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Abstract

We develop a non-singular, self-consistent framework for computing the stress field and the total

elastic energy of a general dislocation microstructure. The expressions are self-consistent in that the

driving force defined as the negative derivative of the total energy with respect to the dislocation

position, is equal to the force produced by stress, through the Peach–Koehler formula. The

singularity intrinsic to the classical continuum theory is removed here by spreading the Burgers

vector isotropically about every point on the dislocation line using a spreading function characterized

by a single parameter a, the spreading radius. A particular form of the spreading function chosen

here leads to simple analytic formulations for stress produced by straight dislocation segments,

segment self and interaction energies, and forces on the segments. For any value a40, the total

energy and the stress remain finite everywhere, including on the dislocation lines themselves.

Furthermore, the well-known singular expressions are recovered for a ¼ 0. The value of the

spreading radius a can be selected for numerical convenience, to reduce the stiffness of the dislocation

equations of motion. Alternatively, a can be chosen to match the atomistic and continuum energies

of dislocation configurations.
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1. Introduction

Dislocations are the primary carriers of crystal plasticity and their collective dynamics
define material’s response to a variety of loading conditions, e.g. in yield, creep or fatigue.
Developed over the past two decades, Dislocation Dynamics (DD) is a direct approach
that attempts to simulate the aggregate behavior of large dislocation ensembles and holds
considerable promise for uncovering the microscopic origins of crystal strength (Devincre
and Kubin, 1997; Schwarz, 1999; Ghoniem and Sun, 1999; Cai et al., 2004a; Bulatov et al.,
2004). However, in the development of this new methodology, several issues remain
unresolved. This contribution addresses and solves the long-standing problem of
singularities intrinsic to the classical continuum theory of dislocations. The singular
solutions of the continuum theory are analytical and simple, at least for an important case
of elastic isotropy. However, the energy and forces can be infinite unless some truncation
scheme is applied to avoid the singularities.
Non-singular treatments of dislocations have been the focus of several theoretical studies

since the 1960s. Self-consistency in terms of dislocation theory is achieved when forces on the
dislocations computed two ways are the same. The first way to compute the force is to take
the negative derivative of the elastic energy with respect to the dislocation position. The
second way is to use the Peach–Koehler formula relating the force to local stress. Various
modifications of the linear isotropic elastic theory have been considered as possible solutions.
A heuristic non-singular approach was first proposed by Brown (1964) in which the driving
force was related to the average stress evaluated at two points on either side of the
dislocation line. Later, Gavazza and Barnett (1976) showed that Brown’s recipe lacked
consistency and identified a set of correction terms needed to make it self-consistent. In the
Gavazza–Barnett approach, only the elastic energy stored in the material outside a tube
region surrounding the dislocation line was included in the driving force calculation. This
solution was later used for DD simulations (Schwarz, 1999). Unfortunately, consistency of
this elegant solution has been rigorously demonstrated only in 2D, i.e. for in-plane
components of force on a planar dislocation loop. And while the Gavazza–Barnett solution
provided an expression for the derivatives of the elastic energy stored in a dislocation
network, it did not provide an explicit expression for the elastic energy itself.
Here we propose a non-singular and self-consistent treatment applicable to an arbitrary

dislocation arrangement that satisfies the following four conditions.
(1)
 Our approach provides explicit non-singular expressions for the total elastic energy and
stress field of an arbitrary dislocation structure. In the case of isotropic elasticity, the
non-singular solutions are analytic and (nearly) as simple as the classical singular
solutions.
(2)
 The approach is self-consistent in that the force on a dislocation segment defined as the
negative derivative of energy with respect to the segment position, is equal to the force
obtained by integrating the stress field along the segment (by the Peach–Koehler
formula).
(3)
 The solution can be used for straight segments connected at an arbitrary angle and
converges for general curvilinear geometries in the limit when the segment size becomes
infinitesimally small.
(4)
 The solution has a clear connection to the more fundamental, atomistic models of
dislocations.
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None of the previous treatments has fulfilled all four conditions listed above. The first two
conditions point to the desirable mathematical properties that have been sought after in

previous investigations. The third condition ensures that the new solutions are robust and
usable in the DD simulations where the numerical convergence is all-important. Finally,
the fourth condition means that the modification introduced to transform the classical
singular theory into a non-singular theory, allows a clear physical interpretation.

The modification we propose is to distribute the Burgers vector about every point on the
line: the line now becomes the locus of the centers of the Burgers vector distributions. Our
idea is to find a specific Burgers vector distribution such that it yields analytical expressions
that are as close as possible to the classical expressions derived within the singular theory.
This proposed solution is conceptually similar to the Peierls–Nabarro model (Peierls, 1940;
Nabarro, 1947) and to the standard core model (Lothe, 1992) of dislocations, in which the
Burgers vector is spread out in the glide planes. The difference is that in our approach the
Burgers vector is not distributed over a plane but in all directions about every point on
the line.

The discussion is organized as follows. Section 2 details the issues associated with the
classical singular solutions for the dislocation energies and stress fields in elastically
isotropic solids. Section 3 reviews the previous non-singular treatments and discusses their
advantages and drawbacks. Sections 4 and 5 develop our new isotropic model while
Section 6 presents numerical results demonstrating its self-consistency and convergence
properties. Section 7 compares our model with the Gavazza and Barnett (1976) model and
demonstrates their relationship. Finally, Section 8 gives a summary and discusses new
opportunities this approach offers to dislocation modeling.

2. Problem formulation

The Peach–Koehler formula (Hirth and Lothe, 1982) expresses the driving force (per
unit length) f that local stress r exerts on a dislocation line,

f ¼ ðr � bÞ � n, (1)

where b is the dislocation Burgers vector and n is the local tangent (unit vector) of the
dislocation line. For example, if r is stress at a point on a dislocation line due to externally
applied tractions, then f is the force per unit length on this point due to the tractions. In a
DD simulation, forces caused by external tractions combine with forces induced by
internal stress produced by the dislocation microstructure.

In a homogenous infinite linear elastic solid, the (internal) stress field of a dislocation
loop can be expressed in terms of a contour integral along the loop (Mura, 1982),

sijðxÞ ¼ Cijkl

I
C

�lnhCpqmnGkp;qðx� x0Þbm dx0h, (2)

where Cijkl is the elastic stiffness tensor, Gkp;q ¼ qGkp=qxq. Here, Gkpðx� x0Þ is the Green’s
function defined as the displacement in xk-direction at point x in response to a unit point
force in xp-direction applied at point x0. In an isotropic elastic solid with the shear modulus
m and the Poisson’s ratio n, the Green’s function takes the following simple form:

Gijðx� x0Þ ¼
1

8pm
dijqpqpR�

1

2ð1� nÞ
qiqjR

� �
, (3)
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where qi � q=qxi and R ¼ kx� x0k. The stress field of a dislocation loop can thus be
expressed as

sabðxÞ ¼
m
8p

I
C

qiqpqpR½bm�ima dx0b þ bm�imb dx0a�

þ
m

4pð1� nÞ

I
C

bm�imkðqiqaqbR� dabqiqpqpRÞdx0k. ð4Þ

As the field point x approaches the source point x0 in the above integral, R approaches zero
and some (if not all) components of the stress tensor diverge. Therefore, the self-force of a
dislocation line, i.e. the force due to its own stress field, diverges too. This singular
behavior is an artifact traced to the unrealistic assumption that the Burgers vector
distribution is a delta function. In the atomistic models that provide more realistic
description of the dislocation core, this problem never arises.
A similar divergent behavior occurs in the expressions for the elastic energy of

dislocations. There are two equivalent ways to express the total elastic energy, both leading
to infinity. On way is to integrate the elastic energy density over the entire volume, i.e.,

E ¼
1

2

Z
d3xSijklsijðxÞsklðxÞ, (5)

where S ¼ C�1 is the elastic compliance tensor. Because the stress field sijðxÞ has 1=R

singularity on the dislocation line itself, the volume integral obviously diverges. Another,
alternative, expression for the elastic energy is obtained by transforming the volume
integral into a double line integral (de Wit, 1976a, b)

E ¼ �
m
8p

I
C

I
C

qkqkRbib
0
j dxi dx0j �

m
4pð1� nÞ

I
C

I
C

qiqjR bib
0
j dxk dx0k

þ
m

4pð1� nÞ

I
C

I
C

qkqkR bib
0
i dxj dx0j � n

I
C

I
C

qkqkR bib
0
j dxj dx0i

� �
. ð6Þ

The total integrand above can be identified with the interaction energy between two
differential dislocation segments dx and dx0. Again, this integral is unbounded because the
integrand diverges as x and x0 approach each other (R! 0). The divergent behaviors
discussed here can result in ill-defined numerical procedures for computing the energies
and forces associated with dislocations.

