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Dislocation multi-junctions and strain hardening
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At the microscopic scale, the strength of a crystal derives from the
motion, multiplication and interaction of distinctive line defects
called dislocations. First proposed theoretically in 1934 (refs 1-3)
to explain low magnitudes of crystal strength observed experi-
mentally, the existence of dislocations was confirmed two decades
later*>. Much of the research in dislocation physics has since
focused on dislocation interactions and their role in strain hard-
ening, a common phenomenon in which continued deformation
increases a crystal’s strength. The existing theory relates strain
hardening to pair-wise dislocation reactions in which two inter-
secting dislocations form junctions that tie the dislocations
together®’. Here we report that interactions among three dislo-
cations result in the formation of unusual elements of dislocation
network topology, termed ‘multi-junctions’ We first predict
the existence of multi-junctions using dislocation dynamics and
atomistic simulations and then confirm their existence by
transmission electron microscopy experiments in single-crystal
molybdenum. In large-scale dislocation dynamics simulations,
multi-junctions present very strong, nearly indestructible,
obstacles to dislocation motion and furnish new sources for
dislocation multiplication, thereby playing an essential role in
the evolution of dislocation microstructure and strength of
deforming crystals®. Simulation analyses conclude that multi-
junctions are responsible for the strong orientation dependence
of strain hardening in body-centred cubic crystals.

The amount of slip produced by a propagating dislocation is
quantified by its Burgers vector b, which is equal to one of the
(typically smallest) repeat vectors of the crystal lattice. Exactly what
happens when two dislocations collide depends on the lengths of two
lines, their collision geometry and applied stress. Most significantly,
the collision outcomes are affected by the Burgers vectors of two
colliding dislocations. Given that a dislocation’s energy is pro-
portional to the square of its Burgers vector, the approximate
Frank energy criterion® predicts that when (b, 4+ b,)* < bj + b3 or,
equivalently, b;b, < 0, the two lines will attract and merge into a
product dislocation—a ‘junction’—with Burgers vector b; = b; + b,,
thereby reducing the internal energy of the system. In particular,
when b, = —by, the two dislocations can annihilate completely,
leaving no product.

Figure la and b shows a junction-forming collision of two
dislocation lines in a dislocation dynamics (DD) simulation (see
the Methods section and Supplementary Discussion 1 for more
details). The initial configuration consists of two straight dislocation
lines of equal length made to intersect at their midpoints, while their
endpoints are rigidly fixed (Fig. 1a). Expressed in the units of the
lattice constant, the Burgers vectors of two lines are b; = 1/2[111]
and b, = 1/2[111], typical of the body-centred cubic (b.c.c.) crystals.
In the DD simulation, the elastic interaction between two lines causes
them to merge into a junction dislocation with Burgers vector
b; =b; + b, = [001] (Fig. 1b, see also Supplementary Video 1).

Owing to their fixed ends, the lines merge only partially (when
b, = —b; the lines will partially annihilate). Bounded at its ends by
two triple nodes, the resulting junction zips along the [111] direction
because each of the two parent dislocations is allowed to move only
on its glide plane (the plane containing both the Burgers vector and
the dislocation line itself) with normal vectors m; = (011) and
n, = (101), respectively. Because most of the interacting dislocations
move on non-parallel glide planes, attractive collisions zip junctions
of limited length along the intersection lines of the glide planes.
The frequency and strength of such pair-wise dislocation reactions
tying dislocations together are believed to control the physics of
strain hardening: a common phenomenon in which continued
deformation increases a crystal’s strength.

The existence and the important role of dislocations junctions in
strain hardening has been confirmed by numerous theoretical®” and
experimental'™!" studies and, more recently, by DD simulations'>".
Very recently, analysing previously published' and our own new
simulations, we observed the formation of complex topological
connections in which more than two dislocation lines merge
together. Curious about possible causes for such anomalous for-
mations, we proceeded to investigate whether attractive reactions
among three or more dislocations are possible. For b.c.c. crystals, one
such candidate reaction is:

I/Z[Tll]+1/2[111]+1/2[11T]=1/2[111] (D)
b, b, bs by

Given that the elastic energy stored in a dislocation’s strain field
is proportional to [|b|%, the Frank estimate of the energy reduction
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Figure 1 | Formation (zipping) and yielding of dislocation junctions in the
DD simulations. a, Two dislocation lines are initially brought to
intersection at their midpoints. b, Once the interaction between two lines is
turned on, two lines zip a binary junction, J. ¢, A snapshot showing a binary
junction unzipping under stress. d, A third line is brought to intersect the
binary junction. e, The interaction among three lines makes them zip a
long multi-junction, 4. f, A snapshot showing a multi-junction acting as a
Frank—Read source of dislocation multiplication.
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in the above reaction, (|[by]l> + lIb,l1* + |Ibs]|?)/|IbylI* = 3, is much
greater than in the binary reaction shown in Fig. 1b, (||b;||* + [b,|[*)/
IijII2 = 1.5. To see whether such a reaction is indeed feasible, we now
overlay on top of the binary junction a third dislocation (Fig. 1d)
with Burgers vector b; = 1/2[111] and glide plane n; = (110). The
DD simulation result is shown in Fig. e, where the third dislocation
with Burgers vector bs has reacted with the junction dislocation and
transformed it into a 1/2[111] dislocation, exactly in accord with the
proposed reaction (1) (Supplementary Video 2). The transformed
junction segment with Burgers vector by of 1/2<<111>-type connects
together three dislocations at its ends and is defined as a multi-
junction. Remarkably, the resulting multi-junction extends well
beyond the original length of the binary junction, corroborating
our expectation that the ternary reaction (1) can result in a much
greater energy reduction than the classical binary reaction.

The nodes at each end of the multi-junction that tie together four
dislocation lines we term ‘multi-nodes’ or ‘4-nodes’. These 4-nodes
are distinct from simple crosses of two dislocations in that all four
lines entering the node have different Burgers vectors. These 4-nodes
are beautifully symmetric: all four distinct Burgers vectors of
1/2<111>-type enter the 4-node exactly once. Therefore, it is the
only possible 4-node of this kind in b.c.c. crystals. Curiously, the
same symmetric 4-node can be formed through four different reac-
tions among three lines, for example b; + b, + (—b,) = (—bs). This
non-uniqueness brings about an interesting feature of the dislocation
network topology in b.c.c. crystals that is not present in the
conventional dislocation networks consisting solely of binary
junctions. In the latter, it is possible to trace every single line with
1/2<<111> Burgers vector through each <001> junction it enters. It
is even possible to uniquely deconstruct the entire network into
individual 1/2<111> lines. However, the topology of dislocation
networks containing 4-nodes is different in principle: it is now
impossible to specify which of the four dislocations in a particular
4-node are the parents and which is the product, and to ‘trace’ a
given 1/2<<111> line through the network. While it is still possible
to deconstruct the network into constituent lines, there are a
combinatorially large number of different ways to do this. The
formation of multi-junctions results in the topological irreversibility
or untraceability of dislocation networks.

Although the DD simulations provide credible support for the
existence of multi-junctions, it is desirable to verify this finding with
a discrete atomistic model that does not rely on the continuum
theory of dislocations. Figure 2a shows the result of one such
simulation in which three different dislocations (left-hand side of
equation (1)) were introduced into a small fragment of the b.c.c.
single crystal and then allowed to relax the lattice distortions
produced by the inserted dislocations (see the Methods section for
details). In the relaxed configuration (Fig. 2a), two distinct 4-nodes
are instantly recognizable, as is the junction dislocation with the
1/2[111] Burgers vector (right-hand side of equation (1)). Taken
together, the DD and the atomistic simulations appear to be
convincing: multi-junctions should exist.

Yet, for definitive verification, we rely on transmission electron
microscopy (TEM) of molybdenum single crystals. Figure 2b—d
shows three different views of a single fragment of the dislocation
network containing a binary junction and a 4-node. Four lines
entering the 4-node are numbered from 1 to 4. A unique TEM
signature of the symmetric 4-node is that, in certain contrast con-
ditions, one of four dislocations must appear out of contrast while the
other three lines remain visible. The appearance of a symmetric 4-node
in each of the four TEM frames shown in Fig. 2c and d is unmistakable.
Similar 4-node dislocation configurations were also found in other
regions of the TEM foil, leading us to believe that their occurrence
may not be rare.

