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Abstract 
 
The authors have simulated plane waves in solids using molecular dynamics. The 
propagation of both transverse and longitudinal waves have been studied in three 
directions in a crystal and both small as well as large amplitudes have been taken into 
consideration. Attenuation of the waves due to the presence of a vacancy defect in the 
crystal was also studied. The simulation results did not show any visible effects on the 
attenuation of the waves, but on reducing the box size an interesting existence of a beat 
phenomenon was observed. The authors were successfully able to reproduce the 
analytical phonon dispersion curve for Mo using Molecular Dynamics simulation.  
From the nonlinear vibration analysis, the simulation results have shown that the wave 
splits into waves of a number of frequencies.  Another interesting observation of large 
amplitude vibrations was that at maximum wave number the waves do not split and only 
a single frequency is seen to propagate. This effect is seen to be dominant until the crystal 
eventually melts.  
 
Introduction  
 
Wave propagation in solids is very important phenomenon from bridges to small crystals.  
In large structures such as bridges, waves have the ability to propagate through the 
structure and can cause large enough amplitudes to destroy them.  Vibrations are 
important at the atomic scale as well, since very high frequency vibrations are responsible 
for thermal properties such as thermal conductivity.  
 
Just as light is a wave motion that is considered as composed of particles called photons, 
we can think of the normal modes of vibration in a solid as being particle-like. Quantum 
of lattice vibration is called a phonon. 
 
The easiest wave in a solid to imagine is a plane wave.  In this case, a plane of material 
vibrates together in one direction while the wave passes through.  The mathematical 
formula for a plane wave is 
 
u = u0  exp[ i (k x ±  ω t) ] (1)  
 
where u is the displacement caused by the wave, u0 is the wave amplitude, k is the wave 
vector, x is the original particle position, t is time, and ω is the angular frequency. 
 
There are several models that can be used to predict how plane waves move through 
solids, the simplest being the continuum model.  Continuum theory assumes that a 
material is continuous with infinitesimal spacing between the particles of the material. 
The propagation of a plane wave in 1D in solids according to continuum theory is given 
by [1]: 
 

2

2

22

2 1
t
u

cx
u

∂
∂

=
∂
∂  (2)  

 

 3



The solution of this equation gives that the frequency with which a wave will propagate 
through the solid is directly proportional to the wave number.  
w = k c 
  
where  w – frequency of propagation of the wave through the solid 
 k – wave number of the wave 
 c – speed of sound in the material  
The velocity of a wave through the solid is a constant as it depends on the material 
properties, namely the Young’s modulus and the density of the material. 
Hence, as it can be seem from the equation continuum theory predicts a linear 
relationship between frequency and wave number.  
 
In real crystals, there is a finite spacing that exists between the atoms which alters the 
wave number frequency relationship. One simple model, which can be found in Kittel [2] 
models atoms as masses connected to each other using springs as shown in the figure 1.  
 

 
a

Figure 1. Simple Atom-Spring Model of Plane Wave Motion 
 
The equations of motion of the waves is given, from [2], as: 
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Thus as seen from the above equations, the equation of motion of the waves is a 
difference equation as opposed to a partial differential equation in the continuum case 
and its solution gives that the frequency is proportional to the absolute value of the sine 
of the wave number. Hence there is a nonlinear relationship between the frequency and 
the wave number.  
 
The relationship between the frequency and wave number is called phonon dispersion 
and their plot is known as the phonon dispersion curve.   The phonon dispersion curve for 
this model as given by equation (4) above is shown in figure 2. 
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Figure 2. Phonon Dispersion Curve for Simple Atom Model 

One important feature of the dispersion curve is the periodicity of the function. For unit 
cell length , the repeat period is , which is equal to the unit cell length in the 
reciprocal lattice. Therefore the useful information is contained in the waves with wave 
vectors lying between the limits  

a
k

a
ππ

<≤−  

This range of wave vectors is called the first Brillouin zone. At the Brillouin zone 
boundaries the nearest atoms of the chain vibrate in the opposite directions and the wave 
becomes a standing wave. Also as shown in the curve the straight dotted line represents 
the dispersion curve as would be predicted by the continuum theory showing a linear 
relationship between frequency and wave number. The solid line represents the 
dispersion curve as would be predicted by the simple atomistic theory showing a 
nonlinear relationship between frequency and wave number towards the edges of the 
Brillouin zone.  

