g. ±1 K) than that achievable by the
co-existence method. To achieve such a high accuracy, it is important to carefully choose
the beginning and end states of the switch, as well as the switching paths, in order to reduce
statistical and systematic error in every step of computation. Because many independent free
energies need to be computed to determine the melting point, a large error in any of these steps
can undermine the overall accuracy.

Our approach to computing the melting point Tm of a pure element can be described by
the following steps.

(i) Pick a temperature T1 lower than the estimated value of Tm. Find the equilibrium volume
V1 of the crystalline solid at T1 by an MD simulation under the NPT ensemble.

(ii) Determine the Helmholtz free energy Fs of the solid phase at V1 and T1. This is done
by AS from the solid phase described by the actual potential model to the harmonic
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approximation of the same potential function. Since V1 is the equilibrium volume, i.e.
pressure P = 0, Fs(T1, V1) equals the Gibbs free energy Gs(T1) at zero pressure.

(iii) Obtain the Gibbs free energy, Gs(T ), of the solid phase as a function of temperature using
the reversible scaling method in the domain of T1 < T < T2, where T2 is expected to be
higher than Tm.

(iv) Find the equilibrium volume V2 of the liquid phase at T2 by an MD simulation under the
NPT ensemble.

(v) Determine the Helmholtz free energy FL of the liquid phase at V2 and T2. This is done by
AS from the liquid to a purely repulsive potential and then to the ideal gas limit. Again
FL(T2, V2) equals the Gibbs free energy GL(T2) at zero pressure.

(vi) Obtain the Gibbs free energy of the liquid phase as a function of temperature using the
reversible scaling method, GL(T ), in the domain of T1 < T < T2.

(vii) Plot GS(T ) and GL(T ) together and determine the melting temperature at which the two
curves cross.

All simulations are performed by molecular dynamics under periodic boundary conditions
in three directions and with a time step of �t = 0.1 fs. Every switching simulation has the
duration of 100 ps unless otherwise mentioned. Si and Ge are modeled using a supercell with
512 atoms that is 5×5×5 times of a diamond-cubic unit cell. Au, Cu, Ag, and Pb are modeled
using a supercell with 500 atoms that is 4 × 4 × 4 times of an FCC unit cell. Mo, Ta and W
are modeled using a supercell with 432 atoms that is 6 × 6 × 6 times of a BCC unit cell.

The most challenging part of this work is probably to correctly assemble the results from
many different kinds of calculations. Fortunately, this has been automated in the MD++
program in the form of an input script file [7]. In the following, we describe the important
details for the different steps of our calculations.

3.1. Solid free energy

The Helmholtz free energy F of a system of N atoms that can be described by a Hamiltonian
H({ri , pi}) is defined by the partition function Z,

e−βF = Z = 1

N !h3N

∫ N∏
i=1

dridpie
−βH({ri ,pi

}) (1)

where h is Planck’s constant, β = 1/(kBT ), T is temperature and kB is Boltzmann’s constant.
Free energy is difficult to calculate because it cannot be expressed as an ensemble average,
such as total energy, which can then be computed by MD or MC simulations as a time average.
On the other hand, the free energy difference between two systems can be expressed in terms of
an average. Hence, free energy can be computed from the difference between the free energy
of the system of interest and that of a reference system whose free energy is known a priori.
The computation is most efficient when the reference system is very similar to the original
system of interest [22].

A widely used reference system is the Einstein crystal, in which every atom is represented
by an independent harmonic oscillator vibrating around its perfect lattice positions [24].
However, a reference system that is even closer to the original system is the harmonic
approximation of the interatomic potential itself. In this work, we use the quasi-harmonic-
approximation (QHA) as the reference system, whose potential function is the Taylor expansion
of the original potential function up to second order around the equilibrium lattice positions at
the given temperature T1 (i.e. allowing thermal expansion). The free energy of the reference
system is obtained by first computing the Hessian matrix, which is the second derivatives of
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the potential energy function with respect to atomic coordinates, and diagonalizing it. Let �i

be the eigenvalues of the Hessian matrix. The eigenfrequencies of the normal modes of the
crystal are ωi = √

�i/m, where m is the atomic mass. The Helmholtz free energy of the
reference system is

FQHA(N, V1, T1) = E0(V1) − kBT1

∑
i

ln
kBT1

h̄wi(V1)
, (2)

where h̄ ≡ h/(2π).
The Helmholtz free energy difference between the QHA reference system and the real

potential at T1 and V1 is computed by the AS method [4]. Suppose H1 is the Hamiltonian of the
system of interest and H0 is the reference system. We define a new Hamiltonian parametrized
by λ,

H(λ) = (1 − λ)H0 + λH1 (3)

such that H(λ = 0) = H0 and H(λ = 1) = H1. During the AS simulation, λ gradually
changes from 0 to 1, and the Hamiltonian gradually changes from the reference system to the
system of interest. The work done during the switching, �W , provides an estimator to the free
energy difference, i.e.

