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Abstract
In silicon and other materials with a high Peierls potential, dislocation motion

takes place by nucleation and propagation of kink pairs. The rates of these unit
processes are complex unknown functions of interatomic interactions in the
dislocation core, stress and temperature. This work is an attempt to develop a
quantitative physical description of dislocation motion in silicon based on
understanding of the core structure and the energetics of core mechanisms of
mobility. Atomistic simulations reveal multiple and complex kink mechanisms
of dislocation translation; however, this complexity can be rationalized through
the analysis of a straight kink-free dislocation, based on symmetry-breaking
arguments. Further reduction is achieved by observing that the energetics of
kink mechanisms is scaled by a single parameter, the energy required to break
a bond in the core. To obtain accurate values of this energy we perform density
functional calculations that lead us to conclude that the low mobility of the 308
dislocation results from its high bond-breaking energy. Armed with the
knowledge of kink mechanisms, we develop a kinetic Monte Carlo model that
makes direct use of the atomistic data as the material-de® ning input and predicts
the dislocation velocity on the length and time scales accessible to experiments.
This provides the connection between the atomistic aspects of the dislocation core
and the mobility behaviour of single dislocations.

} 1. Introduction
The dislocation mobility in silicon has attracted much interest from the perspec-

tives of electronic materials technology as well as the basic science of crystal plasti-

city. Since single crystals of high purity and free of defects are available, the intrinsic

velocity of a single dislocation has been accurately measured over a range of tem-
peratures and stresses. Theoretical work, on the other hand, has been based on the

physical notion that dislocation motion in a crystal with high Peierls barriers takes

place through the mechanism of nucleation and migration of kink pairs.

Unfortunately, the ensuing model descriptions were not predictive, to the extent

that quantitative interpretations of the experimental data invariably involved some

Philosophical Magazine A ISSN 0141 ± 8610 print/ISSN 1460-6992 online # 2001 Taylor & Francis Ltd

http://www.tandf.co.uk/journals

DOI: 10.1080 /0141861011003401 9

kEmail: bulatov1@llnl.gov

http://www.tandf.co.uk/journals


degree of ® tting or ad-hoc hypothesis. There are two challenges to the development

of a fundamental framework that would allow direct modelling of the observed

dislocation velocities in terms of the underlying kink kinetics. The ® rst is that ato-
mistic details concerning the structure and energetics of the kink defect in the dis-

location core are needed. The only way to obtain this knowledge is through atomistic

calculations; such results are being generated relatively recently. Secondly, a method

is needed to simulate the overall dislocation movement as the cumulative eŒect of a

large number of individual kink events. This too has been lacking.
Atomistic simulations of dislocation core structure and kinks have been

attempted through the use of empirical models of interatomic interactions, such as

the Keating (1966) potential which contains an undetermined term for the energy of

a broken (dangling) bond, and interatomic potential models, such as Stillinger±

Weber (SW) (1985) and TersoŒ(1986) models, which were ® tted to a wider class
of physical properties. An early study by Duesbery et al. (1991) already revealed that

the core mechanisms in silicon are quite complex. Since then the analysis of core

aspects of dislocation motion in silicon has advanced to the point where all relevant

kink mechanisms in the 308 and the 908 partial dislocations have been identi® ed and

catalogued (Bulatov et al. 1995, Nunes et al. 1996). Combined with the recent

developments in electronic structure calculations based on the density functional
theory (DFT) and the semiempirical tight-binding (TB) methods, one now has

quite detailed knowledge of kink mechanisms, information which is necessary for

the formulation of a parameter-free prediction of the intrinsic dislocation mobility in

silicon.

The purpose of this paper is to describe a methodology, free from ® tting para-
meters, for connecting the atomistic information on kink structure and energetics to

dislocation mobility at the level of experimental observations. The discussion will be

mostly based on our own studies that should be considered as work still in progress,

together with a few key results obtained by other research groups. For a more

comprehensive review on the topic of dislocations in Si, the reader is referred to
several recent papers (Duesbery and Richardson 1991, Alexander and Teichler 1993,

Lehto and Heggie 1998).

We begin with a discussion of the reconstruction of core structures of the two

partial dislocations in silicon, the 308 and the 908 partials, in } 2. After brie¯ y con-

sidering the relative role of shuç e and glide sets, one sees readily the con® gurational

complexity associated with bond breaking, bond switching, and bond exchange as a
result of energy minimization analysis, even without the presence of any kink defects.

In } 3 a brief account is given of the symmetry-breaking arguments by which a

complete set of the secondary core defects, kinks and reconstruction defects, can

be identi® ed a priori. This classi® cation is applicable to all materials with any crystal-

lographic structure, and the results can be useful in deciding which types of defects
need to be analysed. The exploration of the atomic kink mechanisms of dislocation

motion in silicon is continued in } 4. Of special interest are core defects in the 908
partial which give rise to two periodic structures. The focus in } 5 is on the particular

eŒects of core reconstruction on dislocation mobility, established through atomistic

simulations involving interatomic potentials and the density functional theory. The
results discussed in } } 2± 5 constitute the atomistic information on core structure and

energetics that are believed to be essential for understanding the behaviour of single

dislocations on the mesoscopic level. In } 6 we describe a kinetic Monte Carlo for-

mulation that makes direct use of the atomistic data as the material-de® ning input
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and predicts the dislocation velocity on the length and time scales accessible to

experiments. This provides the connection between the atomistic aspects of the dis-

location core and the mobility behaviour of single dislocations. A brief summary and
an outlook on the methodology being developed are given in } 7.

} 2. Core structure

2.1. Simulation methods

Two principal components for realistic simulations of dislocations in silicon are

® rstly, an accurate and computationally expedient model of covalent bonding and,

secondly, an e� cient computational method for exploration of the multiple ways in
which the atoms in the core can rebond to accommodate the displacement gradients.

