Theory and Applications of Inelasticity

In this course, we discuss plasticity theory, its applications, and fracture.

Study of (ductile) fracture in engineering materials requires an understanding of plasticity in front of the crack tip.

This course is the sequel of ME340 Elasticity, in which we limit the load such that the stress is below yield stress everywhere.

In this course, we allow the load to reach (or exceed) yield stress and allow the structure to develop (permanent) plastic strain.

The goal is (still) to find the stress, strain, and displacement fields.

Usually, only a part of the structure will undergo plastic deformation, while the rest remains in the elastic regime.

So as an intermediate step, we also need to determine the elastic-plastic boundary.

The other complication is that, in the plastic region, the total strain is the sum of elastic and plastic strain.

We shall assume that the elastic strain is proportional to stress. But the plastic strain and total strain are in general not proportional to stress. The plastic strain and total strain depend on the history of loading.
Goal of this course:

1. The theory of plasticity
 i.e. the physics behind the phenomena and how to describe it mathematically (PDE)

2. Method of solution (not including FEM)
 - Analytical method
 - Semi-analytical method involving Matlab

3. Solution of classical plasticity problems

A major goal of this course is to develop an 'intuitive feel' of plasticity problems, so that

- when you encounter a simple plasticity problem in your research, you can use an analytical solution, or write a simple numerical code to solve it;
- when you encounter an finite element method (FEM) solution, you can quickly tell whether the solution 'makes sense'.

Relationship with other courses

- ME 340 "Elasticity" (or equivalent as prerequisite)
- CEE 292 "Computational Micromechanics" (Spring 2013)
 deals with the same physical phenomenon - plasticity
 focuses on numerical algorithm

This course focuses on the physics of the solution, analytical method.
From Elasticity theory, we know

\[(\sigma_{22})_{\text{max}} = K \cdot \frac{F}{A'}\]

Stress concentration factor

when stress is below \(\sigma_Y\) (yield stress) everywhere.

\(K = 3\) when \(a \gg r\).

Q: What is the stress distribution when \((\sigma_{22})_{\text{max}} > \sigma_Y\)?

Q: What is the size of the plastic zone?

Slit-like crack

Elasticity theory predicts

\[\sigma \sim \frac{1}{r}\]

which surely will exceed \(\sigma_Y\) for arbitrarily small \(F\).

Q: How is stress field modified when \(\sigma_Y\) is accounted for?

Q: What is the size (shape) of the plastic zone?

Q: What is the effect of \(\sigma_Y\) on fracture toughness?
The purpose of this lecture is to gather all equations dealing with a perfectly plastic, isotropic medium, with brief derivations and discussions.

The types of relations include:

- equilibrium condition for stress (§4)
- compatibility condition for total strain (§5)
- stress-strain relation in Elastic Regime (§7)
- yield condition (§8)
- stress-strain relation (flow rule) in Plastic Regime (§9)

A summary of key formulas is given in §10.

The goal is to provide a global view of a (simplest) plasticity theory. More discussions on yield condition and flow rule will be given, with examples, in subsequent lectures.

A perfectly plastic medium (i.e. no hardening) is assumed here to keep the discussion simple. Various hardening rules will be discussed later.
Similar to the theory of elasticity, in the theory of plasticity we will also be dealing with stress, strain and displacement field. The main difference is that the stress-strain relationship is non-linear (and history-dependent) in the theory of plasticity.

§1. Displacement Field

Reference state \(X \) \(\hat{X} \)

Deformed state

\[\mathbf{U} = \mathbf{X} - \hat{\mathbf{X}} \]

Displacement field \(\mathbf{U}(\mathbf{X}) \)

In this class, we will assume \(|\mathbf{U}| \ll 1\) and ignore the difference between \(\mathbf{U}(\mathbf{X}) \) and \(\mathbf{U}(\hat{\mathbf{X}}) \).

Displacement field in component form:

\[
\begin{align*}
U_x (X, Y, Z) \\
U_y (X, Y, Z) \\
U_z (X, Y, Z)
\end{align*}
\]

§2. Strain Field

\[
\begin{align*}
\varepsilon_{ij} &= \frac{1}{2} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) = \frac{1}{2} (U_{ij} + U_{ji}) \\
\end{align*}
\]

\(i, j = 1, 2, 3 \)

\(x_1 = X \)

\(x_2 = Y \)

\(x_3 = Z \)

\[
\begin{align*}
\varepsilon_{xx} &= U_{xx} \\
\varepsilon_{xy} &= \frac{1}{2} (U_{xx}Y + U_{yy}X) \\
\end{align*}
\]

The engineering strain, e.g., \(\varepsilon_{xy} = U_{xy} + U_{yx} \), is not a component of the strain tensor.
§3. Stress Field

\[\sigma_{ij} \text{: force per unit area on } i\text{-th face in } j\text{-th direction} \]

Given the stress at point \(P \), the traction force \(T_j \) per unit area on any surface element with normal vector \(\mathbf{n} \) is

\[T_j = \sigma_{ij} \mathbf{n}_i \]

\(\mathbf{u}_i \) is a vector

\(\varepsilon_{ij}, \sigma_{ij} \) are (symmetric) second order tensors.

The components change due to transformation of coordinate system as

\[\mathbf{u}'_i = \mathbf{Q}_{ip} \mathbf{u}_p \]

\[\varepsilon'_{ij} = \mathbf{Q}_{ip} \varepsilon_{pq} \mathbf{Q}_{jq} \]

\[\sigma'_{ij} = \mathbf{Q}_{ip} \sigma_{pq} \mathbf{Q}_{jq} \]

(For more details, see ME340 Lecture Notes, Winter 2013.)

§4. Equilibrium Condition for Stress

\[\sigma_{ij,;} + F_j = 0 \]

in tensor notation

\[\nabla \cdot \mathbf{\sigma} + \mathbf{F} = 0 \]

in component form:

\[\frac{\partial}{\partial x} \sigma_{xx} + \frac{\partial}{\partial y} \sigma_{yx} + \frac{\partial}{\partial z} \sigma_{xz} + F_x = 0 \]

\[\frac{\partial}{\partial x} \sigma_{xy} + \frac{\partial}{\partial y} \sigma_{yy} + \frac{\partial}{\partial z} \sigma_{yz} + F_y = 0 \]

\[\frac{\partial}{\partial x} \sigma_{zx} + \frac{\partial}{\partial y} \sigma_{zy} + \frac{\partial}{\partial z} \sigma_{zz} + F_z = 0 \]

Note: The equilibrium condition is satisfied regardless of whether the material is elastic or plastic.
§5 Compatibility condition for total strain

\[\varepsilon_{ij} = \frac{1}{2} (u_{ij} + u_{ji}) \]

is the total strain

\[\varepsilon_{ij} = \varepsilon_{ij}^{el} + \varepsilon_{ij}^{pl} \]

\[\uparrow \quad \text{elastic strain} \quad \uparrow \quad \text{plastic strain} \]

\(\varepsilon_{ij} \) has to satisfy the compatibility condition if the material is not ruptured.