F1 − F0 = �W ≡
∫ tsw

0

∂H(λ)

∂λ

dλ(t)

dt
dt, (4)

where tsw is the total time of the switching simulation. Strictly speaking, the equality
(F1 − F0 = �W ) is valid only in the limit of infinitely slow switching, i.e. tsw → ∞.
For any switching performed at a finite rate, �W contains both statistical and systematic
error. The systematic error is caused by dissipation in an irreversible process, which makes the
averaged work over many independent switching trajectories, 〈�W 〉, greater than F1−F0 [23].
To reduce statistical error generated from finite switching time, we employed the switching
function

λ(t) = s5(70s4 − 315s3 + 540s2 − 420s + 126), (5)

where s = t/tsw. This switching function makes the increase rate of λ very low both at the
beginning and at the end of the switching trajectory where the fluctuation ∂H(λ)/∂λ = H1−H0

tends to be largest [22]. The switching function is also very smooth, which was found to be
important for error reduction [4].

The following details are important for the calculations of Helmholtz free energy of the
solid phase at a given temperature.

(i) There are always three zero eigenfrequencies corresponding to the three rigid-translational
modes. This means that the sum over i in equation (2) should include 3(N − 1) terms. To
be self-consistent, similar considerations are needed in the calculation of the free energy
of the ideal gas reference system (see next section).

(ii) The Nose–Hoover chain method [25] is needed in the MD simulation to ensure ergodicity
since the Hamiltonian is very close to that of a harmonic system.

(iii) Reverse switching simulations are required to estimate and cancel the dissipation [22].
Prior to each switching simulation, it is important to equilibrate the system for a long
enough time.

Since the solid is under zero pressure at T1 and V1, the Helmholtz free energy Fs(T1, V1)

is also the Gibbs free energy GS(T1) at pressure P = 0. In the following, we will omit
P in the Gibbs free energy expression, since the latter is always evaluated at zero pressure
in this work. The reversible scaling method is used to compute the Gibbs free energy as a
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function of temperature [5]. The key idea is to multiply the potential energy function U by
a parameter λ(t), which changes smoothly with time t during the switching simulation. The
simulation is performed at a constant temperature T0. But the work done to the system during
the switching simulation can be used to extract the free energy of the original system (with
potential function U ) in a range of temperatures T = T0/λ(t). The following details are
important for a successful calculation.

(i) The NPT ensemble is required to ensure zero pressure during the switch simulation.
(ii) The Nose–Hoover chain method is required to ensure ergodicity.

(iii) Reverse switching should be performed to estimate and cancel the dissipation.
(iv) The range of λ(t) should be limited to avoid large dissipation. This means that if the

initial guess T1 is too far away from the predicted melting point Tm, we need to repeat the
previous step (compute solid free energy with QHA) at a different temperature T1 that is
closer to Tm, in order to reduce the error bar.

3.2. Liquid free energy

The ideal gas is used as the reference system to compute the Helmholtz free energy of the
liquid phase at temperature T2 and volume V2. The Helmholtz free energy of N ideal gas
particles is

Fi.g.(N, V2, T2) = −kBT2{N ln(V2/�
3) − ln N !}, (6)

where V2 is the equilibrium volume of liquid at T2 and � ≡ h/
√

2πmkBT is the thermal de
Broglie wave length. It is important to point out that we need to replace N by N − 1 when
using the above equation to compute the free energy of the reference system, due to the fixed
center of mass in atomistic simulations (see previous section).

To minimize dissipation which causes a systematic error in the switching simulation, we
should always avoid crossing any phase transition line during the AS. It is generally expected
that a direct switching path from a liquid phase to an ideal gas will cross the liquid–gas
transition line. To avoid this, we first switch the liquid to an intermediate reference system
and then switch to the ideal gas limit. The intermediate reference system is a collection of N

particles interacting through a purely repulsive pair potential of the following Gaussian form

φ(ri , rj ) = λε exp

(−|ri − rj |
2σ

)
. (7)

ε and σ are adjusted to minimize dissipation occurring when switching to and from the real
potential model.