The very high central processing unit cost per atom per time step of the more

accurate DFT calculations limits the size of the simulated system to just a few

hundred atoms that can be run for just a few hundred time steps. This is inadequate

for a fully dynamic simulation of dislocations. In silicon, the situation is exacerbated
by high barriers for dislocation motion. Even for the most computationally ìnex-

pensive’ (and inaccurate) empirical models of silicon due to SW and to TersoŒ, using

direct molecular dynamics (MD) simulations of dislocation motion have been ine� -

cient. By necessity, most of the earlier calculations used various quasistatic techni-

ques for ® nding low-energy con® gurations and paths for dislocation motion, for the

empirical models of silicon (Heggie and Jones 1987, Duesbery et al. 1991, Bulatov et
al. 1995). It was hoped that these models, however inaccurate, would reproduce

some of the essential physics of dislocation motion that can be subsequently veri® ed

using more accurate approaches. In retrospect, this approach proved constructive; at

present the empirical potentials are superseded by the more accurate TB models

(Nunes et al. 1996) and, already, several principal results for dislocation mobility
in silicon have been obtained using the DFT calculations (CsaÂ nyi et al. 1998,

Valladares et al. 1998).

For our calculations, we chose the Parrinello± Rahman (1982) version of the

periodic boundary conditions for its general ¯ exibility and robustness.

Dislocations are introduced in pairs using the known elastic theory solution for
the displacement ® eld associated with a dislocation dipole. The known drawback

of this direct approach is that it requires dealing with a periodic lattice of image

dislocation dipoles. The lattice sum contribution to the excess energy of a dislocation

dipole scales as 1=L2, where L is the size of the periodic supercell. For supercells

containing tens of thousands of atoms this contribution can be safely ignored. On

the other hand, for the relatively small supercells typically employed in the DFT
calculations, the dipole lattice energy is the larger part of the excess energy and has

to be evaluated very accurately. Evaluation of the image contribution to the disloca-

tion energies is non-trivial because the lattice sums converge only conditionally.

Several methods for dealing with such conditionally convergent sums were recently

developed by Cai et al. (2000b). Remarkably, even for small DFT-sized supercells, it
appears possible to extract the accurate core energies, provided that the supercell is

large enough to avoid dislocation core overlaps.

Because of the ineŒectiveness of direct MD approaches, most simulations per-

formed so far have relied on various quasistatic methods to explore relevant details

of the many-body energy landscape. Strong preference for tetrahedral bonding in
silicon makes it possible to construct reasonable defect con® gurations based on
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intuition, from the ball-and-stick models. Con® gurations with no or a minimum

number of dangling bonds and minimal lattice distortions should have the lowest

energies. Alternatively, optimal defect con® gurations may be found using various
methods of global optimization, such as simulated annealing (Kirkpatrick 1984) or

genetic algorithms (Deaven and Ho 1995). However, because dislocations themselves

are metastable with respect to the perfect dislocation-free crystal, an optimization

trajectory has to be con® ned to a region in the con® guration space corresponding to

a dislocated crystal. Although the mentioned search algorithms are automatic, they
are statistical in nature and are not guaranteed to ® nd the absolute optimum defect

con® guration. In some cases, the more intuitive approach, `by inspection of possi-

bilities’ , was found instrumental for identifying the optimal structures (Bennetto et

al. 1997).

The brief summary of the simulation methods presented above is sketchy by
design. Some of the relevant details will be given in the following sections, in con-

nection with speci® c simulation results. More detailed discussions can be found

elsewhere (Bulatov et al. 1995, Justo et al. 1999).

2.2. ShuZe versus glide competition

Dislocations in silicon have 1
2
h110i Burgers vectors and glide in the {111} planes.

Since the diamond cubic lattice is non-primitive, two subsets of the {111} planes can

be distinguished: the widely spaced shuZe subset and the narrowly spaced glide

subset. It would appear that the shuç e subset should be preferred for dislocation
motion, since a unit dislocation translation requires to break only one covalent

bond, as opposed to three bonds per unit translation in the glide subset. However,

the glide subset has been considered more likely to contain the dislocations since it

was found that dislocations in silicon are dissociated into Shockley partials. Because

no stable stacking faults can exist in the shuç e subset, the glide subset appeared to
be the necessary choice. Subsequent theoretical considerations supported the pre-

dominance of the glide subset, based on a ®-surface calculation by Kaxiras and

Duesbery (1993) and a line tension argument by Duesbery and Joos (1996). Yet,

Louchet and Thibault-Desseaux (1987) have pointed out that partials in the shuç e

subset can coexist with the stacking faults in the glide subset. To move a partial from
the glide position to a shuç e position, a row of atoms should be removed from or

added to the extra plane terminating on the partial (® gure 1). So far, high-resolution

transmission electron microscopy data have neither supported nor ruled out the

possibility of a mixed shuç e± glide partial core (Olsen and Spence 1981, Bourret et

al. 1983). Direct theoretical evidence for a predominant role of the glide partials was

reported by Justo et al. (2000) based on a combination of ab-initio calculations for
the zero temperature energetics with classical MD simulations for the temperature-

dependent free energies of the relevant core con® gurations. Speci® cally, the ener-

getics of glide and shuç e partial dislocations were examined in a series of calcula-

tions in which the concentration of vacancies in the core of a 308 partial dislocation

varied from zero for a pure glide core to 100% for a pure shuç e core. The results
indicate that the equilibrium thermal concentration of vacancies in the core should

be considerably higher than in the bulk crystalline environment. Still, this concen-

tration is too low to expect that shuç e vacancy segments of appreciable length will

be present in the core, supporting the view that Shockley partials in Si belong to the

glide subset. This conclusion needs to be further veri® ed for the case of the interstitial
shuç e 308 partial and for the 908 partial. Even if the above conclusion stands, it
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would pertain only to the partial dislocations at rest and in local thermodynamic

equilibrium. This is because vacancy or interstitial defects can be introduced into the

core when dislocations move under stress, especially under conditions of point-defect

supersaturation. Whether or not this principal possibility is realized in Si remains an
issue for further study. In the following we shall focus exclusively on two most

important dislocations in silicon: the 308 and the 908 glide partials.