Vibrations in real crystals are much more complicated than what is suggested above.  
Planes of atoms can vibrate and the waves can propagate in many directions.  The 
direction the wave propagates combined with the spatial wavelength is called its wave 
vector, k, and the magnitude of the wave vector is the wave number, k.  To make notation 
simpler, the actual wave number is not used but the ratio of the wave number to the wave 
number at the Brillouin zone.  This ratio is referred to as the k-ratio, and is always 
referred to a crystallographic direction.  The amplitude of vibration is also a vector,u0, 
denoting the direction of the vibration as well as its size.  

Molecular Dynamics Simulation of Phonons  
 
In order to simulate waves in crystalline solids, first a wave must be introduced into the 
solid.  The simplest wave is a plane wave, which can be represented as 
 
u = u0  exp[ i (k x ±  ω t) ] (5) 
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This wave can further be simplified by reducing our consideration to one family of plane 
waves 
 
u = u0  cos(k x) cos(ω t) (6) 

 
which is a standing wave.  This wave can be thought of the superposition of two plane 
waves, each of equal amplitude, traveling in opposite directions.  The usefulness of 
choosing a plane wave will become apparent later when measuring output is discussed. 

 
Not every wave vector k can be introduced into a molecular dynamics simulation.  Since 
most MD simulations utilize Periodic Boundary Conditions (PBC), this limits the number 
of wave vectors studied to be periodic in the box.  If the simulation is carried out in a 
cubic material with equal repeat vectors in each direction of length L, the possible wave 
vectors that will produce a standing wave are k=2nπ/Lwhere n is an integer.  Waves of 
shorter wavelengths will not represent a simple cosine wave form since the periodic 
boundary conditions will create imperfect images of the wave in the periodic boxes. 
 
The wave vector is specified as an input to an MD simulation; however its relationship to 
the frequency is unknown.  Also, if attenuation of the wave does occur, the amplitude of 
the wave as a function of time is also unknown.  One method of measuring wave 
frequency and amplitude ratio is by measuring kinetic energy of the simulation of a 
standing wave.  The particle velocity of a wave is simply the derivative of (ref above) 
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The kinetic energy can thus be written as 
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Carrying out this integration, and noting that the wave vector is periodic in the box 
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which can be re-written as 
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Thus, the kinetic energy is sinusoidal in time with a frequency of twice the frequency of 
the waveform.  The kinetic energy is also proportional to the square of the wave 
amplitude, enabling attenuation of the wave to be measured through a drop in kinetic 
energy amplitude. 
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Phonon Dispersion in Molybdenum 
 
Phonon Dispersion was studied in Crystal Molybdenum in Molecular Dynamics using the 
Finnis-Sinclair potential [6]. The simulations are performed using MD++ package [7]. 
The Mo crystal simulated was a perfect BCC structure repeated 12 times in each direction 
with periodic boundary conditions.  A standing wave was introduced into the solid 
according to the description of the previous chapter, and the wave frequencies were 
recorded.  All of the simulations were run for 1000 time steps, and the time step was 
varied according to the frequency, but ranged from 0.5 femto-seconds to 0.125 femto-
seconds.  The same simulation box was used for every simulation, only the wave vector 
and time steps were changed. 
 
Phonons in crystal Mo travel along the three crystallographic directions that contain 
planes of atoms.  These three directions are the [100], [110], and [111] directions.  Only 
waves that propagate in these three directions were studied. 
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Figure 3. Phonon Dispersion Curve for Mo 
 
In the [100] direction, 12 waves were introduced into the solid for the longitudinal and 
transverse waves.  The transverse waves have an amplitude direction of [010] and [001], 
and they are degenerate.  These waves have wave numbers of k = n  π / 12 a, where n is 
an integer from 1 to 12, and a is the lattice constant.  The wave number π/a is the edge of 
the first Brillion zone in the [100] direction. 
 