Compatibility condition:

\[\varepsilon_{ij,kl} + \delta_{ik} \varepsilon_{ij,l} - \varepsilon_{ik,jl} - \varepsilon_{jl,ik} = 0 \]

The compatibility condition guarantees that \(\varepsilon_{ij} \) (6 DOF at every point) can be written in terms of spatial derivatives of \(u_i \) (3 DOF).

The compatibility condition is automatically satisfied if we start from \(u_i \) and obtain \(\varepsilon_{ij} \) as \(\frac{1}{2} (u_{ij} + u_{ji}) \).

(For more details, see ME340 Lecture Notes Winter 2013).

Note: The elastic strain field \(\varepsilon_{ij}^{el} \) does not have to satisfy the compatibility condition if \(\varepsilon_{ij}^{pl} \neq 0 \).

* up to this point, every equation is the same as in elasticity theory (provided \(\varepsilon_{ij} = 0 \)).
§6. Tensile Stress-Strain Curve

Stress-strain curve of a ductile material in a tensile test

Stress-strain curve of a perfectly plastic material (idealization)

We will discuss more complex (realistic) models of plastic material later.

\[\sigma_y: \text{yield stress} \]

Note: After the yield point is reached, the stress-strain curve becomes history dependent.

§7 Constitutive (Stress-strain) Relation in the Elastic Regime

If the stress never reaches the yield condition (i.e. \(\sigma < \sigma_y \) in tensile test) then the stress-strain relation is linear and history-independent.

Generalized Hooke’s Law: \[\sigma_{ij} = C_{ijkl} \varepsilon_{kl} \]

Isotropic elasticity: \[C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) \]

\[\sigma_{ij} = \lambda \varepsilon_{jk} \delta_{ij} + 2 \mu \varepsilon_{ij}, \quad \lambda = \frac{2\mu \nu}{1-2\nu} \]

\(\mu \): Shear modulus

\(\nu \): Poisson’s ratio
In component form

\[\sigma_{xx} = (\lambda + 2\mu) \varepsilon_{xx} + \lambda \varepsilon_{yy} + \lambda \varepsilon_{zz} \]
\[\sigma_{yy} = \lambda \varepsilon_{xx} + (\lambda + 2\mu) \varepsilon_{yy} + \lambda \varepsilon_{zz} \]
\[\sigma_{zz} = \lambda \varepsilon_{xx} + \lambda \varepsilon_{yy} + (\lambda + 2\mu) \varepsilon_{zz} \]
\[\varepsilon_{xx} = \frac{1}{E} \sigma_{xx} - \frac{1}{E} \sigma_{yy} - \frac{1}{E} \sigma_{zz} \]
\[\varepsilon_{yy} = -\frac{1}{E} \sigma_{xx} + \frac{1}{E} \sigma_{yy} - \frac{1}{E} \sigma_{zz} \]
\[\varepsilon_{zz} = -\frac{1}{E} \sigma_{xx} - \frac{1}{E} \sigma_{yy} + \frac{1}{E} \sigma_{zz} \]

\[E = \frac{2\mu(1+\nu)}{3} \quad \text{Young's modulus} \]

Define hydrostatic stress (mean normal stress),

\[\bar{\sigma} \equiv \frac{1}{3} \sigma_{ii} = \frac{1}{3} (\sigma_{xx} + \sigma_{yy} + \sigma_{zz}) \]

\[\sigma_{xx} + \sigma_{yy} + \sigma_{zz} = (3\lambda + 2\mu) (\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) \]

\[K = \frac{1}{3} (3\lambda + 2\mu) = \frac{2\mu(1+\nu)}{3(1-2\nu)} = \frac{E}{3(1-2\nu)} \quad \text{Bulk modulus} \]

\[\bar{\sigma} = 3K \bar{\varepsilon} \]

Define deviatoric stress tensor,

\[S_{ij} \equiv \sigma_{ij} - \bar{\sigma} \delta_{ij} \]

\[S_{xx} = \sigma_{xx} - \bar{\sigma}, \quad S_{yy} = \sigma_{yy} - \bar{\sigma}, \quad S_{zz} = \sigma_{zz} - \bar{\sigma} \]
\[S_{xy} = \sigma_{xy}, \quad S_{yz} = \sigma_{yz}, \quad S_{zx} = \sigma_{zx} \]

\[e_{xx} = \varepsilon_{xx} - \bar{\varepsilon}, \quad e_{yy} = \varepsilon_{yy} - \bar{\varepsilon}, \quad e_{zz} = \varepsilon_{zz} - \bar{\varepsilon} \]
\[e_{xy} = \varepsilon_{xy}, \quad e_{yz} = \varepsilon_{yz}, \quad e_{zx} = \varepsilon_{zx} \]

The relation between deviatoric stress and deviatoric strain is very simple

\[S_{ij} = 2\mu e_{ij} \quad \text{for all } i, j = 1, 2, 3 \]

Obviously, the equations here are also the same as in elasticity theory.

An emphasis on deviatoric stress-strain is given here to better compare with plastic strain (which is all deviatoric).
§ 8 Yield Condition

We postulate that the yield condition (i.e., onset of plastic deformation) can be described by a function of stress tensor

\[
f(\{\sigma_{ij}\}) = 0, \quad \text{i.e.} \quad f(\sigma_{xx}, \sigma_{yy}, \sigma_{zz}, \sigma_{yz}, \sigma_{zx}, \sigma_{xy}) = 0
\]

At this point, \(f \) is a general function.

Note that time and rates \((\dot{\sigma}_{ij} = \frac{d}{dt} \sigma_{ij}, \ \dot{\epsilon}_{ij} = \frac{d}{dt} \epsilon_{ij}) \) do not enter \(f \).

So this is still an idealization, which is well justified by experimental observations of ductile metals.