2.3. Core structure of the 308 partial dislocation

Atomistic calculations have consistently shown that the ideal ground-state struc-

ture of the 308 partial dislocation is as shown in ® gure 2. In this con® guration, the
dangling bonds are saturated after the pairs of neighbouring core atoms move closer

together to form bonded dimers. Working against this 2 £ 1 reconstruction are

relatively minor distortions of the covalent bonds; so the energy gain per reconstruc-

tion dimer is signi® cant, ranging from 0.4 to 1.6 eV, depending on the model. Recent

DFT calculations report this parameter at 0.88 eV (T. A. Arias 1997, private com-
munication) and 1.04 eV (this work), con® rming that the 2 £ 1 reconstruction is

robust. The reconstruction breaks the translational symmetry and doubles the period

along the dislocation line, from b to 2b, where b is the Burgers vector magnitude of a

complete 1
2
h110i dislocation. The reconstructed core structure is doubly degenerate;

its two variants are related to each other by a half-period translation along the line.
A defect must appear at the boundary between two segments reconstructed in the
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is obtained by removing the row of atoms from the core.



opposite sense. This reconstruction defect (RD) has been also referred to as an

antiphase defect by Hirsch (1979) and a soliton by Heggie and Jones (1983) .

2.4. Core structure of the 908 partial dislocation

The driving forces for core reconstruction are the same for both partials, that is

the high energy of the unsaturated dangling bonds. However, the counteracting

lattice distortions are more signi® cant in the case of the 908 partial dislocations.
For the single-period (SP) core structure suggested by Hirsch (1979) (® gure 3 (a)),

the reported energy gain per reconstruction bond is generally lower than for the 308
partial dislocation, ranging from 0.3 to 1.2 eV, depending on the model. DFT cal-

culations have not yet converged on a single acceptable value, ranging from 0.42 eV

(this work) to 0.88 eV (Bigger et al. 1992). Emphasizing this less robust character of

the 908 partial reconstruction is a recently reported alternative double-period (DP)
core structure (Bennetto et al. 1997) (® gure 3 (b)). The energies of the two alternative

cores SP and DP, are close; the calculated diŒerences are in the range from a few to a

few tens of millielectronvolts per angstrom of dislocation line. Furthermore, which

of the two structures has lower energy was shown to depend on the environment in

which the dislocation is located (Lehto and Oberg 1998). Despite some diŒerences,
the results reported so far indicate that the SP and the DP cores are nearly degen-

erate in their energies, the implication being that they both can be involved in

dislocation motion. This issue is further discussed in } 5.4.

SP core reconstruction breaks the mirror symmetry with respect to the h110i
plane perpendicular to the line. There are two nearly degenerate types of RD which
exist as a result of the symmetry breaking. Each one of them is doubly degenerate,
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Figure 2. Core structure of a 308 partial dislocation: (a) unreconstructed; (b) reconstructed
core, with a RD. Atoms above and below the glide plane are shown as open circles and
full circles respectively.



having an exact mirror twin defect con® guration. The situation in the DP core is

more complex, because reconstruction breaks two symmetries at once: the h110i
mirror symmetry and the translational symmetry along the line. Similar to the SP
case, breaking the mirror symmetry introduces two types of RD termed mirror

solitons by Bulatov et al. (1997). At the same time, similar to the 2 £ 1 reconstruction

in the 308 partial, breaking of the translation symmetry doubles the period from b to

2b and introduces a translation soliton. Additionally, two combinations of the trans-

lation soliton with two mirror solitons bring the total number of distinct RDs to ® ve,
four of which are doubly degenerate (Bulatov et al. 1997). Although RDs do not

produce dislocation motion by themselves, they can interact with kinks and create

large numbers of possible kink± RD combinations. The resultant mechanisms of

dislocation motion in silicon can be rather complex. This complexity is further

developed in the following sections.

} 3. Symmetry considerations
A remarkably simple recipe was identi® ed by Bulatov et al. (1997) for a priori

classi® cation of kinks in any given dislocation. The idea was to deduce which kink

types are possible from the symmetry properties of a straight dislocation without

kinks. This can be accomplished using a formal group-theoretical treatment similar

to that developed by Pond (1989) for crystal interfaces. A more intuitive approach is

to consider a kink pair in which, arbitrarily, one of the kinks is named the left kink
(LK) and the other is named the right kink (RK) (® gure 4). When a symmetry

operation exists that can transform one kink into the other, the kinks are symmetry

twins. This can be possible only if the host lattice and the dislocation displacement

® eld share the symmetry in question. If the dislocation is of pure edge character, then

the displacement ® eld is symmetric with respect to a mirror plane perpendicular to

the line (® gure 4 (a)). This is unless the host lattice itself lacks this mirror symmetry,
in which case LK and RK must be diŒerent. If the dislocation is pure screw, then its

displacement ® eld is symmetric with respect to a 1808 rotation about the dislocation

axis (® gure 4 (b)). This is unless the host lattice is short of this rotation symmetry, in

which case LK and RK must be diŒerent again. For a dislocation of mixed char-

acter, that is neither pure edge nor pure screw, LK and RK will be diŒerent regard-
less of the symmetry properties of the underlying host lattice.

Therefore, the only two cases when LK and RK should be twins are, ® rstly when

the dislocation is pure edge and the lattice has the mirror inversion in its symmetry

group or, secondly, when the dislocation is pure screw and the lattice has the 1808
rotation in its symmetry group. Still, even if one of these conditions is satis® ed,
symmetry can break spontaneously, owing to a core reconstruction. A more detailed
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Figure 3. Two alternative core reconstructions of the 908 partial: (a) SP reconstruction; (b)
DP reconstruction.

(a) (b)



discussion of various cases of symmetry breaking has been presented by Bulatov et

al. (1997) along with a few representative examples of dislocations and kinks in

diŒerent materials. Concerning dislocations in silicon, LK and RK are diŒerent in

both partials, but for diŒerent reasons. In the 308 partial, LK and RK are diŒerent
simply because this dislocation is of a mixed character (® gure 5). The situation in the

908 partial is diŒerent. According to the symmetry test described above (® gure 4 (a)),

LK and RK should be symmetry twins in this dislocation. However, the pertinent

mirror symmetry is broken by a spontaneous core reconstruction (SP or DP), mak-

ing the two kinks diŒerent. In the case of SP reconstruction (® gure 6) the two kinks

were termed LL and RR (Nunes et al. 1996). As was already discussed, symmetry
breaking causes RD. In the case of SP reconstruction in the 908 partial, the RDs can

bind to LK and RK, bringing the total number of distinct kink species to four, each

of them doubly degenerate. In the case of DP reconstruction, there are ® ve distinct

RDs that can bind to the kinks. Taking into account the degeneracy, the number of

distinct kink families in the DP core becomes eight (Bennetto et al. 1997).
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Figure 4. Displacement ® eld of dislocation kinks viewed from above the glide plane: (a)
mirror plane; (b) rotation axis. Right and left helices indicate the sense of Burgers
displacement in the screw segments, while the extra half-planes inserted from above
(dark) and from below (light) the glide plane show the sense of Burgers displacement
in the edge segments.