3. Earlier attempts to remove the singularities

In this section, we review several earlier attempts to remove (or avoid) the singularities in
the continuum theory of dislocations. No consideration will be given to the previous work
on non-local or gradient elasticity (Gutkin and Aifantis, 1996, 1997) and finite-strain
elasticity (Fedelich, 2004). Rather, we will discuss only the treatments closely related to the
objectives of this particular study.

Approach I. Since 1960s, several schemes have been proposed to remove the singularities
from dislocation theory and to define a finite self-force on dislocations. In Hirth and Lothe
(1982), a cut-off radius r is introduced to regularize the elastic energy of a dislocation loop.
In the double line integral for the elastic energy (similar to Eq. (6)) the following
regularization convention is used. The integrand is set to zero whenever the distance between

the differential segments dx and dx0 becomes less than r. Following this convention, elastic
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energy of an arbitrary dislocation loop becomes finite. In principle, the forces can be
defined self-consistently as the negative derivatives of, now finite, energy with respect to
appropriate dislocation configuration variables. In practice, self-consistency of this
approach has not been enforced.

In numerical calculations, dislocations are often represented by interconnected straight
segments. The elastic energy, E, of so-discretized dislocations is partitioned into two sums:
a sum of the segment self-energies W s

i and a sum of the interaction energies W int
ij of

segments pairs (i and j) (Cai, 2001)

E ¼
X

i

W s
i þ
X
ioj

W int
ij . (7)

This standard partitioning of the elastic energy makes the above regularization convention

difficult to implement rigorously. This is because an analytical expression for W int
ij is

available only when the above convention is ignored, i.e. all points on segments i and j are
included in the integral. This inconsistency does not appear when the segments are well
separated, so that even their closest distance is larger than r. However, when this is not the
case, e.g. when two segments share a common node (Fig. 1), the analytical expressions do
not faithfully account for the regularization convention leading to inconsistent
implementations.

Another artifact of the above regularization approach is the following. Historically
several alternative expressions for the line integral of the dislocation energy, such as
Eq. (6), have been derived (Blin, 1995; de Wit, 1960, 1967a, b) in which the forms of the
integrand differ but the differences vanish when the integrals are evaluated over an entire
dislocation loop. Unfortunately, since the regularization convention described above
effectively cuts open the (otherwise complete) dislocation loop, it was found that different
integrands produce different self-energies of a dislocation loop, even when the same cut-off
parameter r is used (LeSar, 2004). To remedy this inconsistency, it was proposed to use a
cut-off parameter r that depends both on the dislocation character angle and on the
specific form of the integrand used (Lothe and Hirth, 2005).

Approach II. Another approach is offered by Brown (1964) who averts the singularity by
defining the stress as an average of stress evaluated at two points on the opposite side of
i
j

ρ

dx dx'

Fig. 1. To remove singularities from the elastic energy of a dislocation loop, one convention is to ignore the

interaction between differential segments whose distance from each other is less than r. This removes part of the

interaction energy between two neighboring segments i and j sharing a node. Unfortunately, this ‘‘distance cut-

off’’ convention has not been enforced consistently owing to the lack of analytic expressions for the interaction

energy between two hinged segments with ‘‘excluded’’ length (Hirth and Lothe, 1982).
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and at a short distance r away from the line (Fig. 2). In this convention, the glide
component of the force fB on the dislocation at point P is defined as

f B
i ðPÞmi � �

1
2

binjfsLij ðPþ rmÞ þ sLij ðP� rmÞg, (8)

where

n ¼
b� n
kb� nk

, (9)

m ¼ n� n. (10)

Following this definition, the contribution of a straight dislocation to its self-force is zero
(Fig. 2(a)). For curved dislocations (Fig. 2(b)), Eq. (8) gives rise to a non-zero self-force.
One limitation of Brown’s approach is that it defines only the glide component of the

Peach–Koehler force, i.e. the projection of the total force on the glide direction m. At the
same time, the remaining component that induces non-conservative climb motion remains
undefined. Furthermore, as was later shown by Gavazza and Barnett (1976), Brown’s
recipe is not self-consistent in that fB is not the negative derivative of a dislocation energy
function. Gavazza and Barnett (1976) also showed that corrections to Brown’s force
equation could be added to make it self-consistent.

Approach III. Gavazza and Barnett (1976) derived the following expression, fGB, for the
force on a dislocation line:

f GB
i ðPÞmi � f B

i ðPÞmi þ
1

r
EðaÞ � F ðaÞ þ

q2F

qa2

� �� �
, (11)

where r is the local radius of curvature at point P, E is an energy pre-factor of an infinite
straight dislocation with tangent n, F is a ‘‘tube integral’’ around the same dislocation.
Both E and F are functions of the angle a between n and a datum (Fig. 2(b)). They arrived
at this expression by finding the total elastic energy of a dislocation loop based on a
volume integral similar to Eq. (5), but excluding from this integral a tubular region around
the loop with radius r. The force fGB on a dislocation line is then determined by
differentiating the energy with respect to the line position.
0 +ρ-ρ

P

m
+ ρ

-ρ

fξn

datumα

mn

ξ

b

(a)

(b)

Fig. 2. (a) Because the stress field is anti-symmetric around an infinite straight dislocation, the average of stress

taken at two points at a distances�r from the line is zero. Consequently, the straight dislocation produces no self-

force in Brown’s approach. Here n is the line direction, n is the glide plane normal, m is a unit vector perpendicular

to n and n, and b is the Burgers vector. (b) P is a point on a dislocation loop on a plane with normal vector n. n is

the local tangent direction shown here at an angle a with respect to a datum. m is orthogonal to both n and n. In
Brown (1964), the self-force f at point P is computed by applying the Peach–Koehler formula on the averaged

stress taken at two points P� rm.
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Similar to Brown’s, Gavazza–Barnett approach provides expressions only for the glide
component of force. Another common limitation is that validity of either method for non-
planar dislocation configurations has not been demonstrated. In principle, both methods
require the dislocation line to be smooth, so that vectors n and m can be defined on every
point P along the line. Furthermore, the correction term of Gavazza–Barnett is
proportional to 1=r, which makes it difficult to deal with sharp corners where the radius
of line curvature is zero.1