We shall assume that the material is isotropic, then the value of \(f \) should not change by a coordinate transformation, i.e.

\[
f(\{\sigma_{ij}\}) = f(\{\sigma'_{ij}\}), \quad \text{where} \quad \sigma'_{ij} = Q_{ip} \sigma_{pj} Q_{pj}
\]

This means that we must be able to write \(f \) in terms of stress invariants — functions of \(\sigma_{ij} \) that does not change by coordinate transformation.

For example, the mean normal stress \(\bar{\sigma} \equiv \frac{1}{3} \sigma_{ii} \) is a stress invariant, i.e.

\[
\bar{\sigma} = \frac{1}{3} \sigma_{ii} = \frac{1}{3} \sigma'_{ii}
\]

Other stress invariants can be defined in terms of the principal stress values: \(\sigma_1, \sigma_2, \sigma_3 \)

They are the normal stress values in a special coordinate system such that all shear stresses vanish.
Mathematically, σ_1, σ_2, σ_3 are the eigenvalues of the stress matrix
\[
[\sigma_{ij}] = \begin{bmatrix}
\sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\
\sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\
\sigma_{zx} & \sigma_{zy} & \sigma_{zz}
\end{bmatrix}
\]

i.e. σ_1, σ_2, σ_3 are the three solutions of the eigen-equation
\[
\det[\sigma - \lambda I] = \begin{vmatrix}
\sigma_{xx} - \lambda & \sigma_{xy} & \sigma_{xz} \\
\sigma_{yx} & \sigma_{yy} - \lambda & \sigma_{yz} \\
\sigma_{zx} & \sigma_{zy} & \sigma_{zz} - \lambda
\end{vmatrix} = 0 \quad-----------(1)
\]

The eigen-equation is a polynomial equation of λ:
\[
\lambda^3 - I_1 \lambda^2 - I_2 \lambda - I_3 = 0 \quad-------------(2)
\]

where I_1, I_2, I_3 are stress invariants.

Because σ_1, σ_2, σ_3 are solutions of the eigen-equation, we must have
\[
(\lambda - \sigma_1)(\lambda - \sigma_2)(\lambda - \sigma_3) = 0
\]

\[
\lambda^3 - (\sigma_1 + \sigma_2 + \sigma_3) \lambda - (\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_3 \sigma_1) \lambda - \sigma_1 \sigma_2 \sigma_3 = 0 \quad---------(3)
\]

Comparing Eq. (2) and Eq. (3), we get:
\[
\begin{align*}
I_1 &= \sigma_1 + \sigma_2 + \sigma_3 = 3 \overline{\sigma} \\
I_2 &= -(\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_3 \sigma_1) \\
I_3 &= \sigma_1 \sigma_2 \sigma_3
\end{align*}
\]

Three stress invariants in terms of the principal stress values

(Note: some books choose opposite sign in the definition of I_2)

The stress invariants can also be computed from $[\sigma_{ij}]$ of an arbitrary coordinate system (for which shear stresses do not vanish). Comparing Eq. (1) and Eq. (2), we get:
\[
\begin{align*}
I_1 &= \sigma_{xx} + \sigma_{yy} + \sigma_{zz} = 3 \overline{\sigma} \\
-I_2 &= \left| \begin{array}{ccc}
\sigma_{xy} & \sigma_{xz} \\
\sigma_{yx} & \sigma_{yz} \\
\sigma_{zx} & \sigma_{zy}
\end{array} \right| + \left| \begin{array}{ccc}
\sigma_{xx} & \sigma_{xz} \\
\sigma_{zx} & \sigma_{zz}
\end{array} \right| + \left| \begin{array}{ccc}
\sigma_{xx} & \sigma_{xy} \\
\sigma_{yx} & \sigma_{yy}
\end{array} \right| = (\sigma_{xx} \sigma_{yy} + \sigma_{yy} \sigma_{zz} + \sigma_{zz} \sigma_{xx}) \\
\frac{1}{2} I_3 &= \left| \begin{array}{ccc}
\sigma_{xx} & \sigma_{xy} \\
\sigma_{yx} & \sigma_{yy}
\end{array} \right| + \left| \begin{array}{ccc}
\sigma_{xx} & \sigma_{xz} \\
\sigma_{zx} & \sigma_{zz}
\end{array} \right| + \left| \begin{array}{ccc}
\sigma_{xx} & \sigma_{yz} \\
\sigma_{zy} & \sigma_{yy}
\end{array} \right| = \frac{1}{2} (\sigma_{ij} \delta_{ij} - \sigma_{ij} \sigma_{ji})
\end{align*}
\]
Because the yield condition is experimentally found to be independent of pressure (i.e. hydrostatic stress $\bar{\sigma}$), it is more convenient to express function f in terms of the invariants of deviante stress s_{ij}.

Let s_1, s_2, s_3 be the principal values of s_{ij}.

i.e. they are the solution of the eigen-equation

$$\det (\lambda I - S) = \begin{vmatrix} S_{xx} - \lambda & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} - \lambda & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} - \lambda \end{vmatrix} = 0 \quad \cdots \cdots \quad (4)$$

$$\lambda^3 - J_1 \lambda^2 + J_2 \lambda + J_3 = 0 \quad \cdots \cdots \quad (5)$$

where J_1, J_2, J_3 are invariants of deviante stress s_{ij}.

$$(\lambda - s_1)(\lambda - s_2)(\lambda - s_3) = 0$$

$$\lambda^2 - (s_1 + s_2 + s_3) \lambda + (s_1 s_2 + s_2 s_3 + s_3 s_1) = 0 \quad \cdots \cdots \quad (6)$$

Comparing Eq (4) and Eq (5), we get

$$\begin{cases} J_1 = s_1 + s_2 + s_3 = 0 \\ J_2 = -(s_1 s_2 + s_2 s_3 + s_3 s_1) = \frac{1}{2} (s_1^2 + s_2^2 + s_3^2) \\ J_3 = s_1 s_2 s_3 = \frac{1}{2} (s_1^3 + s_2^3 + s_3^3) \end{cases} \quad (\text{consistent with Rogers-Hodge})$$

Comparing Eq (4) and Eq (6), we get

$$\begin{cases} J_1 = S_{xx} + S_{yy} + S_{zz} = 0 \\ J_2 = -\frac{1}{2} (S_{xx} + S_{yy} + S_{zz}) + (S_{yx} \cdot S_{zy} + S_{zx} \cdot S_{xy}) \\ J_3 = \frac{1}{2} S_{ij} S_{ij} \end{cases} \quad (J_2 = \frac{1}{2} S_{ij} S_{ij} \text{ is a measure of the magnitude of the deviante stress, similar to the norm of a vector squared.})$$
Here are the stress invariants we have obtained:

\[I_1 = 3 \bar{\sigma}, \quad I_2 = -\frac{1}{2} (\sigma_{ij} \sigma_{ij} - \sigma_j \sigma_j), \quad I_3 = \det(\sigma_{ij}) \]

\[\bar{\sigma}, \quad J_1 = 0, \quad J_2 = \frac{1}{2} S_{ij} S_{ij}, \quad J_3 = \det(S_{ij}) \]

The yield condition can be written as either

\[f(I_1, I_2, I_3) = 0 \]

or

\[f(\bar{\sigma}, J_2, J_3) = 0 \]

Experimentally, it was found that \(\bar{\sigma} \) has no significant effect on the yield condition (and plastic deformation in general, which conserves volume).