Figure 5. A pair of kinks LK and RK in a 308 partial in silicon.



The symmetry considerations are not limited to any particular material or crys-

tallography class. Similar arguments were applied by Bulatov et al. (1997) to classify
dislocation core defects in bcc molybdenum, in perfect agreement with the earlier

atomistic study by Duesbery (1983). The usefulness of the proposed symmetry ana-

lysis is that, for any crystal lattice and for any given dislocation, the entire set of core

defects and their transformations contributing to dislocation motion can be gleaned

just by considering the symmetries of the host lattice and that of the straight kink-

free dislocation. Since the latter can be examined with considerable accuracy using
state-of-the-ar t ® rst-principles calculations, the problem of identifying all relevant

core defects involved in dislocation motion can be solved before actually doing any

three-dimensional atomistic calculations. For our present purposes, the symmetry

arguments provide an assurance that none of the important atomic modes of dis-

location mobility in silicon is left unaccounted for.

} 4. Atomistic kink mechanisms
The most important result of the symmetry analysis is that, for any given dis-

location, we can deduce the total number and certain descriptive topological char-

acteristics of all distinct kink and RD species. Yet, a priori considerations identify a
core defect only as a principal possibility and do not say anything about its detailed

structure, formation energy or stability. In fact, some of the possible species can be

wholly unstable, depending on the speci® c model of atomic interaction (Nunes et al

1996, 1998). In order to examine such characteristics, three-dimensional calculations

are still necessary. For these, the symmetry considerations identify precise targets.

4.1. Core defects in the 308 partial dislocation

Symmetry arguments can assist in setting up atomistic calculations required to

evaluate core defects. As an example, consider the RDs in the 308 partial that

experiences a 2 £ 1 symmetry-breaking reconstruction. The symmetry analysis

immediately shows that there is only one distinct species of such defect that is also
the boundary between two segments of the same dislocation reconstructed in the

opposite senses. To have exactly one RD on the periodic length of the dislocation,

the latter must contain an odd number of half-periods (2n ‡ 1†b, so that at least one

atom with a dangling bond should be left out of the reconstruction. To ensure that

the RD defect does not interact with its periodic images, n should be chosen su� -
ciently large, say, n > 5.

To `prepare’ a kink it is advantageous to use periodic supercells in which the

repeat vector along the dislocation is vicinal to the direction of a Peierls valley. For

example, if the repeat vector is …a=2†‰n ‡ 1; ¡1; ¡nŠ, which is vicinal to the ‰1; 0; ¡1]

Peierls valley, the defect-free crystal remains unaŒected. However, once a dislocation
dipole is introduced, each dislocation of the dipole will have one `geometrically
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Figure 6. A pair of kinks LL and RR in a 908 partial.



necessary’ kink per repeat length (® gure 7). Depending on the sign of the vicinal

angle and the Burgers vector, the kink will be of the LK or RK variety. When n is

odd, the core will have to contain at least one dangling bond (RD) even after full
2 £ 1 reconstruction. Provided that the geometrically necessary kink and the RD

gain energy by binding to each other, a simulated annealing search should be able to

® nd a bound kink± RD state. A sequence of con® gurations visited during one such

search is shown in ® gure 8, resulting in the formation of a strongly bound LK± RD

complex. The latter is one of the four distinct species of kinks anticipated from the
symmetry analysis, named LC by Bulatov et al. (1995). The remaining fourth kink

species RC is a bound state (complex) of the r̀ight’ kink RK and the RD:

RC ˆ RK ‡ RD. Altogether, four kink species are now identi® ed for the 308 partial:

RK, LK, RC and LC. The latter two are recognized as complexes of the two primary

kinks RK and LK, with a RD.
The formation energies of the four kinks calculated using two diŒerent inter-

atomic potentials (SW and EDIP) and an O(N ) TB approach (Nunes et al. 1998) are

contained in table 1. All three models predict that kink formation energies are rather

high, ranging from 0.35 to 2.15 eV. Of the four kink species, RC and LC have higher

formation energies, evidently owing to the presence of a dangling bond in their cores.

Yet, these complexes should be stable against spontaneous dissociation. For exam-
ple, formation energy of the RC is 0.3± 0.9 eV lower than the sum of formation

energies of the RK and the RD. Such relatively strong binding can be explained

by partial relaxation of the bond distortions in the kink core when a dangling bond is
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Figure 7. Projection on the {111} plane of a simulation cell in which geometrically necessary
kinks are introduced in each partial of the dipole. The shaded area represents the
stacking fault formed between two partial dislocations.
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Figure 8. A simulated annealing path in which formation of a LK± RD complex was
detected. The energy pro® le in (e) has markers corresponding to the energies of con-
® gurations (a)± (d) visited sequentially on the way to the ® nal con® guration (d).

Table 1. Kink formation energies calculated using three
diŒerent models of interatomic interaction for the
308 partial.

Formation energy (eV)
Kink
species SW EDIP TB

LK 0.98 0.65 0.35
RK 0.65 0.39 1.24
LC 1.29 0.90 0.88
RC 0.63 0.83 2.15



introduced. For example, maximum bond length distortion in the fully reconstructed

RK is 7% , while it is only 4% in the RC that contains a dangling bond (the data are

for the SW model).
Atomistic mechanisms of kink migration in the 308 partial have been examined

in detail by Bulatov et al. (1995). Because of the period-doubling reconstruction,

kink translation paths become rather complex. For example, on its way from one

low-energy con® guration to another, RK visits an intermediate metastable con® g-

uration RK 0, midway through the translation period (® gure 9). Which of the two
states, RK or RK 0, has the lower energy is a subtle issue and depends on the model

employed. For example, the SW model predicts that the RK energy is lower than

that of RK 0, whereas the EDIP model predicts the opposite. At the same time, all

three models predict high migration energies for the RK kink, ranging from 0.7 to

2.1 eV. Similar to the RK case, migration of the LK kink takes place in a sequence,
LK ! LK 0 ! K ! ¢ ¢ ¢. Again, the predicted migration energies are high, from 0.7

to 1.5 eV. In both cases, kink migration involves a double-bond switching rearrange-
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Figure 9. A low-energy path for the migration of LK.



ment in which two bonds are broken while two other bonds are formed in the

process of kink translation. This is equivalent to the well known Wooten± Winer±

Weaire (WWW) (1985) mechanism that preserves the tetrabonded coordination and
is thought to be involved in silicon amorphization. On the contrary, translation of

the two complex kinks (RC and LC) is greatly facilitated by the presence of dangling

bonds involved in bond-exchange rearrangements. The resulting migration barriers

are relatively low, from 0.2 to 1.0 eV.