Approach IV. Another well-known approach is due to Lothe (1992), who removes (or
weakens) the singularity by spreading the dislocation core over a finite width on the glide
plane. This is not unlike the classical Peierls–Nabarro model (Peierls, 1940; Nabarro, 1947)
in which the spreading function is determined self-consistently, by the balance between the
elastic energy in the bulk and the non-linear interface energy on the glide plane. While the
Peierls–Nabarro model provided analytical expressions for the stress field and the energy
of an infinite straight dislocation, it did not offer analytical expressions for the energy or
forces of the generally curved dislocation lines. Lothe simplifies the Burgers vector
distribution within the core by spreading it uniformly in a plane over a fixed width d: this is
commonly referred to as the standard reference core. Lothe shows that the glide force, fL,
on a dislocation line with a standard core of width d ¼ r reduces to

f L
i ðPÞmi � f B

i ðPÞmi þ
1

r
EðaÞ, (12)

where ð1=rÞEðaÞ is the same function as in the Gavazza and Barnett expression (Eq. (11)).
The stress and energy of dislocations with a standard core can be obtained by

convoluting the classical singular expressions with the (uniform) spreading function. For
example, for an infinite straight screw dislocation stretching out along z-axis, the singular
expression for syz is

syz ¼
mb

2px
. (13)

When the same Burgers vector is spread over the interval x 2 ½�d=2; d=2�, the stress field
becomes

syz ¼

mb

2pd
ln

xþ d=2

x� d=2

� �
; x4d=2;

mb

2pd
ln

d=2þ x

d=2� x

� �
; �d=2oxod=2:

8>>><
>>>:

(14)

The stress field now has a weaker, logarithmic singularity, but it is integrable so that the
total elastic energy remains finite. While Lothe’s is an appealing and simple idea, the
resulting expressions for the stress field and elastic energy are much more complicated than
the original singular equations and difficult to use for generally curved dislocations.
1Although this last point may seem unimportant, it presents a significant limitation because sharp corners on

dislocations appear in a number of physically important situations, e.g. in cross-slip nodes or junction nodes

joining together three or more dislocation lines.
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4. Isotropic dislocation core distribution

As discussed in the preceding section, both simplicity and singularity of the classical
theory result from an unphysical yet mathematically convenient description of the
dislocation core in which the distribution of the Burgers vector is described by a delta
function. As noted by Lothe (1992), use of distributions other than the delta-function leads
to solutions that are non-singular but considerably more complicated than their singular
counterparts. The purpose of this work is to find a Burgers vector distribution that
removes the singularities but retains the analytical nature of the classical theory and
supplies simple closed form expressions for the stress field and the elastic energy of general
dislocation configurations.
To facilitate our discussion, let us first rewrite Eqs. (4) and (6) in the following compact

forms:

sabðxÞ ¼
I

C

AabijklmqiqjqkRðx� x0Þbm dx0l , (15)

E ¼

I
C

I
C

BijklmnqiqjRðx� x0Þbmb0n dxk dx0l , (16)

where Aabijklm and Bijklmn are defined by comparing Eqs. (4) and (6) to Eqs. (15) and (16),
respectively.
The next step is to introduce a Burgers vector density function gðxÞ that removes the

dislocation singularity by spreading its Burgers vector b around every point on the line as
follows:

b ¼

Z
gðxÞd3x. (17)

This normalization condition ensures that both the magnitude and the direction of the
Burgers vector remain unchanged. For a dislocation loop whose Burgers vector is spread
out according to gðxÞ, its stress field and elastic energy are

~sabðxÞ ¼
I

C

Aabijklmqiqjqk

Z
Rðx� x00Þgmðx

00 � x0Þd3x00
� �

dx0l , (18)

~E ¼

I
C

I
C

Bijklmnqiqj

ZZ
Rðx00 � x000Þgmðx� x00Þg0nðx

0 � x000Þd3x00 d3x000
� �

dxk dx0l .

(19)

These expressions reduce to Eqs. (15) and (16) when gðxÞ ¼ bd3ðxÞ and g0ðxÞ ¼ b0d3ðxÞ,
where d3ðxÞ is the 3D delta function.
This formulation is rather general and can be used to account for various realistic details

of dislocation core structure, e.g. possible splitting of a perfect dislocation into partial
dislocations in FCC crystals. However, our purpose here is different: we would like to find
gðxÞ such that the resulting non-singular solutions are simple and closely resemble the
singular solutions of the classical theory. Specifically, consider an isotropic distribution of
the form

gðxÞ ¼ b ~wðxÞ ¼ b ~wðrÞ, (20)
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where r � kxk. Now, define wðxÞ as the convolution of ~wðxÞ with itself, i.e.,

wðxÞ � ~wðxÞ � ~wðxÞ �

Z
~wðx� x0Þ ~wðx0Þd3x0. (21)

Obviously, because ~wðxÞ is isotropic, wðxÞ is isotropic as well, i.e. wðxÞ ¼ wðrÞ. Defining
RaðxÞ as the convolution of RðxÞ with wðxÞ:

RaðxÞ � RðxÞ � wðxÞ �

Z
Rðx� x0Þwðx0Þd3x0 (22)

the energy of the dislocation loop becomes

~E ¼

I
C

I
C

BijklmnqiqjRaðx� x0Þbmb0n dxk dx0l . (23)

Notice that for x ¼ ðx; y; zÞ, RðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, so that the spatial derivatives of R

follow some simple rules, e.g.,

qR

qx
¼

x

R
, (24)

q2R
qx2
¼

1

R
�

x2

R3
, (25)

q2R
qxqy

¼ �
xy

R3
. (26)

Suppose we can find a function wðxÞ such that

RaðxÞ � RðxÞ � wðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðxÞ2 þ a2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2 þ a2

p
, (27)

where a is an arbitrary constant (core width), then the spatial derivatives of Ra follow the
same simple rules as those of R, e.g.,

qRa

qx
¼

x

Ra

, (28)

q2Ra

qx2
¼

1

Ra

�
x2

R3
a

, (29)

q2Ra

qxqy
¼ �

xy

R3
a

. (30)

As long as a40, derivatives qiqjRa are non-singular and their expressions are similar to
qiqjR. The energy of a dislocation spread in this specific fashion is finite while its expression
closely resembles that of the classical singular solution (with a ¼ 0). For example, the
energy of a closed loop C the energy is given by the following double integral:

Ens ¼ �
m
8p

I
C

I
C

qkqkRabib
0
j dxi dx0j �

m
4pð1� nÞ

I
C

I
C

qiqjRabib
0
j dxk dx0k

þ
m

4pð1� nÞ

I
C

I
C

qkqkRabib
0
i dxj dx0j � n

I
C

I
C

qkqkRabib
0
j dxj dx0i

� �
. ð31Þ
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We note that our approach does not share the artifact of the regularization Approach I
described in Section 3, because a closed dislocation loop remains closed after spreading it
out. Therefore, the non-singular dislocation energy would not change if one were to use a
different form of the integrand in the above expressions (Blin, 1995; de Wit, 1960, 1967a, b).

The function wðxÞ that leads to Ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ a2

p
is (see Appendix A)

wðxÞ ¼
15

8pa3½ðr=aÞ2 þ 1�7=2
; r ¼ kxk. (32)

Notice that wðxÞ is the convolution of the Burgers vector distribution function ~wðxÞ with
itself (Eq. (21)). From Eq. (32), ~wðxÞ can also be obtained (see Appendix A). ~wðrÞ and wðrÞ

are plotted in Figs. 3(a) and (b).
The non-singular stress field ~sab produced by the dislocation at point x is given by Eq.