So the yield condition of isotropic medium can be written as

\[f(J_2, J_3) = 0 \]

In the most widely used yield condition (Johnson's)

the dependence on \(J_3 \) is also dropped.

\[f(J_2) = J_2 - k^2 = 0 \quad \text{--- Von Mises criterion} \]

In another widely used yield condition, \(k_T \) is the greatest shear stress.

If \(\sigma_1 \geq \sigma_2 \geq \sigma_3 \), then \(\sigma_1 - \sigma_3 = 2k_T \) i.e. \(s_1 - s_3 = 2k_T \) \(-- \text{Tresca criterion} \)

In general, \((s_1 - s_6)^2 - 4k_T^2 \left[(s_2 - s_6) - 4k_T^2 \right] \left((s_5 - s_6) - 4k_T^2 \right) = 0 \)

\[\rightarrow f(J_2, J_3) = 4J_2^3 - 27J_2^2 - 36k_T^2 J_2 + 96k_T^6 J_2 - 64k_T^4 = 0 \]

Mathematically much more complex.

More difficult to use if principal stress not already known.

In practice, the difference between Von Mises and Tresca criteria is less than 15%, within typical experimental error.

The simple form of von Mises criterion makes it most popular.

(For experimental verification of Von Mises criterion, see Lecture Note 2)
We now relate the parameter k to the yield stress σ_y in tensile test.

In tensile test, $\sigma_{xx} > 0$, $\sigma_{yy} = \sigma_{zz} = 0$

$$\overline{\sigma} = \frac{1}{3} \sigma_{xx}$$

$$\sigma_{xx} = \frac{2}{3} \sigma_{xx}, \quad \sigma_{yy} = -\frac{1}{3} \sigma_{xx}, \quad \sigma_{zz} = -\frac{1}{3} \sigma_{xx}$$

$$J_2 = \frac{1}{2} (\sigma_{xx}^2 + \sigma_{yy}^2 + \sigma_{zz}^2) = \frac{1}{2} \cdot \frac{6}{9} \sigma_{xx}^2 = \frac{1}{3} \sigma_{xx}^2$$

At yield point $J_2 = \frac{1}{3} \sigma_y^2 = k^2$

$$\therefore \sigma_y = \sqrt{3} k, \quad k = \frac{\sigma_y}{\sqrt{3}} \quad \text{(Von Mises)}$$

(For Tresca yield condition, $k_T = \frac{\sigma_y}{2}$)

If the sample is subjected to pure shear stress σ_{xy} (all other stress components = 0), then $J_2 = \sigma_{xy}$

At onset of yield, $\sigma_{xy} = T_c$, $J_2 = T_c^2 = k^2$

$$\therefore T_c = k, \quad \text{i.e.} \ k \text{ is the critical shear stress when (Von Mises)}$$

a pure shear stress is applied.

(For Tresca yield condition, $k_T = T_c$ also)

When σ_{xx} and σ_{xy} are the two non-zero stress components,

$$J_2 = \frac{1}{3} \sigma_{xx}^2 + \sigma_{xy}^2$$

Von Mises yield condition

$$\frac{1}{3} \sigma_{xx}^2 + \sigma_{xy}^2 = k^2$$

Exercise: draw the curve corresponding to the Tresca yield condition on the $\sigma_{xx} - \sigma_{xy}$ plane using Matlab.
Testing Yield Criterion by Experiments

Consider a tube subjected to both tension force F and torque T.

The element shown above will be subjected to both normal stress σ_{xx} and shear stress σ_{xz}.

Increasing F and T together while keeping $\frac{T}{F}$ at constant allows us to increase σ_{xx} and σ_{xz} together with $\frac{\sigma_{xz}}{\sigma_{xx}} = \text{const}$.

Measuring the critical values of σ_{xx}, σ_{xz} for various allows us to map the yield surface and compare with theoretical models.

* Von Mises criterion seem to agree better with experiments than Tresca.

From:
Taylor and Quinney
Phil. Trans. Roy. Soc. A 230, 323 (1931)

Fig. 4. Experimental results of Taylor and Quinney from combined torsion and tension tests, each metal being work-hardened to the same state for all tests. The Mises law is $\sigma^2 + 3\tau^2 = Y^2$, while the Tresca law is $\sigma^2 + 4\tau^2 = Y^2$, where $\sigma = \text{tensile stress}, \tau = \text{shear stress}, Y = \text{tensile yield stress}$.

- Copper
- Aluminium
- Mild Steel
§9 Constitutive (stress-strain) Relation in the Plastic Regime

For simplicity, here we consider a perfectly plastic material (no strain hardening). Then in the plastic regime \(f(\{\sigma_{ij}\}) = J_2 - k^2 = 0 \), \(k \) remain constant

\[i.e. \quad J_2 = k^2, \quad \dot{J}_2 = 0 \]

However, this does not mean that all stress components stays constant. \(J_2 = k^2 \) defines a 'yield surface' in the stress space. The stress components can vary within the yield surface.

Recall \(J_2 = \frac{1}{2}(S_{xx}^2 + S_{yy}^2 + S_{zz}^2) + (S_{xy}^2 + S_{yx}^2 + S_{zx}^2) \)

\[\dot{J}_2 = S_{xx}\dot{S}_{xx} + S_{yy}\dot{S}_{yy} + S_{zz}\dot{S}_{zz} + 2S_{xy}\dot{S}_{xy} + 2S_{yx}\dot{S}_{yx} + 2S_{zx}\dot{S}_{zx} = \dot{S}_{ij}\dot{S}_{ij} = 0 \]

This is a constraint on the stress rate \(\dot{S}_{ij} \).