4.2. Core defects in the 908 partial: single period

Breaking of the mirror symmetry in the SP core of the 908 partial introduces two

diŒerent RDs and four diŒerent kinks termed LR, RL, LL and RR by Nunes et al.
(1996). Similar to the case of 308 partial, two of the four kinks can be regarded as

complexes, or bound states of two other kinks with the RDs. To some extent, which

of the four kinks are regarded as primary is arbitrary. Nunes et al. (1996) considered

LR and RL kinks as primary, since they do not contain dangling bonds and their

formation energies are low. On the other hand, these two kinks are associated with a
reversal in symmetry breaking, whereas the other two kinks, LL and RR, show no

such reversal. Hence, these two kinks could be considered primary while the low-

energy kinks LR and RL can be regarded as complexes. However, we shall follow the

original classi® cation introduced by Nunes et al. (1996).

Table 2 contains formation energies of all four topologically distinct kink species,
calculated for the EDIP and the TB models. The formation energies of the

reconstructed kinks LR and RL predicted by the TB model are notably lower

than for the kinks in the 308 partial. This is probably related to the lower

reconstruction energy of the 908 partial, compared to the 308 partial case. As was

discussed in } 2.4, the SP reconstruction is not very robust because part of its energy

gain is oŒset by a considerable lattice distortion required to bring the atoms to a
bonding distance across the core. It appears that introduction of kinks does not add

much strain to the already distorted bonds in the SP core; hence we have the low

energies of kink formation. Consequently, the complex kinks LL and RR are

unstable in the TB model and only marginally stable in the EDIP model, with respect

to the spontaneous dissociation into one of the two low-energy (LR or RL) kinks
and a RD.

Similar to the 308 partial case, translation of the reconstructed kinks LR and RL

involves the double-bond switching or WWW mechanism. The resulting migration

barriers range from 0.6 to 1.6 eV.
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Table 2. Kink formation energies calculated using
two diŒerent models of interatomic interac-
tion for the 908 partial.

Formation energy (eV)
Kink
species EDIP TB

LR 0.70 0.12
RL 0.70 0.12
LL 0.84 Unstable
RR 1.24 Unstable



4.3. Core defects in the 908 partial: double period

There are ® ve diŒerent species of RDs and eight topologically distinct species of

kinks in the DP core of a 908 partial. Although no systematic study of this large
family of core defects has been reported, our preliminary results suggest that kink

formation and migration energies are similar to those in the SP core. In particular,

based on the empirical model of TersoŒ(1986) , we found that one of the fully

reconstructed kinks in the DP core has a formation energy of 0.3 eV and a migration

barrier of 2.2 eV, similar to the energies given in the preceding section for the SP
core. It is relatively straightforward, using the methods described in the preceding

sections, to examine the energetics of other core defects in the DP core: seven

remaining kinks and ® ve RDs. We speculate that, by analogy with the SP case,

the above energies are probably representative of the other fully reconstructed

kinks in the DP core. In the following section, rather than attempting to sort through
the maze of all possible core defects in the DP core, we perform a simple analysis of

the eŒect of core reconstruction on dislocation motion in silicon.

} 5. Core reconstruction and dislocation mobility

5.1. Reconstruction bonds and the energetics of kink mechanisms

Dislocation translation requires breaking and making of covalent bonds.

Ultimately, it is the energetics of bond breaking that should de® ne lattice resistance

to dislocation motion. Of the bonds involved in dislocation translation, reconstruc-
tion bonds are most distorted and, consequently, least strong. A direct way to

quantify the contribution of reconstruction bonds to the lattice resistance would

be to examine the energetics of kink mechanisms for a range of systems with diŒerent

strengths of the reconstruction bonds. Such an investigation, however di� cult, could

have clari® ed the observed variations of intrinsic dislocation mobility over the family
of elemental and compound semiconductor materials (Kirchner and Suzuki 1998).

A much simpler approach was taken by Justo et al. (1999). The idea was, using

the same empirical model, to suppress core reconstruction arti® cially and to compare

kink mechanisms in the s̀o-designed’ unreconstructed core with the reconstructed

kink mechanisms discussed in the preceding sections. Utilizing one’ s ability to con-
trol numerical simulation, such a comparison has no realistic analogue and yet it

allows better appreciation of the contribution of core reconstruction to the lattice

resistance.

Various unreconstructed core con® gurations were reported in our earlier calcu-

lations based on the empirical potentials of the SW (Bulatov et al. 1995) and the

EDIP (Justo et al. 1998) methods. Those typically corresponded to high-energy local
minima separated by small barriers from low-energy r̀econstructed’ states.

Sometimes it was even possible to introduce kinks and move them along the line,

still keeping the core atoms from reconstruction. This, possibly unphysical tendency

of the empirical models was explored by Justo et al. (1999) where a series of calcula-

tions was performed of kink migration and formation energies in the unrecon-
structed cores of 908 and 308 partial dislocations. The results obtained for the SW

and the EDIP models suggest that the contribution of reconstructed bonds to kink

energetics in silicon is large, especially for kink migration barriers. For example, for

the SW model the barrier for the kink migration mechanism depicted in ® gure 9 is

0.74 eV. However, the barrier for the same mechanism in the unconstructed core is
only 0.3 eV. The corresponding values of 1.2 and 0.3 eV were obtained for the EDIP
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model, con® rming that reconstruction bond contribution to migration barriers is

large.

While the accuracies of the two empirical models can be questioned, their agree-
ment indicates that, at least in silicon, core reconstruction should have bearing on

the energetics of kink mechanisms. This echoes an old argument that the energy of

the dimer bond in the core is an important parameter. Based on the results discussed

by Justo et al. (1999), it appears that this same energy is a relevant scaling parameter

for the lattice resistance to dislocation motion.