We find that the Gaussian potential is a better reference system than the inverse-12 potential
(i.e. 1/r12) used in the literature [26]. Even though the free energy of the inverse-12 potential
is available in analytic form as a Virial expansion, the expansion may not converge within 10
terms at the density of the silicon liquid. While the free energy of the Gaussian potential liquid
is not known analytically, it can be easily computed by AS to the ideal gas limit. Because
the Gaussian potential is very simple, the computational cost required in this step is negligible
compared with other steps where the real potential model (e.g. SW, MEAM) is required. This
enables us to break the switching path into many smaller steps, reducing the systematic error
caused by the large difference between the beginning and the end states. The lack of singularity
of the Gaussian potential (in contrast to the inverse-12 potential) also improves the numerical
convergence. Because we never observe a large dissipation (i.e. the total work in the forward
and reverse switching) in our simulations, this can be taken as an empirical proof that we did
not cross any phase-transition line along the switching path.
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The following details are important for the calculations of Helmholtz free energy of the
liquid phase at a given temperature.

(i) Switching from the Gaussian potential to the ideal gas limit must be performed in several
steps for accuracy if a linear switching function is used. We multiply the potential energy
U by a parameter λ. λ = 1 is the original fluid with the Gaussian potential and λ = 0 is
the ideal gas limit. In our simulation, we switch from λ = 1 to λ = 10−6 in 6 steps, each
time reducing λ by a factor of 10. Further reduction of λ produces a negligible amount of
work, confirming that the ideal gas limit has been reached.

(ii) To minimize dissipation and statistical error, we should adjust the parameters of the
Gaussian potential to match the characteristic distance and energy scale of the real
potential. For example, σ and ε can be adjusted to mimic the pair potential part of
the SW potential. ε of 50 eV and σ of 0.7 Å are used with cut-off length rc = 3.771 Å for
the case.

(iii) Reverse switching must be performed to estimate and correct for dissipation.

Since the liquid is under zero pressure at temperature T2 and volume V2, the Helmholtz
free energy FL(T2, V2) is also the Gibbs free energy GL(T2). The Gibbs free energy of the
liquid phase as a function of temperature is then obtained using the same reversible scaling
method as in the previous section. The Nose–Hoover chain method is no longer needed for
the simulation in the liquid phase because the system is far away from being harmonic and
ergodicity is satisfied.

3.3. Melting point and error estimate

After obtaining the Gibbs free energies of both the solid and the liquid phases, GS(T ) and
GL(T ), in the temperature range of T1 < T < T2, we fit both data into smooth spline functions
and determine the point at which the two functions cross each other. The temperature at which
the two functions cross is the melting point Tm.

The error bar on Tm is computed from the errors in the free energy estimates in the switching
simulations. Each switching simulation Si (e.g. switching between two Hamiltonians or
switching along the temperature axis) is repeated n (∼10) times, which results in n independent
values of the irreversible work �W . Given these works in both forward and reverse directions,
the free energy difference between the two systems is estimated using an extension of Bennett’s
acceptance ratio method [27, 28]. This estimator was shown to be unbiased (i.e. with zero
systematic error) and to have the smallest statistical error. The free energy difference �Fi is
obtained by solving the following equations self-consistently:

e−β�Fi = 〈(1 + eβ�Wi+C)−1〉F

〈(1 + eβ�Wi−C)−1〉R
eC (8)

C = −β�Fi + ln nF/nR (9)

where nF and nR are the number of independent forward and reverse switching simulations
[27, 28]. This expression is exact even for very rapid switching trajectories where linear
response theory is no longer valid. The standard deviation σi of the estimated �Fi can be
obtained from the following equation:

β2σ̂ 2
i = Var[(1 + eβWi+C)−1]F

nF〈(1 + eβWi+C)−1〉2
F

+
Var[(1 + eβWi−C)−1]R

nR〈(1 + eβWi−C)−1〉2
R

, (10)

where Var[x] is the variance of the random variable x.
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Figure 1. Gibb’s free energy per atom for both the solid phase (solid line) and liquid phase (dashed
line). The symbols represent data points in Broughton and Li [3] with squares for the solid phase
and circles for the liquid phase.