While the stress stays on the yield surface, the material will undergo plastic strain \(\varepsilon_{ij}^{pl} \), so that \(\varepsilon_{ij} = \varepsilon_{ij}^{el} + \varepsilon_{ij}^{pl} \)

\(\varepsilon_{ij}^{el} \) remain proportional to stress \(\sigma_{ij} \), \(\sigma_{ij} = 3\varepsilon_{ij}^{el} + 2\mu\varepsilon_{ij}^{pl} \)

\[\sigma_{ij} = 2\mu\varepsilon_{ij}^{pl} \]

Q: How to determine \(\varepsilon_{ij}^{pl} \)?

It took a long time for scientists to find out the correct way to compute \(\varepsilon_{ij}^{pl} \) (after many wrong starts).

It became known that \(\varepsilon_{ij}^{pl} \) is history dependent, i.e. it cannot be determined by the current stress state \((\sigma_{ij}) \).

Instead, \(\varepsilon_{ij}^{pl} \) must be determined by accumulating small increments.

\[\varepsilon_{ij}^{pl} = \int_0^t \varepsilon_{ij}^{pl}(t) \, dt \]

In addition, it has been found that plastic deformation produces negligible volume change. \(\varepsilon_{ii}^{pl} = 0, \quad \dot{\varepsilon}_{ii}^{pl} = 0 \)

\(\therefore \) deviatoric plastic strain is the same as plastic strain.
Assumption of "associative flow".

When yield condition is reached, $\dot{\varepsilon}_{ij}^p$ follow the direction of S_{ij}.

$$2\mu \dot{\varepsilon}_{ij}^p = \lambda S_{ij}$$

where λ is a positive scalar factor to be determined.

Compare this with

$$2\mu \varepsilon_{ij}^e = S_{ij}, \quad 2\mu \dot{\varepsilon}_{ij}^e = S_{ij}$$

Note both the deviatoric elastic strain (ε_{ij}^e) and the plastic strain rate $(\dot{\varepsilon}_{ij}^p)$ follow the deviatoric stress (S_{ij}).

$$2\mu \dot{\varepsilon}_{ij} = 2\mu (\dot{\varepsilon}_{ij}^e + \dot{\varepsilon}_{ij}^p) = S_{ij} + \lambda S_{ij}$$

To determine the factor λ, we need to introduce

$$\dot{W} = S_{ij} \dot{\varepsilon}_{ij} = S_{ij} (\dot{\varepsilon}_{ij}^e + \dot{\varepsilon}_{ij}^p)$$

Rate of work done associated with strain rate, part of which goes to stored elastic energy, part of which is dissipated as heat.

$$\dot{W} = S_{xx} \dot{e}_{xx} + S_{yy} \dot{e}_{yy} + S_{zz} \dot{e}_{zz} + 2 S_{yz} \dot{e}_{yz} + 2 S_{zx} \dot{e}_{zx} + 2 S_{xy} \dot{e}_{xy}$$

$$2\mu \dot{W} = S_{ij} (S_{ij} + \lambda S_{ij})$$

Recall $J_2 = S_{ij} S_{ij} = 0$ for perfectly plastic material.

$$2\mu \dot{W} = \lambda S_{ij} S_{ij} = 2\lambda J_2 = 2\lambda k^2$$

$$\therefore \quad \lambda = \frac{2\mu k^2}{2k^2 \dot{W}}$$

Q: How to determine S_{ij}?

$$\dot{\varepsilon}_{ij}^p = \frac{\dot{W}}{2k} S_{ij}, \quad S_{ij} = 2\mu \dot{\varepsilon}_{ij}^e = 2\mu (\dot{\varepsilon}_{ij} - \dot{\varepsilon}_{ij}^p)$$

$$\dot{S}_{ij} = 2\mu (\dot{\varepsilon}_{ij} - \frac{\dot{W}}{2k^2} S_{ij})$$

The hydrostatic stress-strain response is purely elastic.

$$\sigma = 3K \varepsilon, \quad \dot{\sigma} = 3K \dot{\varepsilon}$$
Summary: How stress changes under a specified (total) strain rate $\dot{\varepsilon}_j$ in the plastic regime?

Given ε_j and current stress σ_{ij}, to find $\dot{\sigma}_{ij}$ (imagine a metal forming process)

$\dot{\varepsilon}_{ij} \rightarrow \dot{\varepsilon} = \frac{1}{3} \dot{\varepsilon}_{ii} \rightarrow \dot{\sigma} = 3K \dot{\varepsilon}$
$\dot{\varepsilon}_{ij} \rightarrow \ddot{\varepsilon}_{ij} = \dot{\varepsilon}_{ij} - \dot{\varepsilon} \delta_{ij}$
$\sigma_{ij} \rightarrow \ddot{\sigma} = \frac{1}{3} \sigma_{ii}$
$\dot{\sigma}_{ij} = \ddot{\sigma}_{ij} + \dot{\sigma} \delta_{ij}$

$\dot{W} = S_{ij} \dot{\varepsilon}_{ij} \rightarrow \dot{S}_{ij} = 2\mu \left(\dot{\varepsilon}_{ij} - \frac{\dot{W}}{2k} \delta_{ij} \right)$

§10 Summary of All Formulas

Elastic Regime: $\sigma = 3K \varepsilon$ (hydrostatic part)
$S_{ij} = 2\mu \varepsilon_{ij}$ (deviatoric part)

Yield condition: $J_2 = \frac{1}{2} S_{ij} S_{ij} = k^2$ (Von Mises)
$\sigma_Y = \sqrt{3} k$ (yield stress in tension)

Plastic Regime:
$\dot{\varepsilon}^{el}_{ij} = \frac{1}{2\mu} \dot{S}_{ij}$ (deviatoric elastic strain rate)
$\dot{\varepsilon}^{pl}_{ij} = \frac{\dot{W}}{2k} S_{ij}$ (plastic strain rate)
$\dot{S}_{ij} = 2\mu \left(\dot{\varepsilon}_{ij} - \frac{\dot{W}}{2k} \delta_{ij} \right)$ (deviatoric stress rate)
$\dot{\sigma} = 3K \dot{\varepsilon}$ (hydrostatic stress rate)
In this lecture, we give more discussions on the yield conditions (Von Mises and Tresca), including their graphical representation and experimental verification.