(18). However, it will be inconsistent to simply plug this stress into the Peach–Koehler
equation to get the local force on another distributed dislocation centered at point x. When
the latter dislocation is spread at point x according to the same distribution ~wðxÞ, the force
at this point is obtained by a second convolution ~sabðxÞ with ~wðxÞ. In this case, a more
relevant measure of local stress field is

snsabðxÞ � ~sabðxÞ � ~wðxÞ

¼
m
8p

I
C

qiqpqpRa½bm�ima dx0b þ bm�imb dx0a�

þ
m

4pð1� nÞ

I
C

bm�imkðqiqaqbRa � dabqiqpqpRaÞdx0k. ð33Þ

The driving force fns on a dislocation with isotropically distributed dislocation core
centered about a point x is related to this ‘‘non-singular’’ stress snsabðxÞ through the
Peach–Koehler formula

fnsi ðxÞ ¼ �ijkblxks
ns
jl ðxÞ. (34)

The physical interpretation of snsabðxÞ (apart from its relation with fns) is that it is the
convolution of the stress at field point x with the same function ~wðxÞ that defines the
spreading of the ‘‘source’’ dislocation core; it is the stress field to use for computing
0 0.5 1 1.5 2
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a3

(a) (b)

Fig. 3. (a) Burgers vector distribution function ~wðrÞ ¼ ~wðxÞ where r ¼ kxk. (b) wðrÞ ¼ wðxÞ ¼ ~wðxÞ � ~wðxÞ.
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the Peach–Koehler force on the dislocations. In other situations, it can be of interest to
compute stress ~sabðxÞ of a ‘‘source’’ dislocation at field point x that is not convoluted with
function ~wðxÞ for the second time. Given that function ~wðxÞ can be well approximated by
linear combinations of functions wðxÞ (see Appendix A), the above expressions for snsabðxÞ
can also be used to construct an accurate approximation for ~sabðxÞ. In any case, when
point x is far away from the ‘‘source’’ dislocation (compared with spread radius a), the
difference between ~sabðxÞ and snsabðxÞ becomes vanishingly small.

5. Non-singular stress and energy: analytical results

This section considers several simple dislocation geometries for which close form
analytic solutions can be found. Our primary purpose here is to present the non-singular
solutions and compare them to their counterparts in the classical theory. All expressions
presented below are non-singular for a40 and reduce to the classical singular solutions
when a! 0. Somewhat more complicated expressions for the stress field of a straight
dislocation segment are given in Appendix B, both in a coordinate-dependent and in a
coordinate-independent (dyadic) forms. Analytic solutions for the self-energy of a straight
dislocation segment and the interaction energy of two straight dislocation segments are
given in Appendix C, in the coordinate-independent form only. Suitable for DD
simulations, these solutions have been implemented into MATLAB and can be
downloaded from our website (Cai and Arsenlis, 2005).

5.1. Stress of an infinite straight screw dislocation

For an infinite straight screw dislocation along z axis, with bx ¼ by ¼ 0, bz ¼ b, the non-
singular solution for the stress field is

snsxz ¼ �
mb

2p
y

r2a
1þ

a2

r2a

� �
, (35)

snsyz ¼
mb

2p
x

r2a
1þ

a2

r2a

� �
, (36)

snsxx ¼ snsyy ¼ snszz ¼ snsxy ¼ 0, (37)

where ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ a2

p
. In polar coordinates, the only non-zero stress component is

snsyz ¼
mb

2p
r

r2a
1þ

a2

r2a

� �
, (38)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Comparing these solutions to the classical singular solutions, it is

immediately apparent that as a! 0 the classical solutions are recovered.

5.2. Stress of an infinite straight edge dislocation

For an edge dislocation along z axis, with bx ¼ b, by ¼ bz ¼ 0, the non-singular solu-
tion is

snsxx ¼ �
mb

2pð1� nÞ
y

r2a
1þ

2ðx2 þ a2Þ

r2a

� �
,
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snsyy ¼
mb

2pð1� nÞ
y

r2a
1�

2ðy2 þ a2Þ

r2a

� �
,

snszz ¼ �
mbn

pð1� nÞ
y

r2a
1þ

a2

r2a

� �
,

snsxy ¼
mb

2pð1� nÞ
x

r2a
1�

2y2

r2a

� �
,

snsxz ¼ snsyz ¼ 0. (39)

Again, as a! 0, the classical singular solution for the stress field about an infinite straight
edge dislocation is recovered.

5.3. Circular dislocation loop

In the case of a circular dislocation loop of radius R and Burgers vector b in the loop
plane, the non-singular solution for the loop’s self-energy is

WGL ¼ 2pR
mb2

8p
2� n
1� n

ln
8R

a
� 2

� �
þ

1

2

� �
þ O

a2

R2

� �
. (40)

This should be compared with the singular expression Eqs. (6)–(51) of Hirth and Lothe
(1982, p. 169) obtained using a core cut-off rc, W ¼ 2pRðð2� nÞ=2ð1� nÞÞðmb2=
4pÞðlnð4R=rcÞ � 2Þ. The driving force for change of the loop radius R (assuming that the
loop remains circular) is

f GL
R ¼ �

dWGL

dR
¼ �

mb2

4

2� n
1� n

ln
8R

a
� 1

� �
þ

1

2

� �
þ O

a2

R2

� �
. (41)

Similarly, for a prismatic dislocation loop of radius R whose Burgers vector b is
perpendicular to the loop plane, the non-singular self-energy is

WPL ¼ 2pR
mb2

4pð1� nÞ
ln
8R

a
� 1

� �
þ O

a2

R2

� �
. (42)

This should be compared with the singular expression Eqs. (6)–(52) of Hirth and Lothe
(1982, p. 169) obtained using a core cut-off rc, W ¼ 2pRðmb2=4pð1� nÞÞðlnð4R=rcÞ � 1Þ.
The driving force for changing the loop radius R (in this case by climb) is

f PL
R ¼ �

dWPL

dR
¼ �

mb2

2ð1� nÞ
ln
8R

a
þ O

a2

R2

� �
. (43)

6. Self-consistency of the non-singular solutions: numerical results

Self-consistency of our non-singular theory can be shown quite generally following the
procedure described in Hirth and Lothe (1982, p. 107). However, it is also worthwhile to
demonstrate self-consistency numerically. To do so, we calculate the forces two ways, first,
as the numerical derivatives of the energy function and, second, through the
Peach–Koehler formula. By showing that so-computed forces agree with each other,
self-consistency is assured with a bonus of asserting correctness of the numerical
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implementation of the energy, stress and force expressions. Such self-consistency can only
be expected for dislocation configurations in which the Burgers vector is conserved
everywhere. In our representation, the degrees of freedom are nodes connected by straight
line segments with a constant Burgers vector along each segment. As shown in Fig. 4,
Burgers vector conservation requires that the sum of the Burgers vectors at every node
must be zero, when the flow directions (sense vectors nÞ for all the segments connected to
this node are defined outward from the node. We also examine the issue of numerical
convergence when a curved dislocation is represented by increasingly fine segments.

6.1. Forces on the nodes

The total energy Ens of a discretized dislocation configuration is calculated by summing
up the self-energies and the interaction energies of all its segments, as in Eq. (7). The
expressions for the self and interaction energies are given in Appendix C. Now, the force
on node i in the discretized system can be found as the minus derivative of the total energy
with respect to the node position, i.e.

fnsi ¼ �qEns=qri. (44)

Alternatively, the force on a node can also be obtained using the virtual force argument,
i.e. by computing appropriate line integrals of the Peach–Koehler force over the segments
connected to the node. For example, consider the segment r1–r2 in Fig. 5. The coordinate
system is defined such that r1 is at the origin and r2 is a distance L ¼ kr2 � r1k away on the
z-axis. The contribution from segment r1–r2 to the force on node r2 is equal to the work of
the Peach–Koehler force as the segment sweeps over a triangular shaped area due to a
virtual displacement of node at r2, i.e.,

fns2 ð1; 2Þ ¼

Z L

0

z

L
fnsðzÞdz, (45)

where fnsðzÞ is the Peach–Koehler force per unit length on the segment spanning z 2 ½0;L�.
The non-singular Peach–Koehler force is defined in Eq. (34). The total force on a node is
then the sum of the partial forces computed in this manner for each segment that it
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Fig. 5. Computing driving force on node r2. The contribution from segment r1–r2 is the integral
R L