Wave propagation in the [111] direction is very similar to the [100] direction.  It has a 
Brillion zone boundary at π/a√3 and each phonon dispersion curve is simulated with 12 
waves with the same wave numbers.  The transverse waves are also degenerate, and the 
chosen amplitude directions are the [1-10] and [11-2] directions. 
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The [110] direction has its first Brillion zone boundary at π/a2√2, and thus only 6 
simulations are used.  The transverse waves are in the [1-10] and [001] directions, are not 
degenerate, and the two waveforms propagate with different frequencies.  This suggests 
that a transverse wave in an arbitrary direction with a wave vector in the [110] direction 
must be a combination of the two waves simulated. 
 
The phonon dispersion curves that were simulated are shown together in figure 3 above.  
The phonon dispersion curve can be calculated analytically using the Finnis-Sinclair 
potential as shown in figure 4 by [3].  Figure 4 also shows experimental data from 
Simonelli [4]. 
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Figure 4. Analytical Phonon Dispersion Curve and Experimental Data 
 
 
Attenuation due to Vacancies 
 
Attenuation of waves in solids is often modeled as a frequency dependent property.  The 
method just described allows us to study single frequency waves in solids, which will 
allow us to study attenuation at discrete frequencies.  Attenuation is likely to be caused 
by microstructure including vacancies, voids, dislocations, and grain boundaries. 
 
Attenuation of a single vacancy was simulated in a Molybdenum structure.  One atom 
was removed from the crystal lattice (cell repeated 12 times) and system was allowed to 
relax.  Then a wave was introduced and simulated for 5 ps with a k-ratio value of 1/12.  
The time response of the kinetic energy is shown below in figure 5.  There is no 
detectable attenuation occurring in this solid, the phonon appears to vibrate just as in a 
perfect crystal. 
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Figure 5. Kinetic Energy Plot for Vacancy with k-ratio=1/12 
 

 
 
In order to obtain some results, the box size was reduced from 12 repeats to 5 in each 
direction.  The k-ratio of the wave simulated is 1/5, the minimum in the new box.  The 
time response of the kinetic energy is shown below for 5 picoseconds and 50 picoseconds 
in figures 6 and 7 below. 

 9



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Time (ps)

K
in
et
ic
 E
ne
rg
y 
(eV
)

 
Figure 6. Kinetic Energy Plot for Vacancy and k-ratio 1/5 
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Figure 7. Kinetic Energy Plot of Beat Phenomenon 
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These figures illustrate that there is likely no attenuation occurring in the solid.  The time 
pattern that does occur is called the beat phenomenon [5].  This occurs when the time 
signal is a sum of two sinusoids that are very near in frequency.  Using a least squares 
best fit of this data, the frequencies of the two signals are 3.99 Thz and 4.06 Thz.  The 
amplitudes of the two signals are not equal, the ratio of the former to the latter is 
approximately 0.6.  The beat pattern may occur in simulation using a crystal repeat of 12, 
however the second waveform may have such a close frequency and small amplitude 
such that its effects are unnoticeable.  This may suggest that as the vacancy concentration 
increases, the frequency difference of split waves increases and the amplitude ratio may 
move closer to unity. 
 
From this simulation we do not expect to see any attenuation due to vacancies.  One 
reason attenuation might not occur in the simulation is that the simulated time may be too 
small. 
 
 
Nonlinear Vibrations 
 
Phonon vibrations are assumed to be very low amplitude vibrations of crystalline solids 
which allows the use of linear force-displacement relations which give rise to sinudoidal 
waves.  If the atoms are displaced far enough the forces and displacements are not 
linearly related and the vibrations become nonlinear.  
 
An interesting point on the phonon dispersion curve is at the end of the Brillouin zone for 
the [100] and [111] directions.  Here, the longitudinal and transverse waves of both 
directions converge to the same frequency.  MD simulations of the nonlinearity show that 
the vibrations do not have a strong nonlinear behavior.  
 