\section{Yield Surface in the space of Principal Stresses}

If the material is isotropic, the three principal stress values contains all the information about whether the material has reached the yield condition or not.

In other words, the yield condition is reached on a 2D surface, i.e. the yield surface, in the 3D space spanned by \(\sigma_1, \sigma_2, \sigma_3 \)

\[f(\sigma_1, \sigma_2, \sigma_3) = 0 \]

Further more, experiments have shown that hydrostatic stress \(\bar{\sigma} = \frac{1}{3}(\sigma_1+\sigma_2+\sigma_3) \) plays no role in yield.

This means that the yield surface must have a prismatic shape, with the axes along the line defined by \(\sigma_1=\sigma_2=\sigma_3 \) (i.e. \([111]\) direction)

In other words, the intersection between the yield surface \(f(\sigma_1, \sigma_2, \sigma_3) = 0 \) and any plane defined by \(\sigma_1+\sigma_2+\sigma_3 = c \) gives a curve of the same shape.

Imagine looking down on the \(\sigma_1+\sigma_2+\sigma_3 = 0 \) then the entire yield surface looks like a curve.

In other words, all we need to do is to specify the shape of this curve. The yield surface can be constructed by translating this curve along \([111]\).
Material isotropy requires the yield surface be symmetric with respect to a 120° rotation around the $\sigma_1=\sigma_2=\sigma_3$ line, i.e., $\sigma_1 \rightarrow \sigma_2$, $\sigma_2 \rightarrow \sigma_3$, $\sigma_3 \rightarrow \sigma_1$.

As well as mirror reflection, e.g., $\sigma_1 \rightarrow \sigma_3$, $\sigma_3 \rightarrow \sigma_1$.

Other restrictions can be imposed on the yield surface. For example, the yield surface is usually assumed to be convex, which we will discuss later.

§2 Von Mises Yield Condition

$$J_2 = \frac{1}{2} (S_1^2 + S_2^2 + S_3^2) = k^2$$

Note

$$\bar{\sigma} = \frac{1}{3} (\sigma_1 + \sigma_2 + \sigma_3), \quad S_1 = \sigma_1 - \bar{\sigma}, \quad S_2 = \sigma_2 - \bar{\sigma}, \quad S_3 = \sigma_3 - \bar{\sigma}$$

$$J_2 = \frac{1}{2} \left[(\sigma_1 - \bar{\sigma})^2 + (\sigma_2 - \bar{\sigma})^2 + (\sigma_3 - \bar{\sigma})^2 \right]$$

$$= \frac{1}{2} \left(\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 3\bar{\sigma}^2 \right)$$

$$= \frac{1}{3} \left[\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - (\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_3 \sigma_1) \right]$$

The Von Mises yield surface is a cylinder with a circular cross section.

The proof is given in the next page.
To be more precise, we shall express \(\mathbf{J} \) in terms of vectors on the \(\pi \)-plane, i.e.

\[S_1, \ S_2, \ S_3, \]

Note: \(S_1 + S_2 + S_3 = 0 \)

\[S_1 = \frac{1}{3} (2 \ -1 \ -1) \cdot \left(\begin{array}{c} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{array} \right) = \frac{2\sigma_1 - \sigma_2 - \sigma_3}{3} \]

\[S_2 = \frac{1}{3} (1 \ 2 \ -1) \cdot \left(\begin{array}{c} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{array} \right) = \frac{-\sigma_1 + 2\sigma_2 - \sigma_3}{3} \]

\[S_3 = \frac{1}{3} (-1 \ -1 \ 2) \cdot \left(\begin{array}{c} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{array} \right) = \frac{-\sigma_1 - \sigma_2 + 2\sigma_3}{3} \]

Note that \(S_1, S_2, S_3 \) are not independent.

The axis of \(S_1, S_2, S_3 \) are not perpendicular to each other.

Introduce \(\vec{S_1} \) whose axis is perpendicular to the axis of \(S_2 \).

\[\vec{S_1} = \frac{1}{\sqrt{3}} (1 \ 0 \ -1) \cdot \left(\begin{array}{c} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{array} \right) = \frac{\sigma_1 - \sigma_3}{\sqrt{3}} \]

Because

\[\frac{1}{2} \left\{ (1 \ 0 \ -1) + \frac{1}{3} (1 \ 2 \ 1) \right\} = \frac{1}{3} (2 \ -1 \ -1) \]

\[\frac{1}{2} \left\{ (-1 \ 0 \ 1) + \frac{1}{3} (1 \ 2 \ 1) \right\} = \frac{1}{3} (-1 \ 1 \ 2) \]

we have

\[S_1 = \frac{\sqrt{3}}{2} \vec{S_1} = \frac{1}{2} S_2 \]

\[S_3 = -\frac{\sqrt{3}}{2} \vec{S_1} = \frac{1}{2} S_2 \]

\[\mathbf{J}_2 = \frac{1}{2} (S_1^2 + S_2^2 + S_3^2) = \frac{3}{4} (S_1^2 + \vec{S_1}^2) = k^2 \]

\[\vec{S_1}^2 + \vec{S}_2 = \left(\frac{1}{\sqrt{3}} \right)^2 = \left(\frac{2}{3} \sigma_Y \right)^2 \]

Von Mises yield condition is a circle of radius

\[\frac{2}{\sqrt{3}} k = \frac{2}{3} \sigma_Y \]

in the plane of \(S_1, S_2, S_3 \).
Von Mises criterion in plane stress

\[\sigma_3 = 0 \]
\[J_2 = \frac{1}{6} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2 \right] \]
\[= \frac{1}{6} \left(\sigma_1^2 - 2\sigma_1\sigma_2 + \sigma_2^2 + \sigma_2^2 + \sigma_1^2 \right) \]
\[= \frac{1}{3} \left(\sigma_1^2 - \sigma_1\sigma_2 + \sigma_2^2 \right) = k^2 \]
\[\sigma_1^2 - \sigma_1\sigma_2 + \sigma_2^2 = (J_2^2 k^2) = \sigma_Y^2 \]

Several special points on yield surface
\[\sigma_1 = \sigma_Y \quad \sigma_2 = 0 \]
\[\sigma_1 = 0 \quad \sigma_2 = \sigma_Y \]
\[\sigma_1 = \sigma_Y \quad \sigma_2 = \sigma_Y \]
\[\sigma_1 = k \quad \sigma_2 = -k \]

Von Mises criterion in the plane of \(S_1 - S_2 \)

By definition, \(S_1 + S_2 + S_3 = 0 \)
\[S_3 = -(S_1 + S_2) \]
\[J_2 = \frac{1}{2} (S_1^2 + S_2^2 + S_3^2) \]
\[= \frac{1}{2} (S_1^2 + S_2^2 + (S_1 + S_2)^2) \]
\[= S_1^2 + S_2^2 + S_1 S_2 \]

Sketch the yield surface on \(S_1 - S_2 \) plane.
Tresca yield condition

is a hexagon of side length

\[\frac{4}{3} k_T = \frac{2}{3} \sigma_Y \]

in the plane of \(s_1, s_2, s_3 \)

Tresca yield condition is a hexagon inscribed in the circle corresponding to the Von Mises condition.