As discussed above, multi-junctions appear to hold dislocations
together more tightly than binary junctions. It is difficult to quantify
this difference exactly because the stress required to unzip a given
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junction depends on multiple factors, including dislocation line
lengths and orientations, direction of applied stress and exactly
how the junction is incorporated in the dislocation network. To
assess qualitatively the relative holding power of binary and multi-
junctions, we performed a large series of DD simulations in which
both binary and multi-junctions are formed in the same geometries
and subjected to the same straining conditions (see Supplementary
Discussion 1 for the detailed results). Depending on the Burgers
vectors and line orientations, the dislocations may mutually repel or
attract each other. In cases when they attract, the lines either zip
junctions or stay crossed'. The crossed attractive configurations do
not hold dislocations together appreciably and are destroyed by
application of a small stress, whereas junction unzipping (Fig. 1c)
necessitates a significantly higher stress.

The superior strength of multi-junctions compared to binary
junctions manifests itself in several ways. First, the multi-junctions
form and exhibit measurable strength over a wider range of initial
line orientations than the binary junctions. Second, in the collision
geometries where both binary and multi-junctions zip, the latter
require much higher stress to unzip and release the dislocations.
Finally, whereas the binary junctions could eventually be unzipped
under all tested line and stress orientations, the multi-junctions were
found to be indestructible across a wide range of line orientations and
stress states. In such cases, rather than unzip and release the lines to

Figure 2 | Atomistic simulations and experiments confirm that multi-
junctions exist in b.c.c. molybdenum. a, A multi-junction formed in an
atomistic simulation. b, ATEM micrograph containing a symmetric 4-node.
In this view all four dislocations (1-4) entering the multi-node are visible.
¢, View in which dislocation 1 becomes invisible. The length of the scale bar
is 0.2 pm. d, Another view in which dislocation 3 is invisible.
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glide under increasing stress (Supplementary Video 3), the multi-
junction yields by repetitively emitting concentric dislocation loops
and returning to its zipped configuration (Fig. 1f and Supplementary
Video 4), thus forming a new regenerative dislocation source of the
Frank—Read type'. In contrast, under no stress state was a binary
junction observed to act as a regenerative dislocation source.

We now attempt to determine whether multi-junctions play a role
in strain hardening, that is, when continued straining demands
increasingly higher stress. The small-scale DD simulations reveal
the great strength of multi-junctions and their propensity to act as
regenerative sources and imply that these dislocation tangles may
play an important part in strain hardening, but alone are incon-
clusive. At the same time, transmission electron micrographs have
demonstrated the existence of multi-junctions in b.c.c. molybdenum
and support a connection between multi-junctions and strain hard-
ening, but because they were taken several days after the straining
experiments, are not conclusive. Large-scale DD simulations present
the opportunity to observe the formation of multi-junctions during
straining and to quantify their effects on strain hardening, via in situ
computational experiments.

The extreme computational cost of DD simulations has made it
unfeasible to simulate dislocation ensembles large enough to com-
pute strain hardening directly from the underlying motion and
interactions of many dislocation lines. Recently, we developed a
new DD code ParaDiS (for Parallel Dislocation Simulator) specifi-
cally designed to take full advantage of massively parallel super-
computers'®. ParaDiS runs efficiently on two of the world’s most
powerful computers, Thunder and Blue Gene/L, both at the Univer-
sity of California Lawrence Livermore National Laboratory (http://
www.lInl.gov/computing/hpc/resources/OCF_resources.html). Here
ParaDiS enables direct simulations of large strains and strain
hardening in statistically representative dislocation ensembles.

Figure 3 shows the data obtained in a series of three DD
simulations of single crystal molybdenum subjected to uniaxial
compression along two different directions (see also Supplementary
Fig. 1). The simulation parameters were chosen to represent molyb-
denum single crystals at an elevated temperature of 450K. In
accordance with experiments® (see also Supplementary Fig. 2), the
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Figure 3 | The results of virtual straining experiments on b.c.c.
molybdenum. The black lines correspond to the full [001] straining
simulation, the red lines are for the [011] straining, and the green lines are
for the ‘doctored’ [001] straining simulation in which two of the four
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simulation of uniaxial straining along [001] direction exhibits a high
rate of strain hardening, as shown by a pronounced slope of the
stress—strain curve beyond the initial yield, whereas there is virtually
no hardening exhibited in the [011] case (Fig. 3a). Because dislo-
cations of at least three distinct Burgers vectors must be present to
form multi-junctions, they are expected to form more frequently in
the [001] straining simulation where all four distinct Burgers vectors
of 1/2<111> type are active and not in the [011] case where only two
of the four are active. Observed both in simulations and in experi-
ment, the strong contrast in the orientation dependence of strain
hardening makes it tempting to assert that the difference is somehow
related to multi-junctions. This assertion is further supported by the
diminishing multiplication rate observed in the [011] case compared
to the rapid and steady dislocation multiplication observed in the
[001] case (Fig. 3b), and explained by the propensity of multi-
junctions to form additional dislocation sources.