(This figure is in colour only in the electronic version)

In this work, the melting point is estimated from m = 5 different types of switching
simulations. Assuming the error made in each switching simulation is independent of each
other, the error bar for the Gibbs’s free energy difference between the solid and the liquid
phases is estimated by

σ(�G) =
(

m∑
i=1

(σ̂i)
2

)1/2

. (11)

The error bar in the melting point prediction is

σ(Tm) = σ(�G)

SL − SS
, (12)

where SL and SS are the entropy of the liquid and solid phases at the melting point, respectively.
The entropies can be obtained from the slope of the Gibbs free energy–temperature curve.

An example is given in figure 1, which plots the Gibbs free energy as a function of
temperature for the liquid and solid phases of Si, as described by the SW potential. The
dominant source of error comes from the switching simulation between the SW liquid to the
Gaussian fluid (see appendix A for more details). This error contributes to an uncertainty
of 0.884 × 10−4 eV atom−1 in the liquid Gibbs free energy, which corresponds to melting
temperature uncertainty of 0.46 K. Semiconductors and FCC metals studied here show similar
error bars. The error bars of BCC metals are considerably higher, most likely due to their high
melting temperature, which leads to larger statistical fluctuation.

Repeating each AS simulation for n = 20 times usually brings the error bar of the melting
point to within ±1 K. The accuracy of this level can be readily achieved in a day using a
computer cluster with 30 CPUs. Due to limited computational resources, enough computation
is performed to reach ±1 K accuracy only for MEAM-Si, SW-Si and MEAM-Au models. For
other models, each AS simulation is performed only 5 or 6 times, leading to a larger error bar
in the predicted free energy. The finite size of the simulation cell and small uncertainty in the
determination of the equilibrium volume at finite temperature can introduce additional error
to the melting point, which is not accounted for in our error estimate.
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Table A1. The estimated free energy difference �Fi and its standard deviation in the five different
AS steps for the melting point calculations of SW-Si and MEAM-Si models.

SW-Si MEAM-Si

i �Fi (eV atom−1) σ̂i (10−4 eV atom−1) �Fi (eV atom−1) σ̂i (10−4 eV atom−1)

1 −0.012 97 0.01 −0.006 24 0.07
2 0.816 16 0.05 1.105 44 0.03

3 −3.687 33 0.88 −3.940 27 1.01
4 0.500 80 0.45 0.410 05 0.47
5 −1.138 76 0.19 −1.213 68 0.26

4. Summary

We have computed the melting points, latent heat, entropy and thermal expansion coefficients
for nine pure elements described by four different interatomic potential models. The state-of-
the-art free energy methods are used to determine the melting points accurately and efficiently,
allowing a systematic comparison between the potential models. The beginning and end states
and the switching paths are chosen carefully in the AS simulations to reduce the error in the free
energy calculation. The comparison reveals several systematic trends among elements with
the same crystal structure. The MEAM model performs reasonably well in semiconductors
compared with the SW model, and predicts more accurate thermal properties than the EAM
model, especially the angular screening factor is adjusted. The original MEAM model fails to
predict reasonable thermodynamic properties for BCC metals. In comparison, the FS model
and the 2NN-MEAM model are more reliable for BCC metals.
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Appendix A. Error estimates in free energy calculations

In this appendix, we present some intermediate free energy results of our melting point
calculations. The purpose is two-fold. First, it will enable interested readers to compare
their results with ours, should they wish to adopt our computational method. Second, it
demonstrates which step is the major source of error in the final estimate of the melting point.
This allows further improvement of the accuracy and efficiency of melting point calculations
in the future. The average and standard deviation of the reversible work accumulated in each
of the five AS steps (counting forward and backward switching together) are listed in table A1.

Step 1 corresponds to AS from a solid phase described by an empirical potential to the
QHA of itself. Step 2 corresponds to switching the solid phase along the temperature axis from
T1 to T1/λ1. T1 = 1600 and λ1 = 0.8 are used for SW Si and T1 = 1200 and λ1 = 0.75 are
used for MEAM Si. Step 3 corresponds to AS from a liquid phase described by an empirical
potential to the purely repulsive liquid described by the Gaussian potential. Step 4 corresponds
to AS from the Gaussian potential to the ideal gas limit. Step 5 corresponds to switching the
liquid phase along the temperature axis from T2 to T2/λ2. T2 = 1800 and λ2 = 1.3 are used
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for SW Si and T2 = 1560 and λ2 = 1.3 are used for MEAM Si. Table A1 shows that the
intermediate results are similar for the SW-Si and the MEAM-Si models, both in terms of the
average free energy differences and in terms of the error bars. The major source of error comes
from the switching between the liquid phase and the purely repulsive liquid described by the
Gaussian potential (step 3).
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