Tresca yield condition in plane stress (\(\sigma_3 = 0 \))

\[|\sigma_1 - \sigma_2| = \sigma_Y, \ |\sigma_1 + \sigma_2| = \sigma_Y \]

is a polygon inscribed in the ellipse corresponding to the Von Mises condition.
Flow Rule for Perfectly Plastic Material (No hardening)

Elastic Response:
\[\epsilon_{el}^{ij} = \frac{1}{2\mu} S_{ij} \]
- \(\epsilon_{el}^{ij} \): deviatoric elastic strain
- \(S_{ij} \): deviatoric stress

\[d\epsilon_{el}^{ij} = \frac{1}{2\mu} dS_{ij} \]
- \(d\epsilon_{el}^{ij} \): incremental deviatoric elastic strain
- \(dS_{ij} \): incremental deviatoric stress

Plastic Response:
\[\dot{\epsilon}_{pl}^{ij} = \frac{1}{2\mu} \lambda S_{ij} \]
- \(\dot{\epsilon}_{pl}^{ij} \): plastic strain rate
- \(\lambda \): (automatically deviatoric)

\[d\epsilon_{pl}^{ij} = \frac{1}{2\mu} S_{ij} \lambda \, dt \]
- \(d\epsilon_{pl}^{ij} \): incremental plastic strain

(Analogous to Fig 7 of Hill, p. 42)

Diagram:
- **Yield Surface** (does not change because of no hardening)
- \(S_{ij} \) is the deviatoric stress path
- \(\epsilon_{ij} = \frac{1}{2\mu} S_{ij} \) before yield

- Before \(S_{ij} \) reaches yield surface, \(\epsilon_{ij} \) is parallel to \(S_{ij} \), \(d\epsilon_{ij} // dS_{ij} \)
- After yield condition is reached, \(\epsilon_{ij} \) is no longer parallel to \(S_{ij} \)
- \(d\epsilon_{ij} = d\epsilon_{el}^{ij} + d\epsilon_{pl}^{ij} \)
- \(d\epsilon_{el}^{ij} // dS_{ij} \), \(d\epsilon_{pl}^{ij} // S_{ij} \)
In the plastic regime,
given s_{ij}, e_{ij}, $d e_{ij}$ (change of total deviatoric strain)
find $d S_{ij}$ (change of deviatoric stress)

- Draw line SQ' parallel to Sij
- Construct the patch of yield surface at point P
- Draw a parallel surface patch at point Q
- Find the intersection point R between line SQ' and surface patch
- $RQ = d e_{ij}^p$, $QR = de_{ij}^e$, $PP' = dS_{ij} = 2\mu \cdot QR$
We now work out a simple example problem in which the material is subjected to both tension and shear (which can be achieved in a tube under tension and torsion).

This example illustrates how to solve a plasticity problem, as well as the history-dependent nature of plasticity.

This example is extracted from Dr. Paul Paslay's lecture video "Introduction to Theoretical and Applied Plasticity.

For copies of this DVD, send email to info@blade-energy.com.

§1. Problem Statement

Assume no work hardening, von Mises yield criterion, incompressible material (\(v=0.5\)).

Incompressibility means even the elastic strain \(\varepsilon_{ij}^{el}\) conserves volume, so that \(\varepsilon_{ij} = \varepsilon_{ij}^{el}\) (deviatoric). This simplifies discussions.

Given \(\varepsilon_{ij}^{pl} = \varepsilon_{ij}^{pl}\) (deviatoric) we have

\[\varepsilon_{ij} = \varepsilon_{ij}^{el} + \varepsilon_{ij}^{pl} = \varepsilon_{ij}^{el} + \varepsilon_{ij}^{pl} \]

We shall consider two different strain paths:

1. \(OA\rightarrow AD\) First load in tension to exactly the yield point then load in shear

2. \(OB\rightarrow BD\) First load in shear to exactly the yield point then load in tension
ME342 Tension & Shear Cai

Note: we have assumed incompressibility \((v=0.5)\)
So \(E = 2\mu(1+v) = 3\mu\)

The goal is to find the stress (as a function of strain) along these two strain paths.

§2. Strain Path ①: Tension - Shear

Obviously, along path OA, all strains are elastic.
\[
\sigma_{xx} = E \cdot \varepsilon_{xx} \quad \text{ (goes from 0 to } \frac{1}{3} k = \sigma_f \)
\]
\[
\sigma_{yy} = \sigma_{zz} = \sigma_{xy} = \sigma_{yz} = \sigma_{xz} = 0 \quad \varepsilon_{yy} = \varepsilon_{zz} = -\nu \varepsilon_{xx} = -\frac{1}{2} \varepsilon_{xx}
\]

Along path AD, the stress need to stay on yield surface \(i.e. J_2 = k^2, J_1 = 0\)

\[
\dot{\varepsilon}_{ij} = \frac{W}{2k^2} S_{ij} \quad \dot{W} = S_{ij} \dot{\varepsilon}_{ij} : \text{rate of work done associated with shape change}
\]

\[
W = \frac{1}{2} \sigma_{ij} \dot{\varepsilon}_{ij} = \sigma_{xy} \cdot 2 \dot{\varepsilon}_{xy} \quad \text{(In this example, } W \text{ is also to rate of work done because volume stays constant)}
\]