5.2. Reconstruction energetics from Wrst principles

The energy required to break a reconstruction bond is the same as the energy
reduction per bond caused by core reconstruction. The latter can be calculated using

relatively small periodic supercells with the depth of only one or two lattice spacings

along the line. This permits more accurate calculations using the TB (Bennetto et al.

1997) and the DFT (Valladares et al. 1998) methods. One of the ® rst such calcula-

tions was reported in a paper by the Oxford± Cambridge group (Bigger et al. 1992).
The results showed that the symmetry-breaking core reconstruction in the 908 partial

(SP) is robust, leaving no deep electronic states inside the bandgap. The reported

reconstruction energy per dimer bond was 0.87 eV. More recently a similar value of

0.88 eV per bond was obtained for the 308 partial (T. A. Arias 1997, private com-

munication). It should be noted that, in obtaining these values for the reconstruction

energies, the two groups (Bigger et al. 1992, T. A. Arias 1997, private communica-
tion) used diŒerent pseudopotentials , supercells and other computational para-

meters. We decided to revisit the issue of the relative strength of core

reconstruction in two partials, using identical computational settings for both partial

dislocations. For that we employed the Vienna Ab-initio Simulation Package (VASP)

plane-wave pseudopotential code developed at the Technical University of Vienna
(Kresse and Hafner 1993). This code implements the Vanderbilt (1990) ultrasoft

pseudopotential scheme, as supplied by Kresse and Hafner (1994). Initially, in an

attempt to calibrate our calculations against the earlier results, we repeated the

calculations using exactly the same supercells as were originally employed by

Bigger et al. (1992) for the 908 partial and by T. A. Arias (1997, private commu-
nication), for the 308 partial. The resulting reconstruction energy for the 308 partial

was 1.02 eV per bond, somewhat higher than 0.88 eV per bond reported by T. A.

Arais (1997, private communication). However, for the 908 partial we obtained a

value of 0.42 eV per bond, signi® cantly lower than 0.87 eV per bond reported by

Bigger et al. (1992).

In order to check what could have caused such a discrepancy we examined
numerical convergence with respect to the supercell size, energy cut-oŒvalue and

the number of k points. For the case of SP reconstruction in the 908 partial, periodic

supercells ranging in size from 64 to 216 atoms were employed. Additionally, the

number of k points used to sample the Brillouin zone varied from 1 to 32. Finally,

the energy cut-oŒwas raised to 15.2 Ryd. Based on this exploration, we conclude
that the reconstruction energies are reasonably converged for supercells containing

96 atoms with sampling of four k points and at the energy cut-oŒof 11.1 Ryd. With

these parameters, our value for the SP reconstruction energy still stands at

0:42 § 0:04 eV per bond, about half that reported by Bigger et al. (1992).

Presumably, the diŒerence may be due to our use, in the present calculations, of
an ultrasoft pseudopotential for silicon (Vanderbilt 1990) that is known to converge
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at a much lower energy cut-oŒthan the earlier pseudopotential schemes. We shall

consider our value of 0.42 eV for the reconstruction energy to be su� ciently accurate

for the subsequent discussion.
Having established numerical convergence for the case of SP reconstruction, we

used the same computational settings to examine the DP reconstruction in the 908
partial. In agreement with Bennetto et al. (1997), the energy of the DP core structure

came out lower than that of the SP reconstruction, by some 0.05 eV AÊ ¡1. Recent

calculations by Lehto and Oberg (1998) show that the magnitude and even sign of
this relatively small energy diŒerence between SP and DP cores depend on the super-

cell shape. Despite this subtle eŒect, our results appear accurate enough to conclude

that, no matter which of the two reconstructions (SP or DP) is energetically

favoured, the energy reduction caused by the core reconstruction of the 908 partial

is signi® cantly smaller than the corresponding value for the 308 partial. This oŒers a
simple interpretation of the experimentally observed (Kolar et al. 1996) diŒerence

between mobilities of these two dislocations in silicon: the 308 partial is slower than

the 908 partial since, in the former case, it takes more energy to break the stronger

reconstruction bonds, as required for dislocation translation.

5.3. Partial kink mechanisms

Despite the lingering uncertainty just mentioned, all calculations reported so far

show that SP and DP cores have very close, nearly degenerate energies (Bennetto et

al. 1997, Valladares et al. 1998, Lehto and Oberg 1998). This implies that both SP

and DP cores may be involved in dislocation translation. Because the spacing
between two neighbouring SP and DP dislocation SGM positions is only half the

regular spacing between the Peierls valleys in silicon 908 partials can presumably

move in reduced s̀teps’ . First suggested by Bulatov et al. (1997) we now consider this

possibility in some detail.

Let us assume, for our discussion, that the free energy of the DP core is lower
than that of the SP core and that the diŒerence is small. Consider now a kink by

which a dislocation s̀teps’ from one DP valley to another (® gure 10 (a)). The energy

of this con® guration can be reduced if the full kink dissociates into two kinks of half-

height, separated by a short SP segment (® gure 10 (b)). By analogy with partial

dislocations in fcc, hcp and other materials, the half-kinks can be regarded as partial

kinks and the short SP segment can be viewed as a one-dimensional stacking fault.
The optimal dissociation width is determined by the competition of two energy

terms. On the one hand, splitting of a full-height kink into two partial kinks reduces

the elastic self-energy, which, for a kink of height h, is proportional to h2. On the

other hand, splitting introduces a one-dimensional stacking fault whose energy is

proportional to its width. Neglecting for now the core terms, the energy of a dis-
sociated pair of partial kinks can be estimated as

¢E …d† ˆ ¬·h2b2

d
‡ ®1d : …1†

Here, the ® rst term is the elastic repulsion between the partial kinks and contains

the shear modulus ·, the height h of a full kink, the Burgers vector magnitude b and

a numerical factor ¬ that depends on the Poisson’ s ratio ¸. The second term is the

attractive `glue’ force in which ®1 ˆ Esp ¡ Edp is the one-dimensional stacking fault
energy per unit length of the fault. The optimal splitting width is then given by

1272 V. V. Bulatov et al.



dmin ˆ ¬·h2b2

®1

1=2

: …2†

Taking ¸ ˆ 0:22, ¬ ˆ 0:007 14, ®1 ˆ 0:01 eV AÊ ¡1, · ˆ 0:425 eV AÊ ¡3, b ˆ 3:84 AÊ and

h ˆ 3:33 AÊ , the splitting width in the 908 partial in silicon can be estimated at 7 AÊ .