MD simulations were carried out using the simulation box used to create the phonon 
dispersion curves.  The wave vector was set to the maximum, and a time step of 0.125 fs 
was used.  All the simulations were run for 1.25 ps.  The results show that the waves at 
even very high amplitudes (0.5 angstrom) only exhibit single frequency oscillation.  
Figure 10 shows the time response of the kinetic energy for a longitudinal wave in the 
[100] direction with a 0.5 angstrom amplitude.  All simulations at the Brillouin zone 
wave number in the [100] and [111] directions showed this type of response, though the 
frequencies did vary some.  To contrast this, figure 8 shows the kinetic energy response 
of a 0.5 angstrom wave in the [111] direction for a wave number of 1, the minimum for 
the box size. Table 1 below shows the frequencies of the waves, both longitudinal and 
transverse, as a function of the wave amplitude for the [100] and [111] directions.  
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Figure 8.  ½ Angstrom Vibration in the [111] direction k-ratio 1/12 
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Figure 9. ½ Angstrom Vibration in the [111] direction k-ratio 1 
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Figure 10. ½ Angstrom Vibration in the [100] direction k-ratio 1 
 
 

[100] Longitudinal [100] Transverse [111] Longitudinal [111] Transverse 
Amplitude frequency Amplitude frequency Amplitude frequency Amplitude frequency
Angstroms Thz Angstroms Thz Angstroms Thz Angstroms Thz 

0.01 6.394 0.01 6.394 0.01 6.399 0.01 6.398
0.05 6.395 0.05 6.398 0.05 6.529 0.05 6.496

0.1 6.409 0.1 6.409 0.1 6.914 0.1 6.788
0.5 6.759 0.5 6.759 0.5 NA 0.5 NA 

 
Table 1.  Frequencies of Nonlinear Waves at the Brillouin Zone 

  
 
Conclusion 
 
It has been shown that MD can be used to simulate phonons in perfect crystals.  The 
method of introducing a standing wave and measuring the kinetic energy frequency can 
reproduce the phonon dispersion curve and can ultimately allow us to study properties of 
phonons at discrete frequencies. 
 
Attenuation effects of vacancies were studied and it was found that for simulation times 
of 50 pico-seconds or less, there was no attenuation.  For large vacacy concentrations, the 
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kinetic energy split into two waves with nearly equal frequencies creating a beat 
phenomenon. 
 
Nonlinear crystal vibrations were also investigated at the end of the Brillion zone for 
[100] and [111] directions.  At this point, it appears that even very high amplitude 
vibrations occur at single frequencies unlike nonlinear vibrations at lower wave number 
waves. 
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Appendix A – Sample Script File for Simulation of Longitudinal Wave in a Crystal with Voids 
 
# -*-shell-script-*- 
# mowave_long_voids.script 
# Chris Weinberger - Wei Cai 
# ME 346 - Molecular Simulations 
# 
# This script creates a perfect BCC Mo crystal 
# it creates a vacancy by removing 1 atom 
# relaxes the system using conjugate gradient relaxation 
# introduces a sinusoidal wave and saves Kinetic Energy 
# 
setnolog 
setoverwrite 
dirname = runs/mo-example 
shmsize = 31457280 shmallocate #10MB 
#-------------------------------------------- 
#Read in potential file 
# 
potfile = ~/Codes/MD++/potentials/mo_pot readpot 
#------------------------------------------------------------ 
#Create Perfect Lattice Configuration 
# 
latticestructure = body-centered-cubic latticeconst = 3.1472 #(A) for 
Mo 
makecnspec = [  1   0   0   5 
                0   1   0   5 
                0   0   1   5 ] 
makecn finalcnfile = perf.cn writecn     
#------------------------------------------------------------ 
#Remove 1 atom 
# 
# Remove atoms - 1 In the corner (atom #0) 
pickfixedatomspec = [ 1 0 ] removepickedatoms              
# 
# 
#------------------------------------------------------------ 
# Relax after atom is removed 
# 
#Conjugate-Gradient relaxation 
conj_ftol = 1e-4 conj_itmax = 1000 conj_fevalmax = 1000 
conj_fixbox = 1 #conj_monitor = 1 conj_summary = 1 
relax finalcnfile = relaxed.cn writecn 
#sleep quit 
#quit 
#------------------------------------------------------------- 
 