0 f ðzÞsðzÞdz,

where f ðzÞ ¼ z is the weight function.
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connects. In Fig. 5, a similar contribution fns2 ð2; 3Þ to the driving force on node r2, comes
from segment r2–r3. Thus the total driving force on the node at r2 is

fns2 ¼ fns2 ð1; 2Þ þ fns2 ð2; 3Þ. (46)

A compact expression for the contribution of a straight dislocation segment to the partial
forces on the endpoint nodes of another dislocation segment has been obtained
analytically.2 To conserve space, we do not give these analytical node force expressions
in this paper but make them available in a MATLAB implementation on the website (Cai
and Arsenlis, 2005). The results presented below were obtained using a DD code written in
MATLAB also available from the same website.
6.2. Tests for self-consistency and numerical convergence

Consider a circular dislocation loop with radius R ¼ 10 (in arbitrary units) in the x–y

plane: this geometry has been studied extensively in the literature. Set the Burgers vector
b ¼ ½100�, shear modulus m ¼ 1, Poisson’s ratio n ¼ 0:3, core width parameter a ¼ 0:1 and
represent the loop by N nodes connected by straight segments of equal length, as shown in
Fig. 6(a). The force on each node of the loop is first computed by numerically
differentiating the total energy with respect to the nodal positions. Then, the same nodal
forces are obtained by summing up the contributions from the Peach–Koehler forces
integrated over the segments, as in Eq. (45). Fig. 6(b) shows that the forces obtained in two
different ways agree very well. In fact, the maximum difference between the two forces is
less than 10�3% and attributed to the error in the (centered) finite difference scheme used
to take numerical derivatives of the total energy. Notice that the discretized geometry
contains sharp corners at every node connecting the neighboring straight segments. Our
non-singular formulation handles this and other similar situations gracefully, whereas the
other existing approaches, e.g. Gavazza and Barnett (1976), require a finite radius of
curvature at the point of force evaluation.
Numerical convergence of the total energy and radial force on the loop is illustrated in

Fig. 7. Part (a) shows the difference between the loop energy WGL computed numerically
and an analytic solution (Eq. (40)), as a function of the number of segments N. Part (b)
2We would like to point out that in our implementation, the stress field of a finite straight dislocation segment is

generally non-zero on itself. This leads to a non-zero ‘‘self’’ contribution to the forces on the two end nodes of the

segment.
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shows the difference between the radial components of the nodal forces (summed over all
N nodes) and the corresponding analytic expression, Eq. (41). The deviation of the
numerical results from the analytic solutions at large N is no more than 10�2% in both
cases. Part of this slight difference is due to the neglect of Oða2=R2Þ terms in the analytic
solutions Eqs. (40) and (41). To remove this uncertainty, the numerical results are also
compared to the (presumably fully converged) energy and force computed for a very large
number of nodes, N ¼ 1200 (Fig. 7). The deviation from the limit of large N is seen to
decay approximately at a rate of N�2. We would like to note that for the finest
discretizations, e.g. N ¼ 600 and N ¼ 1200, the segment length is about the same as or
even smaller than the core width parameter a. Our non-singular theory remains robust for
arbitrarily short segments connected at sharp corners.
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7. Comparison with a previous model

The difference between this non-singular model and the previous models lies in their
different treatments of the dislocation core. Lothe (1992) selected a uniform Burgers vector
distribution; Gavazza and Barnett (1976) excluded a tubular region from total energy
calculation; and the actual atomic character of the Burgers vector in a real crystal may
correspond to yet another Burgers vector distribution. Obviously, different core models
can lead to different energy and forces for the same dislocation configuration. Here we
intend to show, by comparison to another model, that two continuum approaches based
on two different core models can be reconciled by adding an appropriate line energy
integral. To avoid possible unwanted effects of non-self-consistent treatment we choose to
compare our non-singular self-consistent model with the non-singular self-consistent
model of Gavazza and Barnett (1976).
Consider two self-consistent elasticity models that rely on two different treatments of the

dislocation core. Let E1
elðC; aÞ be the elastic energy of a dislocation loop C given by model 1

with a regularization parameter a. Let E2
elðC; aÞ be the elastic energy of the same loop given

by model 2. We now intend to show that, under certain conditions to be specified later, the
difference between E1

elðC; aÞ and E2
elðC; aÞ can be subsumed into a line integral along the

dislocation loop, i.e.,

E2
elðC; aÞ � E1

elðC; aÞ �

Z
C

E2�1
coreðy; aÞdl, (47)

where E2�1
coreðy; aÞ is an energy difference per unit length of the dislocation. This function can

depend on the local character angle y and on the core parameter a. Notice that because
dislocation segments have long range interactions, both E1

elðC; aÞ and E2
elðC; aÞ necessarily

involve double line integrals over C, such as in Eq. (31). Therefore, Eq. (47) is a non-trivial
statement, insisting that the difference between two double line integrals can be well
approximated by a single line integral. This limits the range of admissible differences
between the predictions of two self-consistent models.
Since Eq. (47) should hold for different dislocation configurations, we should be able to

compute the core energy difference by comparing the energies of very simple dislocation
configurations. Then, the same core energy function should be able to account for the
energy and force differences predicted by the two models in more complex dislocation
configurations. As a demonstration, we first obtain the core energy difference function
between the Gavazza and Barnett (1976) model and the present model. The simplest
structure to extract core energy differences is a dipole of infinitely long parallel dislocations
with opposite Burgers vectors. In the isotropic elasticity, the stress and strain fields of edge
and screw components of a dislocation dipole do not mix, so that the dipole energy is
simply the sum of the energies of its edge and screw components.
In the Gavazza–Barnett model (model 1), the energy (per unit length) of a screw

dislocation dipole with Burgers vector b is

E1
s:d: ¼

mb2

2p
ln
R

a
þ O

a

R

� 	� �
, (48)

where R is the distance between two dislocations of the dipole. Here, without loss of
generality, we have chosen the tube radius r to be the same as our core width a. The energy
(per unit length) of an edge dislocation dipole with Burgers vector b parallel to the
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separation vector of the two dislocations is

E1
e:d: ¼

mb2

2pð1� nÞ
ln
R

a
�

1� 2n
4ð1� nÞ

þ O
a

R

� 	� �
. (49)

Now in the present model (model 2), the energy of the screw dislocation dipole is

E2
s:d: ¼

mb2

2p
ln
R

a
þ

1

2
þ O

a2

R2

� �� �
. (50)

The energy of the edge dislocation dipole is

E2
e:d: ¼

mb2

2pð1� nÞ
ln
R

a
þ O

a2

R2

� �� �
. (51)

The energy difference between the two models for a dislocation dipole with an arbitrary
character angle y is

ðE2
s:d: � E1

s:d:Þ cos
2 yþ ðE2

e:d: � E1
e:d:Þ sin

2 y ¼ 2E2�1
coreðy; aÞ þ O

a

R

� 	
,

where

E2�1
coreðy; aÞ � cos2 y �

mb2

8p
þ sin2 y �

mb2
ð1� 2nÞ

16pð1� nÞ2
. (52)

Therefore, the energy difference between two models for an arbitrary dislocation dipole
(with character angle y and separation R) can be described by the core energy function,
Eq. (52), up to the order of Oða=RÞ. This indicates the range of applicability of Eq. (47).