To verify that kink dissociation can indeed take place, we performed atomistic

calculations, using the TersoŒ (1986) interatomic potential that predicts

®1 ˆ Esp ¡ Edp ˆ 0:01 eV AÊ ¡1. To reduce the image eŒects we used large supercells

containing up to 200 000 atoms. Fully relaxed atomistic con® gurations of the full

and partial kinks are shown in ® gure 11. The energy diŒerence between dissociated

pairs of partial kinks and a full kink was calculated as a function of the width d of

the partial kink pair. The results are shown in ® gure 12. The dissociated state has

lower energy for kink separations ranging from 0 to 4b, with an optimum at around
2b. Thus, at least for the TersoŒ model of silicon, kink dissociation is indeed

favoured. According to equation (2), dissociation can be suppressed by a high

value of ®1 in which case dmin may become smaller than the core periodicity length

(2b for the DP core). Although the dependence on ®1 is rather weak (proportional to

®
¡1=2
1 ), the remaining uncertainty in the value of ®1 leaves it unclear whether partial

kinks can contribute signi® cantly to the motion of 908 partials. Lehto and Oberg

(1998) have shown that the magnitude and even the sign of the energy diŒerence

between the SP and the DP core variants depend on stress exerted on the dislocation.

This suggests an interesting possibility that, owing to the local stress variations, the

energies of the two variants can become degenerate or nearly degenerate. In such
conditions, kinks should dissociate.
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Figure 10. Dissociation of (a) a full kink into (b) two partial kinks connected by a one-
dimensional stacking fault.

(a)

(b)
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Figure 11. Actual atomic con® gurations of (a) a full kink and (b) partial kinks in a 908
partial dislocation.

(a)

(b)

Figure 12. The energy of a dissociated pair of partial kinks over and above the energy of a
full (undissociated) kink, as a function of splitting width d: (^), energies calculated
atomistically; (- - - -), as a reference, the `glue’ term ®1d.



The existence of partial kinks further enriches an already crowded spectrum of

core defects involved in the motion of 908 partial dislocations in silicon. If the

dissociation is indeed favoured, partial kinks can move sequentially, much like a
pair of partial dislocations in fcc materials (we shall return to this in the following

section) and, although our preliminary results are somewhat inconclusive, the partial

kinks can be expected to have lower migration barriers than the full kinks. This is

because translation of partial kinks involves smaller atomic displacements than a full

kink case does. This way or another, the existence of two types of Peierls valley can
be yet another reason, in addition to the weaker reconstruction bonds, why 908
partials have a higher mobility than 308 partials.

} 6. Mesoscopic kinetic Monte Carlo simulations
Atomistic simulations provided much insight into the multiple and complex

mechanisms of dislocation motion in silicon. At the same time, owing to the high

barriers for kink nucleation and migration, MD simulations cannot be used for

direct predictions of dislocation mobility. An alternative approach is to catalogue
and characterize all the relevant atomic mechanisms involved in dislocation transla-

tion and to use these data to de® ne a less detailed mesoscopic model that would be

more computationally e� cient. Our recent developments along these lines have been

presented in the paper by Cai et al. (2000a).

In developing our mesoscopic model we tried to mimic the atomistic behaviour
as closely as practically possible. Additionally, we included several realistic aspects of

dislocation behaviour in silicon, such as dislocation dissociation and the existence of

stacking faults, elastic interactions between kinks on both partials, and the thermally

activated nature of kink nucleation and migration mechanisms. These realistic items

were implemented in a kinetic Monte Carlo (kMC) procedure.
In principle, all the multiple atomic mechanisms of dislocation motion discussed

in the preceding sections can be included in the catalogue of kMC events. However,

for simplicity and in order to focus more on the eŒects of the interaction between two

partials, we opted for a simpli® ed description in which only one type of kink is

considered. A more detailed approach in which multiple species of kinks can con-

currently nucleate, migrate and react in response to stress and temperature will be
reported elsewhere.

In our model, both partial dislocations are represented as piecewise straight

continuous lines (® gure 13). The horizontal (H) segments correspond to straight

dislocations while the vertical (V) segments represent kinks. To account for the

elastic interaction between partial dislocations and kinks, we implemented a full
Peach± Koehler formalism to calculate stress exerted on each dislocation segment

by all other dislocation segments. The rates of kink pair nucleation and kink migra-

tion events are calculated using the standard transition state theory equation (Cai et

al. 1999) with the activation barriers imported from the atomistic calculations.

Coupling to (local) stress is through a linear term equal to the work done by the
local stress and the stacking-fault force on climbing up the activated (barrier) state.

The simulation proceeds as follows.

(1) For a given instantaneous con® guration of the two partials, local stress on

each segment (H and V) is computed as the sum of external and interaction

stress.
(2) Rates for all kMC events allowed in the current con® guration are computed.
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(3) A single event is randomly selected with probability proportional to its rate.

(4) Time is advanced by a small increment randomly selected according to the

total `evolution’ rate.
(5) The selected event is executed and dislocation con® guration is updated

accordingly; return to step (1).

Under a constant external stress, the event probabilities become biased so that a

directed motion of the dislocation pair is produced. The velocity is calculated as the
slope of the instantaneous average displacement as a function of time. The model’s

predictions and their  comparison with experimental data are shown in ® gures 14 and

15, for the screw dislocation in silicon. Two sets of simulated velocities shown in

® gure 14 were obtained using atomistic parameters obtained from two diŒerent

models of silicon: the EDIP (Justo et al. 1998) and an O(N ) TB approach

(Bennetto et al. 1997). While neither of the two simulated curves agrees with the
experiment too well, they appear to bracket the experiment, suggesting that the

accuracy of the model is limited by the accuracy of its atomistic input.