To test further the assertion that multi-junctions strongly influ-
ence the orientation dependence of strain hardening, we now per-
form a computational experiment that is impossible to reproduce in
the laboratory. Specifically, we repeat the same [001] straining
simulation but start with a modified initial configuration in which
the Burgers vectors b; and b, are converted into b, and b,, respect-
ively, such that the total density of dislocations remains initially
unchanged. By ‘doctoring’ the initial structure in such a way, we
preclude any possibility of multi-junction formation during the
course of this simulation. The resulting stress—strain and stress—
density behaviours differ markedly from the full [001] straining
simulation (with all four Burgers vectors included). Instead, the
behaviour is similar to that observed in the [011] straining simu-
lation (Fig. 3a and b). This observation further reinforces our
assertion that the high hardening rate in straining along the high
symmetry (for example, [001]) directions is related to the formation
of the multi-junctions (see Supplementary Discussion 2).

To clarify how the multi-junctions affect strain hardening, we
investigate the relationship between the evolving dislocation micro-
structure and the instantaneous flow stress. As shown in Fig. 3¢, over
the range of dislocation densities common to all three simulations,
the flow stress appears to be determined by the total dislocation
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Burgers vectors are absent. a, Flow stress as a function of strain.

b, Dislocation line density as a function of strain. ¢, Flow stress versus total
dislocation density. d, The fraction of lines involved in multi-junction
configurations as a function of the total line density.
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Figure 4 | Snapshots of dislocation network evolution obtained from a DD
simulation of [001] straining. a, Initially, dislocation motion results in
binary collisions only so that the network remains all green (see Methods
section for a more detailed description of the colour scheme). b, Near the

density alone, irrespective of the orientation of the tensile axis and
the number of active Burgers vectors, suggesting that the weaker but
more numerous binary interactions predominantly define the overall
plastic strength. At the same time, the frequency of binary collisions is
determined by the dislocation density that increases much more
rapidly in the high-symmetry, [001] straining due to proliferation of
new dislocation sources, multi-junctions.

As shown in Fig. 3d, the topological composition of the dislocation
microstructure differs significantly for different straining directions
at the same level of total dislocation density (see also Supplementary
Fig. 3). Whereas in the [011] straining simulation both the total
dislocation density and the fraction of lines involved in the multi-
junctions saturate, the [001] straining simulation with the higher
fraction of multi-junction configurations continues to evolve to
considerably higher total densities and higher fractions of lines
involved in the multi-junctions. Taken together, these observations
indicate that the number of active Burgers vectors affects the rate of
formation of new dislocation sources (multi-junctions), leading to
significant differences in the accumulation of dislocation density
and, thus, in the strain hardening rates.

In situ visual observations reveal that, even in the [001] straining
simulations, the binary junctions form much more frequently than the
multi-junctions. In fact, for as long as dislocations move on different
planes they must intersect, making formation of binary junctions
unavoidable. In contrast, multi-junctions form infrequently, mostly
by attachment of a third line to an existing binary junction. At the
same time, while the binary junctions are observed to dynamically
unzip and reform elsewhere, the multi-junctions, once formed, are
observed to endure. Zipping of new multi-junctions takes place
preferentially near the existing ones (see Supplementary Video 5),
gradually building up a sub-network of multi-junctions, a strong and
mostly static backbone of the growing microstructure (Fig. 4).

yield strain (~0.2%), dislocations multiply and their collisions produce the
first few multi-junctions (white). ¢, d, Continued dislocation multiplication
results in increasingly frequent dislocation collisions leading to strain
hardening and growth of the (white) sub-network of multi-junctions.