To test whether this core energy function also applies to dislocation structures other
than the dipoles, consider a circular glide dislocation loop of radius R. By integrating the
above core energy function over the loop, the net core energy difference between two
models for this loop would beZ 2p

0

E2�1
coreðy; aÞRdy ¼ pR

mb2

8p
þ

mb2
ð1� 2nÞ

16pð1� nÞ2

� �
. (53)

In fact, the elastic energy of this loop by the Gavazza–Barnett model is

E1
GL ¼ 2pR

mb2

8p
2� n
1� n

ln
8R

a
� 2

� �
þ
�1þ 2n

4ð1� nÞ2

� �
þ O

a

R

� 	
, (54)

while the elastic energy of the same loop by the present model is

E2
GL ¼ 2pR

mb2

8p
2� n
1� n

ln
8R

a
� 2

� �
þ

1

2

� �
þ O

a2

R2

� �
. (55)

The difference between the E2
GL and E1

GL is exactly given by Eq. (53), up to order of
Oða=RÞ. This agreement confirms that a line energy function exists that matches
dislocation total energies obtained within the Gavazza–Barnett model and within our
non-singular model.

The core energy difference introduces a difference in the force on the glide loop,

f 2�1
coreðfÞ ¼

1

R
E2�1

coreðfþ p=2; aÞ þ
q2

qf2
E2�1

coreðfþ p=2; aÞ
� �

, (56)
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where ðR;fÞ is the polar coordinate of a point on the dislocation loop (it is assumed here
that the Burgers vector direction is along x-axis, defining the local character angle at every
point on the loop as y ¼ fþ p=2). As shown in Fig. 8, f 2�1

core accurately accounts for the
difference between self-forces along the dislocation loop, as predicted by two models.
These results demonstrate consistency between the Gavazza and Barnett (1976) model and
the present model, upon the introduction of a core energy function Eq. (52).
The challenge of reconciling our isotropic dislocation core model with more realistic

atomic descriptions of dislocations is that the atomic cores are not limited by the
assumptions of linear elasticity. However, because the atomistic models are self-consistent
by their very nature, we can attempt to account for the difference by a core energy that
depends on the local character angle of the dislocation (Cai et al., 2004b). Note that the
energy of a given dislocation configuration is defined by the interatomic interactions alone
with no reference to any core parameters. On the other hand, the energy defined in our
non-singular model depends explicitly on the core width parameter a. Hence, to
meaningfully match the atomistic and the non-local elastic predictions for the total
energy, the core energy function and the core width parameter a must be specified
simultaneously. Even then, consistency is not guaranteed because certain features of the
dislocation core in a non-linear and discrete atomistic model cannot be accounted for
within continuum linear elasticity.
An accurate way to determine the dislocation core energy is to compute the energy of a

dislocation dipole in an atomistic model subject to periodic boundary conditions and to
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Fig. 8. The radial component of the self-force per unit length on a glide loop with radius R ¼ 10 and

regularization parameter a ¼ 0:1 (m ¼ 1, n ¼ 0:3). Angle f specifies the orientation of a point on the loop with

respect to x-axis. The thin solid line: f 2
ðfÞ, the force predicted by the present model. The dashed line: f 1

ðfÞ, the
force predicted by the Gavazza–Barnett model. The thick solid line: f 2�1

coreðfÞ, the force difference due to core

energy differences predicted by Eq. (56). The circles: the prediction of our model plus the core energy

contribution, i.e., f 1
ðfÞ þ f 2�1

coreðfÞ.
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compare the result with the energy of the same configuration predicted by the continuum
elasticity theory (Cai et al., 2001, 2003). In principle, the core width parameter a in the
elastic model can take any value, as long as the core energy is so adjusted that, when added
to the elastic energy, it matches the total energy in the atomistic simulation. The choice of
the regularization parameter a affects the (artificial) partitioning of the total energy
between the ‘‘core’’ energy and ‘‘elastic’’ energy. While a and the core energy term may be
arbitrarily chosen to match simple dipole configurations, an arbitrary pair may not
necessarily describe the energy of more complex geometries very well. A prudent choice for
a is a few Burgers vectors, a typical spread of a dislocation core in an atomistic model. The
corresponding core energy function required to match the energy of an atomistic model is
typically positive for all character angles.

8. Summary

We presented a self-consistent non-singular theory of dislocations. By allowing the
dislocation core to spread according to a carefully chosen isotropic distribution function,
non-singular analytic expressions for energy, stress, and forces on the dislocations are
obtained. The expressions retain most of the analytic structure of the classical expressions
for these quantities but remove the singularity. Our non-singular theory is shown to be
self-consistent in that the forces computed from the Peach–Koehler equation and by taking
the derivatives of the total energy, agree with each other. Our approach is demonstrated to
be consistent with a previous non-singular model, through the introduction of a core
energy function. In the same manner, this analytical elasticity theory could be reconciled
with more realistic atomistic models of dislocations.

Our method is numerically stable and robust. It is applicable to arbitrary 3D dislocation
configurations and has been successfully implemented in two Dislocation Dynamics codes.
At the same time, the method remains numerically stable and convergent even when
dislocations are represented by very fine line segments. This latter property opens the door
to accurate continuum calculations with very high resolution, directly comparable to the
atomistic models.
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Appendix A. Distribution function ~wðrÞ and wðrÞ

First, we prove that RaðxÞ � RðxÞ � wðxÞ ¼ ½R2ðxÞ þ a2�1=2 when

wðxÞ ¼
15

8pa3½ðr=aÞ2 þ 1�7=2
. (A.1)

Taking Laplacian r2 twice on both sides of the equation RðxÞ � wðxÞ ¼ RaðxÞ, we obtain

r2½r2RðxÞ� � wðxÞ ¼ r2½r2RaðxÞ�. (A.2)
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Because

r2½r2RðxÞ� ¼ r2 2

R

� �
¼ �8pd3ðxÞ, (A.3)

r2½r2RaðxÞ� ¼ r
2 2

Ra

þ
a2

R3
a

" #
¼ �

15a4

R7
a

(A.4)

we arrive at

wðxÞ ¼
15a4

8pR7
a

¼
15a4

8pðr2 þ a2Þ
7=2

. (A.5)

This proves Eq. (A.1). Obviously, wðxÞ ! d3ðxÞ in the limit a! 0.
Given wðxÞ, ~wðxÞ can be obtained numerically by Fourier transform. Specifically, let

W ðkÞ and ~W ðkÞ be the Fourier transforms of wðxÞ and ~wðxÞ, respectively. Then
~W ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
W ðkÞ

p
. Obtained by an inverse Fourier transform, the numerical result for

~wðxÞ is plotted in Fig. 3(a).
That the single convolution function ~wðxÞ is not available in an analytic form is not a

limitation when it comes to computing forces on dislocation lines. This is because we
intentionally constructed the theory so that what enters the relevant expressions is the
double convolution function wðxÞ that is available in an analytic form. However, if a true
(not smeared) stress in a material point is of interest, e.g. for computing the effect of
dislocations on a point defect or a grain boundary, we offer the following approximate but
‘‘practically’’ acceptable solution for the single convolution function ~wðxÞ.
The following expression fits the numerically computed ~wðxÞ shown in Fig. 3(a), with a

relative error not exceeding 2� 10�3:

~w ¼
15

8p
�

1�m

a3
1 r2=a2

1 þ 1

 �7=2 þ m

a3
2 r2=a2

2 þ 1

 �7=2

" #
, (A.6)

where a1 ¼ 0:9038a, a2 ¼ 0:5451a and m ¼ 0:6575. This function is made up of two
functions of the same form as the double convolution function wðxÞ but with two different
(smaller) widths a1 and a2. Furthermore, to maintain normalization, the two component
functions are weighted with factors 1�m and m, respectively. In addition to being nearly
exact numerically, this function is convenient to use because the convolution of the
singular stress expression with function wðxÞ is available for arbitrary a (Appendix B). To
compute the singly convoluted stress at a point x, all one needs to do is to compute the
non-singular stress sns at point x twice using two different values of a and then sum them
up with their weights.