#Initiate a wave form 
# 
# Wave Amplitude 0.01 Angstroms (Linear-small Amplitude) 
# Oscillation Direction [1 0 0] 
# Wave Vector [1 0 0] in reducec coordinates 
# 
# 
 
mkwavespec = [ 1  0.01   #wave amplitude in Angstrom 
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                  1 0 0 #osillation direction (will be normalized) 
                 1 0 0 #wave vector in reduced space 
               0        #0: no velocity, 1: with velocity 
             ] 
makewave 
#------------------------------------------------------------- 
#Plot Configuration 
atomradius = 1.0 bondradius = 0.3 bondlength = 0 
atomcolor = cyan highlightcolor = purple backgroundcolor = gray 
bondcolor = red fixatomcolor = yellow 
energycolorbar = [ 1 -6.8 -6.55 ]  highlightcolor = red 
plot_select = 3 plot_highlight = [ 0 0 1 2 3 4 5 6 7 8 9 ] 
plotfreq = 10  
rotateangles = [ 0 0 0 1.1 ] 
# 
win_width = 600 win_height = 600 
openwin alloccolors rotate saverot refreshnnlist eval plot 
#sleep quit 
#------------------------------------------------------------- 
#MD setting 
# 
scalevelocity = 0 
equilsteps = 0  timestep = 0.0005 # (ps) 
atommass = 95.94 #Mo: Atomic Mass  (g/mol) 
totalsteps = 100000 
plotfreq = 50 
#saveprop = 0 
saveprop = 1 savepropfreq = 10 openpropfile 
run 
sleep quit 
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Appendix B – Sample Script File for Simulation of Nonlinear wave in a Perfect Crystal 
 
# -*-shell-script-*- 
# mowave_nonlinear.script 
# Chris Weinberger - Wei Cai 
# ME 346 - Molecular Simulations 
# 
# This script creates a perfect Mo Lattice 
# It introduces a sinusoidal wave into the solid 
# with a large amplitude and records Kintetic Energy  
# 
 
setnolog 
setoverwrite 
dirname = runs/mo-example 
shmsize = 31457280 shmallocate #10MB 
#-------------------------------------------- 
#Read in potential file 
# 
potfile = ~/Codes/MD++/potentials/mo_pot readpot 
#------------------------------------------------------------ 
#Create Perfect Lattice Configuration 
# 
latticestructure = body-centered-cubic latticeconst = 3.1472 #(A) for 
Mo 
makecnspec = [  1   0   0   12 
                0   1   0   12 
                0   0   1   12  ] 
makecn finalcnfile = perf.cn writecn                 
#------------------------------------------------------------ 
#Initiate a wave form 
# 
# Nonlinear (large Amplitud) Waveform 
# Oscillation Direction [1 1 1] 
# Wave Vector [12 12 12] 
# 
mkwavespec = [ 1  0.5   #wave amplitude in Angstrom 
                1 1 1 #osillation direction (will be normalized) 
                12 12 12  #wave vector in reduced space 
               0        #0: no velocity, 1: with velocity 
             ] 
makewave 
#------------------------------------------------------------- 
#Plot Configuration 
atomradius = 1.0 bondradius = 0.3 bondlength = 0 
atomcolor = cyan highlightcolor = purple backgroundcolor = gray 
bondcolor = red fixatomcolor = yellow 
energycolorbar = [ 1 -6.8 -6.55 ]  highlightcolor = red 
plot_select = 3 plot_highlight = [ 0 0 1 2 3 4 5 6 7 8 9 ] 
plotfreq = 10  
rotateangles = [ 0 0 0 1.1 ] 
# 
win_width = 600 win_height = 600 
openwin alloccolors rotate saverot refreshnnlist eval plot 
#sleep quit 
#------------------------------------------------------------- 
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#Conjugate-Gradient relaxation 
conj_ftol = 1e-7 conj_itmax = 1000 conj_fevalmax = 1000 
conj_fixbox = 1 #conj_monitor = 1 conj_summary = 1 
#sleep quit 
#quit 
#------------------------------------------------------------- 
#MD setting 
scalevelocity = 0 
equilsteps = 0  timestep = 0.00025 # (ps) 
atommass = 95.94 #Mo: Atomic Mass  (g/mol)  
totalsteps = 10000 
plotfreq = 50 
#saveprop = 0 
saveprop = 1 savepropfreq = 10 openpropfile 
run 
sleep quit 
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