It remains to be seen what role multi-junctions play in the intricate
dislocation patterns formed during straining of high-symmetry
crystals'”: it seems that multi-junctions can serve as strong anchors
for dislocation tangles, braids, walls, etc. As to whether multi-
junctions form in crystals other than b.c.c., we predict that a variety
of strong multi-junctions should exist in the face-centred-cubic and
related high-symmetry crystals. Finally, theoretical analysis, DD
simulations and TEM observations all suggest that dislocation
tangles even more complex than ternary junctions exist, but are
rare and their stability is likely to be marginal.

METHODS

Dislocation dynamics simulations. In a DD simulation, dislocations are
represented by piece-wise straight segments interacting with each other accord-
ing to the equations of the continuum elasticity theory'®'*. In a simulation, each
dislocation segment moves with velocity v = M- f proportional to the net force f
exerted on the segment by external loads and all other dislocation segments (here
M is the mobility tensor). A single simulation step includes: (1) calculating the
forces acting on the segments, (2) advancing the segments to new positions
according to their velocities, and (3) performing changes in the line topology
(connectivity) when collisions or node instabilities are encountered. The force
on a dislocation segment is calculated as the negative derivative of the system’s
energy with respect to the segment’s position. The elastic constants and
dislocation mobility function were chosen to capture the behaviour of b.c.c.
molybdenum above its athermal threshold (~450K). The mobility was inde-
pendent of the local line direction in the glide plane: that is, the plane containing
both line direction and Burgers vector. Mobility in the direction normal to the
glide plane was a small fraction (10~°) of the glide mobility. Screw dislocations,
whose line directions are parallel to their Burgers vectors, were free to glide in any
plane containing their line direction. All small-scale DD simulations were
conducted as though the configurations were in an infinite medium, whereas
the larger-scale straining simulations were performed in a periodic cube 5 pm on
the side.

Analysis of dislocation network topology. The entire network is comprised of
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nodes and links. A node is where three or more lines merge together, and a link is
any line segment connecting two nodes of the network. For the present analysis,
we label any 3-node that bounds a regular binary junction as a ‘normal’ or
N-node. Likewise, any 4-node formed by two dislocations crossing each other
is also labelled an N-node. All other nodes are regarded as multi-nodes or
M-nodes, including the symmetric 4-nodes shown in Fig. 1e as well as 3-nodes
produced by dissociation of the symmetric 4-nodes. Three types of links can now
be defined with respect to the types of nodes they connect: NN links, NM links
and MM links. Here, notation NM is used for any link that connects an N-node
to an M-node. To compute the fraction of lines involved in the multi-junctions
shown in Fig. 3d, we summed the lengths of all MM links with half the lengths of
all NM links and divided this sum by the total length of all links. The colour
scheme used in Fig. 4 is as follows: all MM links are shown in white, whereas the
colour of NM links is graded from white at the M-nodes to green at the N-nodes.
Al NN links, including binary junctions, are shown in green.

Atomistic simulation. The simulation volume was a small cube-shaped block of
a perfect b.c.c. single crystal, 17 nm on each side. The initial geometry contained
three dislocations with Burgers vectors 1/2[111], 1/2[111], and 1/2[111] inter-
secting at the block centre. The atom positions inside the block were then relaxed
to mechanical equilibrium using the conjugate gradient method and an
interatomic interaction function for molybdenum®. The atoms on the block
surfaces were fixed throughout the simulation. To visualize crystal defects, only
the atoms inside the block with energies exceeding the ideal bulk value by
0.095 eV are shown.

Experiment. The experiments involved three steps: (1) compression of a single-
crystal molybdenum specimen to 1% total strain along the [001] axis, (2) cutting
and thinning the deformed specimen along the (101) plane to obtain electron
transparent foils, and (3) TEM observations using a set of reflection vectors g
that can reveal multi-junctions. In the view shown in Fig. 2b the zone axis
~[101] and the diffraction vector g = [020], making all four dislocations
entering the 4-node visible. The views in Fig. 2c and d were obtained using
g= [121] and g = [121] which made lines b; = 1/2[111] and b; = 1/2[111]
invisible owing to the g-b = 0 condition. To access additional diffraction vectors,
the specimen was tilted to a new zone axis (=[201]) making it possible to
identify the Burgers vectors of two remaining dislocations in a similar manner:
b, = 1/2[111] and by = 1/2[111], respectively.
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