Appendix B. Stress field of a straight dislocation segment

B.1. A coordinate-dependent form

Following Hirth and Lothe (1982, p. 133), let us choose a coordinate system such that
the dislocation segment lies on z axis, from z0 ¼ z1 to z0 ¼ z2, as shown in Fig. B.1. Stress at
point x can be now obtained by taking the integral in Eq. (33) along z-axis from z1 to z2.
The result for snsab will be expressed as the difference between the values of the indefinite
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x

y

zz1 z2

x'=(0,0,z')

Fig. B.1. A coordinate system for deriving the stress field of a straight dislocation segment.
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integral taken at z1 and z2,

snsab ¼ snsabðz
0 ¼ z2Þ � snsabðz

0 ¼ z1Þ. (B.1)

Defining

s0 �
m

4pð1� nÞ
, (B.2)

l � z0 � z (B.3)

the stress components are

snsxx

s0
¼

bxy

RaðRa þ lÞ
1þ

x2 þ a2

ðRaÞ
2
þ

x2 þ a2

RaðRa þ lÞ

� �

þ
byx

RaðRa þ lÞ
1�

x2 þ a2

ðRaÞ
2
�

x2 þ a2

RaðRa þ lÞ

� �
,

snsyy

s0
¼

�bxy

RaðRa þ lÞ
1�

y2 þ a2

ðRaÞ
2
�

y2 þ a2

RaðRa þ lÞ

� �

�
byx

RaðRa þ lÞ
1þ

y2 þ a2

ðRaÞ
2
þ

y2 þ a2

RaðRa þ lÞ

� �
,

snszz

s0
¼ bx

2ny

RaðRa þ lÞ
1þ

a2=2

ðRaÞ
2
þ

a2=2

RaðRa þ lÞ

� �
þ

yl

ðRaÞ
3

� �

� by

2nx

RaðRa þ lÞ
1þ

a2=2

ðRaÞ
2
þ

a2=2

RaðRa þ lÞ

� �
þ

xl

ðRaÞ
3

� �
,

snsxy

s0
¼

�bxx

RaðRa þ lÞ
1�

y2

ðRaÞ
2
�

y2

RaðRa þ lÞ

� �
þ

byy

RaðRa þ lÞ
1�

x2

ðRaÞ
2
�

x2

RaðRa þ lÞ

� �
,

snsxz

s0
¼ �

bxxy

ðRaÞ
3
þ by �

n
Ra

þ
x2

ðRaÞ
3
þ ð1� nÞ

a2=2

ðRaÞ
3

� �

þ
bzð1� nÞy
RaðRa þ lÞ

1þ
a2=2

ðRaÞ
2
þ

a2=2

RaðRa þ lÞ

� �
,
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snsyz

s0
¼ bx

n
Ra

�
y2

ðRaÞ
3
� ð1� nÞ

a2=2

ðRaÞ
3

� �

þ by
xy

ðRaÞ
3
�

bzð1� nÞx
RaðRa þ lÞ

1þ
a2=2

ðRaÞ
2
þ

a2=2

RaðRa þ lÞ

� �
. ðB:4Þ

Because the stress can be expressed in several equivalent forms, we will refer to these
expressions as form 1. In the limit a! 0, Ra ! R, and the expressions above reduce to
those given in Hirth and Lothe (1982, p. 134). Please note that the above expression cannot
be obtained simply by replacing R by Ra in the singular expressions in Hirth and Lothe
(1982). For example, there are several terms with a2 in the numerator which might easily be
missed if one takes such a naive approach.
The above expressions (form 1) should be used when the field point is to the right of the

segment, i.e. z1oz2oz. If, on the other hand, the field point is to the left of the segment, i.e.
zoz1oz2, then lo0. If, furthermore, the field point is collinear with the segment, i.e.
x ¼ y ¼ 0, then Rþ l ¼ 0. In the original singular expressions with a ¼ 0, form 1 is not
well behaved numerically in this case, because it contains terms with Rþ l in the
denominator. On the other hand, the stress field itself should be well behaved, since the
field point does not overlap with the dislocation segment. The solution is to switch to
different stress expressions (form 2) that are well behaved in the zoz1oz2 regime.
When a40, this problem never turns up since Ra þ l will always be greater than zero.

However, it is still a good practice to use form 2 when zoz1oz2 to preserve the numerical
accuracy by avoiding the subtraction of two large numbers to get a small number. Form 2
of the stress expressions is given below:

snsxx

s0
¼

�bxy

RaðRa � lÞ
1þ

x2 þ a2

ðRaÞ
2
þ

x2 þ a2

RaðRa � lÞ

� �

�
byx

RaðRa � lÞ
1�

x2 þ a2

ðRaÞ
2
�

x2 þ a2

RaðRa � lÞ

� �
,

snsyy

s0
¼ bx

yl
r2aRa

1�
2ðy2 þ a2Þ

r2a
�

y2 þ a2

ðRaÞ
2

� �
þ by

xl
r2aRa

1þ
2ðy2 þ a2Þ

r2a
þ

y2 þ a2

ðRaÞ
2

� �
,

snszz

s0
¼ bx

�2ny

RaðRa � lÞ
1þ

a2=2

ðRaÞ
2
þ

a2=2

RaðRa � lÞ

� �
þ

yl

ðRaÞ
3

� �

� by

�2nx

RaðRa � lÞ
1þ

a2=2

ðRaÞ
2
þ

a2=2

RaðRa � lÞ

� �
þ

xl

ðRaÞ
3

� �
,

snsxy

s0
¼

bxx

RaðRa � lÞ
1�

y2

ðRaÞ
2
�

y2

RaðRa � lÞ

� �
�

byy

RaðRa � lÞ
1�

x2

ðRaÞ
2
�

x2

RaðRa � lÞ

� �
,

snsxz

s0
¼ �

bxxy

ðRaÞ
3
þ by �

n
Ra

þ
x2

ðRaÞ
3
þ ð1� nÞ

a2=2

ðRaÞ
3

� �

�
bzð1� nÞy
RaðRa � lÞ

1þ
a2=2

ðRaÞ
2
þ

a2=2

RaðRa � lÞ

� �
,



ARTICLE IN PRESS
W. Cai et al. / J. Mech. Phys. Solids 54 (2006) 561–587 583
snsyz

s0
¼

n
Ra

�
y2

ðRaÞ
3
� ð1� nÞ

a2=2

ðRaÞ
3

� �
þ by

xy

ðRaÞ
3

þ
bzð1� nÞx
RaðRa � lÞ

1þ
a2=2

ðRaÞ
2
þ

a2=2

RaðRa � lÞ

� �
. ðB:5Þ

When the field point is between two endpoints of the segment, i.e., z1pzpz2, the following
form 3 should be used:

snsxx

s0
¼ �

bxyl
r2aRa

1þ
2ðx2 þ a2Þ

r2a
þ

x2 þ a2

ðRaÞ
2

� �
�

byxl
r2aRa

1�
2ðx2 þ a2Þ

r2a
�

x2 þ a2

ðRaÞ
2

� �
,

snsyy

s0
¼

bxyl
r2aRa

1�
2ðy2 þ a2Þ

r2a
�

y2 þ a2
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2

� �
þ
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r2aRa
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r2a
þ
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2

� �
,

snszz

s0
¼ bx

�2nyl
r2aRa
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r2a
þ
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ðRaÞ
2

� �
þ
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ðRaÞ
3

� �
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r2aRa
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� �
þ

xl

ðRaÞ
3

� �
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snsxy
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2y2

r2a
�

y2

ðRaÞ
2

� �
�

byyl
r2aRa

1�
2x2

r2a
�

x2

ðRaÞ
2

� �
,

snsxz

s0
¼ �

bxxy

ðRaÞ
3
þ by �

n
Ra

þ
x2

ðRaÞ
3
þ ð1� nÞ

a2=2

ðRaÞ
3

� �
�

bzð1� nÞyl
r2aRa
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2

� �
,

snsyz

s0
¼ bx

n
Ra

�
y2

ðRaÞ
3
� ð1� nÞ

a2=2

ðRaÞ
3

� �
þ by

xy

ðRaÞ
3
þ

bzð1� nÞxl
r2aRa

1þ
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r2a
þ

a2=2
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2

� �
.