The predicted stress dependence of dislocation velocity (® gure 15) shows reason-

able agreement with experiment with a linear dependence on stress above 25 MPa. At

lower stresses, the so-called starting stress behaviour is also reproduced where the
velocity increases sharply from very low values at low stresses (George 1979). This

low-stress anomaly received considerable attention in the literature because linear

velocity± stress dependence is expected from the simple kink diŒusion model (Hirth

and Lothe 1982). At the same time, some groups did report a perfectly linear stress

dependence down to very low stress levels (Imai and Sumino 1983). Interestingly, our
model reproduces both types of behaviour, depending on the material parameters.

Cai et al. (2000a) traced the lack or existence of a low stress anomaly to two

distinctly diŒerent regimes of dislocation motion. In the ® rst `uncorrelated’ regime,

kink nucleation and migration events take place independently on two partials that
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Figure 13. Schematic representation of a dislocation in silicon in the kMC simulation. The
screw dislocation is dissociated into the leading and the trailing 308 partials, bounding
an area of stacking fault. The elementary kink width is b and the kink height is h. A
kink-pair formation event is shown at position I and a kink migration event is shown
at position II, both as broken lines.



move sequentially, one after another, producing nearly perfectly linear behaviour

with no sign of low-stress anomaly. In the second `correlated’ regime, kink pairs have

to form and propagate simultaneously on the neighbouring segments of two partials

that now move in unison, producing a superlinear stress dependence at low stresses.

At a stress above 25 MPa, correlations are totally suppressed and a linear regime sets

in. Such a strongly correlated motion of two partials was ® rst considered by MoÈ ller
(1978). In our model, both uncorrelated and correlated regimes are reproduced

depending on the value of the equilibrium dissociation width X0. As explained by

Cai et al. (2000a), the starting stress anomaly is observed when X0 is integer in units

of kink height h. On the other hand, when X0 is a half-integer, no starting stress

anomaly is observed. Since X0 is a very sensitive function of the material parameters
and local stress, even slight changes in the latter may change the low-stress behaviour

dramatically. This may explain, at least partly, why several groups reported diŒerent

low-stress behaviours and a large scatter of dislocation velocity data at low stresses.

Furthermore, the demonstrated ability of our model to explain the low-stress anom-

aly raises questions about various ad-hoc entities such as `weak obstacles’ introduced
earlier to explain the eŒect (Celli et al. 1963)y.
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Figure 14. Temperature-dependent velocities of screw dislocations at stress ½ ˆ 10 MPa: (^)
experiment data of George (1979); (*) experiment data of Imai and Sumino (1983);
(&), kMC predictions using EDIP kink energetics; (^), kMC predictions using TB
kink energetics. The inset shows the simulated instantaneous positions of the two
partials (see text).

y A similar eŒect can be hypothesized for the case of dissociated kinks in the 908 partial
discussed in the preceding section; the dissociated kinks may show an apparent starting stress
behaviour when the ideal splitting distance d (equation (2)) is commensurate with the periodi-
city of the secondary Peierls potential opposing kink migration.



The sensitivity to the parameter X0 was used by Cai et al. (2000a) to examine

dislocation mobility as a function of the (uniaxial) loading direction. For some

orientations of the loading axis the non-glide (Escaig) components of external stress

act to push the partials apart or to pull them together. Consequently, as the stress
increases, the partials can pass through a sequence of ìnteger’ and `half-integer’

separations X0 so that the resulting dependence on the total (glide ‡ non-glide) stress

can become oscillatory (® gure 16). This prediction is now being investigated experi-

mentally.

The ability of our mesoscopic model to incorporate the relevant atomistic details,
combined with its computational e� ciency, provides a bridge between the intricate

physics of core mechanisms and dislocation mobility on the length and time scales

readily accessible for experimental measurements. The accuracy of our combined

atomistic± mesoscopic approach should be further tested against available experi-

mental data. The model also predicts several unusual eŒects in dislocation mobility
oŒered for experimental veri® cation. In addition to the already mentioned ìnteger±

non-integer’ transitions, we are exploring some unusual behaviours under oscillating

and intermittent loading conditions and various asymmetries in the motion of mixed

dislocations. These and other predictions will be presented elsewhere.
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Figure 15. Velocity of a screw dislocation in silicon as a function of stress, at temperature
T ˆ 1000 K: (^), kMC prediction for a commensurate case (X0 ˆ 10:0h), with a
s̀tarting stress’ at about 20 MPa; (^), experimental data of George (1997) showing

a similar velocity variation; (*), kMC results for a incommensurate case (X0 ˆ 10:5h),
demonstrating a linear, stress± velocity relationship; (*), experimental data of Imai
and Sumino (1983), which are in agreement with the kMC results for an incommen-
surate case.



} 7. Summary
Our discussion has been focused on the issues that need to be addressed to obtain

a parameter-free theoretical prediction of dislocation mobility in silicon. The

approach presented here combines atomistic and mesoscopic (continuum) simula-

tions covering a range of scales from aÊ ngstroms and picoseconds to tens of microns

and seconds. The approach is parameter free in the sense that it does not involve any

ad-hoc assumptions or parameter ® tting. Equally important is the model’s ability to
predict new behaviour, to describe naturally some of the existing observations and to

do away with some of the existing ad-hoc assumptions, for example `weak obstacles’ .

At present, quantitative agreement between our simulations and the experiment is

admittedly less impressive. This is an indication that, although our approach appears

to capture the essential physics of dislocation motion silicon, its accuracy is still

limited.
We see several reasons why our simulations may not agree with experiments. In

addition to the previously mentioned inaccuracy of atomistic calculations, we have

not taken into account several potentially important eŒects, such as the interaction

between dislocations and intrinsic point defects and impurities and the eŒect of the

Fermi level position on the charge state of the moving kinks (so far only the neutral
states have been considered). However incomplete, our approach is operationally

well de® ned and therefore can be systematically extended to incorporate these and

other potentially important eŒects, if necessary. In view of the foregoing discussions,

it seems clear that the path to further improvement will need to include more accu-

rate atomistic data, kMC models with expanded catalogues of kink mechanisms, and
direct comparisons with existing and future experiments.
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Figure 16. Dislocation velocity plotted against glide stress: (*), predicted for a special case
when the ratio of the glide stress ¼yz to the non-glide stress ¼xy is ® xed at ¡0.16; (- - - -),
for comparison, dislocation velocity for an incommensurate case (X0 ˆ 10:5h) and
zero non-glide stress.
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