(B.6)

Here ra �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ a2

p
and Ra ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2 þ a2

p
.

All three forms above are very similar to the original expressions given in Hirth and
Lothe (1982). Hence, modifications required to implement the non-singular expressions in
place of the singular solutions are minor.
B.2. A coordinate-independent form

Consider a straight dislocation segment with two ends x1 and x2 and the Burgers vector
b. The stress field of this segment at point x is

snsij ðxÞ ¼
m
8p

Z x2

x1

qlqpqpRabkð�ilk dx0j þ �jlk dx0iÞ

þ
m

4pð1� nÞ

Z x2

x1

bk�lkmðqlqiqjRa � dijqlqpqpRaÞdx0m, ðB:7Þ

where

Ra ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � x0kÞðxk � x0kÞ þ a2

q
. (B.8)
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The result of this integral can be written as

rnsðxÞ ¼ Tðx� x2Þ � Tðx� x1Þ, (B.9)

where function T is defined as

TðRÞ

To

¼ ½ðR� bÞ � t�½A1ðR	 RÞ þ A2ðt	 Rþ R	 tÞ þ A3ðt	 tÞ þ A4I�

þ A5½ðR� bÞ 	 tþ t	 ðR� bÞ� þ A6½ðt� bÞ 	 Rþ R	 ðt� bÞ�

þ A7½ðt� bÞ 	 tþ t	 ðt� bÞ� ðB:10Þ

with

To ¼
m

4pð1� nÞ
, (B.11)

t ¼
x2 � x1

kx2 � x1k
, (B.12)

A1 ¼ �
R � t½3ðRaÞ

2
� ðR � tÞ2�

ððRaÞ
2
� ðR � tÞ2Þ2ðRaÞ

3
, (B.13)

A2 ¼
1

ðRaÞ
3
� ðR � tÞA1, (B.14)

A6 ¼ �
R � t

ððRaÞ
2
� ðR � tÞ2ÞRa

, (B.15)

A3 ¼ �
R � t

ðRaÞ
3
þ A6 þ ðR � tÞ

2A1, (B.16)

A4 ¼ A6 þ a2A1, (B.17)

A5 ¼ ðn� 1ÞA6 �
a2ð1� nÞ

2
A1, (B.18)

A7 ¼
n

Ra

� ðR � tÞA6 �
a2ð1� nÞ

2
A2 (B.19)

and I is the identity tensor.
Appendix C. Expressions for self-energies and interaction energies of straight segments

Consider two straight dislocation segments: one segments with its ends at x1 to x2 and
with Burgers vector b and another one with its ends at x3 to x4 and with Burgers vector b0.
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The interaction energy between the two dislocation segments is

Wns ¼ �
m
8p

Z x4

x3

Z x2

x1

qkqkRabib
0
j dxi dx0j �

m
4pð1� nÞ

Z x4

x3

Z x2

x1

qiqjRabib
0
j dxk dx0k

þ
m

4pð1� nÞ

Z x4

x3

Z x2

x1

qkqkRabib
0
i dxj dx0j � n

Z x4

x3

Z x2

x1

qkqkRabib
0
j dxj dx0i

� �
.

C.1. Interaction energy between two non-parallel segments

When the two segments are not parallel, their interaction energy can be written as

Wns
12 ¼Wnsðx4 � x2Þ þWnsðx3 � x1Þ �Wnsðx4 � x1Þ �Wnsðx3 � x2Þ. (C.1)

The function W ð�Þ is defined as

WnsðRÞ

W o

¼ ðA1 � A02ÞR � v
0 ln½Ra þ R � t0� þ A03R � u ln½Ra þ R � t0�

þ ðA1 � A2ÞR � v ln½Ra þ R � t� þ A3R � u ln½Ra þ R � t� þ A4Ra

þ
ðA1 � A5Þ½2ðR � uÞ

2
þ ðu � uÞa2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu � uÞa2 þ ðR � uÞ2
q tan�1

ð1þ t � t0ÞRa þ R � ðtþ t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu � uÞa2 þ ðR � uÞ2

q
2
64

3
75, ðC:2Þ

where

t ¼
x2 � x1

kx2 � x1k
, (C.3)

t0 ¼
x4 � x3

kx4 � x3k
, (C.4)

u ¼ t� t0, (C.5)

v ¼ u� t, (C.6)

v0 ¼ t0 � u, (C.7)

Ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R � Rþ a2

p
, (C.8)

W o ¼
m

4pð1� nÞðu � uÞ
, (C.9)

A1 ¼ ð1� nÞðb � tÞðb0 � t0Þ þ 2nðb0 � tÞðb � t0Þ, (C.10)

A2 ¼ ½ðb � b
0Þ þ ðb � tÞðb0 � tÞ�ðt � t0Þ, (C.11)

A02 ¼ ½ðb � b
0Þ þ ðb � t0Þðb0 � t0Þ�ðt � t0Þ, (C.12)

A03 ¼ ½ðb � uÞðb
0 � v0Þ þ ðb0 � uÞðb � v0Þ�

t � t0

u � u
, (C.13)
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A3 ¼ ½ðb � uÞðb
0 � vÞ þ ðb0 � uÞðb � vÞ�

t � t0

u � u
, (C.14)

A4 ¼ ½ðb � tÞðb
0 � vÞ þ ðb � t0Þðb0 � v0Þ�ðt � t0Þ, (C.15)

A5 ¼ 2½ðb� uÞ � ðb0 � uÞ�
t � t0

u � u
. (C.16)

C.2. Interaction energy between two parallel segments

When the two segments are parallel, i.e. t ¼ t0, function WnsðRÞ ¼Wns
k ðRÞ becomes

Wns
k ðRÞ

W o

¼ fðb � tÞðb0 � RÞ þ ðb � RÞðb0 � tÞ ðC:17Þ

� ½ð2� nÞðb � tÞðb0 � tÞ þ b � b0�R � tg ln½Ra þ R � t� ðC:18Þ

þ ½ð1� nÞðb � tÞðb0 � tÞ þ b � b0�Ra ðC:19Þ

�
½b � R� ðR � tÞðb � tÞ�½b0 � R� ðR � tÞðb0 � tÞ�

ðRaÞ
2
� ðR � tÞ2

Ra ðC:20Þ

þ
a2½ð1þ nÞðb � tÞðb0 � tÞ � 2ðb � b0Þ�

2ððRaÞ
2
� ðR � tÞ2Þ

Ra, ðC:21Þ

where

W o ¼
m

4pð1� nÞ
. (C.22)
C.3. Self-energy of a dislocation segment

The self-energy of a dislocation segment can be obtained from the solution for the
interaction energy of two parallel segments. Since the theory is non-singular, the energy
remains finite even when b ¼ b0, x4 ¼ x2, and x3 ¼ x1, leading to the following expression
for the self-energy:

Wns
self ¼Wns

k ð0Þ �Wns
k ðx2 � x1Þ

¼
m

4pð1� nÞ
½b � b� nðb � tÞ2�L ln

La þ L

a

� �
�

3� n
2
ðb � tÞ2ðLa � aÞ

� �
,

ðC:23Þ

where

L ¼ kx2 � x1k, (C.24)

La ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ a2

p
. (C.25)
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