Since \(\sigma_{yy} = \sigma_{zz} = 0\), \(\bar{\sigma} = \frac{\sigma_{xx}}{3}\), \(S_{xx} = \frac{2}{3} \sigma_{xx}, S_{yy} = -\frac{1}{3} \sigma_{xx}, S_{zz} = -\frac{2}{3} \sigma_{xx}\)
\[
J_2 = \frac{1}{2} (S_{xx}^2 + S_{yy}^2 + S_{zz}^2) + (S_{xy}^2 + S_{yx}^2 + S_{zz}^2)
\]
\[
= \frac{1}{3} \sigma_{xx}^2 + \sigma_{xy}^2 = k^2
\]

\[
\dot{\varepsilon}_{xy} = \dot{\varepsilon}_{xy}^{el} + \dot{\varepsilon}_{xy}^{pl} = \dot{\varepsilon}_{xy}^{el} + \dot{\varepsilon}_{xy}^{pl} = \frac{\dot{\sigma}_{xy}}{2\mu} + \frac{W}{2k^2} \dot{\sigma}_{xy}
\]
\[
\dot{\varepsilon}_{xy} = \frac{\dot{\sigma}_{xy}}{2\mu} + \frac{\dot{\sigma}_{xy}}{k^2} \sigma_{xy}^{-2}
\]
\[
(1 - \frac{\sigma_{xy}^2}{k^2}) \dot{\epsilon}_{xy} = \frac{\dot{\sigma}_{xy}}{2\mu}
\]

\[
2\mu \frac{\dot{\epsilon}_{xy}}{k} = \frac{\dot{\sigma}_{xy}}{k} \left(1 - \left(\frac{\sigma_{xy}}{k} \right)^2 \right)
\]

The solution to this equation is

\[
2\mu \frac{\epsilon_{xy}(t)}{k} = \text{arctanh} \left(\frac{\sigma_{xy}(t)}{k} \right),
\]

i.e.

\[
\frac{\sigma_{xy}(t)}{k} = \tanh \left(2\mu \frac{\epsilon_{xy}(t)}{k} \right)
\]

Given that \(\frac{1}{3} \sigma_{xx} + \sigma_{xy} = k^2 \)

\[
\frac{\sigma_{xx}}{k} = \frac{\sqrt{3}}{2} \sqrt{1 - \left(\frac{\sigma_{xy}}{k} \right)^2}
\]

\[
\frac{\sigma_{xx}(t)}{k} = \frac{\sqrt{3}}{\cosh \left(2\mu \frac{\epsilon_{xy}(t)}{k} \right)}
\]

At point A, \(\sigma_{xx} = 1.73k \) and \(\sigma_{xy} = 0 \)

With increasing shear strain, the normal stress \(\sigma_{xx} \) decreases while the shear stress \(\sigma_{xy} \) increases.

At point D, \(\sigma_{xx} = 0.96k \) and \(\sigma_{xy} = 0.76k \)

If shear strain keeps on increasing beyond D, eventually

\[
\sigma_{xx} \to 0, \quad \sigma_{xy} \to k \quad \text{(yield condition in pure shear)}
\]
Given that
\[\frac{\partial y}{\partial t} = \sigma_y \]
\[\frac{1}{3} \sigma_t = \frac{\partial y}{\partial t} \]
\[E = 3 \mu (\text{incompressibility}) \]
\[\psi_x = \frac{\partial y}{\partial t} \]
\[\psi_y = \frac{\partial y}{\partial t} \]
\[\psi_z = \frac{\partial y}{\partial t} \]

The solution to this equation is
\[\dot{\sigma}_{xx} = \frac{\dot{\sigma}_{yy}}{3 \mu \frac{\partial y}{\partial t}} \]
\[\dot{\sigma}_{yy} = \frac{\dot{\sigma}_{xx}}{3 \mu \frac{\partial y}{\partial t}} \]
\[\dot{\sigma}_{zz} = \frac{\dot{\sigma}_{xx}}{3 \mu \frac{\partial y}{\partial t}} \]

\[\dot{\varepsilon}_{xx} = \dot{\varepsilon}_{yy} = \dot{\varepsilon}_{zz} = \frac{\dot{\sigma}_{xx}}{E} \]

The solution due to incompressibility
\[\varepsilon_t = W = \text{const} = \dot{\varepsilon}_{xx} = \dot{\varepsilon}_{yy} = \dot{\varepsilon}_{zz} = \dot{\sigma}_{xx} = \dot{\sigma}_{yy} = \dot{\sigma}_{zz} = \frac{\dot{\sigma}_{xx}}{E} \]

Along path BD, the stress need to stay on yield surface
\[J_x = \frac{1}{2} \dot{\varepsilon}_{xx} \dot{\sigma}_{xx} = \frac{W}{2} \dot{\varepsilon}_{xx} \dot{\sigma}_{xx} \]
\[J_y = \frac{1}{2} \dot{\varepsilon}_{yy} \dot{\sigma}_{yy} = \frac{W}{2} \dot{\varepsilon}_{yy} \dot{\sigma}_{yy} \]
\[J_z = \frac{1}{2} \dot{\varepsilon}_{zz} \dot{\sigma}_{zz} = \frac{W}{2} \dot{\varepsilon}_{zz} \dot{\sigma}_{zz} \]

Obviously, along path OB, all strains are elastic
\[\sigma_y = 2 \mu \dot{\varepsilon}_{yy} \]
So along path BD,
\[
\frac{\sigma_{xx}}{k} = \sqrt{3} \tanh \left(\sqrt{3} \mu \frac{\epsilon_{xx}}{k} \right)
\]
\[
\frac{\sigma_{xy}}{k} = \frac{1}{\cosh \left(\sqrt{3} \mu \frac{\epsilon_{xx}}{k} \right)}
\]

compared with path AD, the roles of \(\sigma_{xx} \) and \(\sigma_{xy} \) are reversed.

(* exercise: plot plastic strain \(\epsilon_{xx}^p \), \(\epsilon_{xy}^p \) as functions of \(\epsilon_{xx} \).)

(* exercise: consider a strain path in which \(\epsilon_{xx} \) goes from 0 to \(\frac{\sigma_{xy}}{E} \)
and then \(\epsilon_{xy} \) goes from 0 to \(\frac{\sigma_{xy}}{E} \), find \(\sigma_{xx} \) and \(\sigma_{xy} \)

\[
\frac{\sigma_{xx}}{\sqrt{3} \cdot k} = \sqrt{3} \mu \frac{\epsilon_{xx}}{k}
\]

At point B, \(\sigma_{xx} = 0 \) and \(\sigma_{xy} = k \)

With increasing normal strain, the shear stress \(\sigma_{xy} \) decreases while the normal stress increases.

At point D, \(\sigma_{xx} = 1.31 \cdot k \) and \(\sigma_{xy} = 0.64 \cdot k \)

* different from the values on p.3

If normal strain keeps on increasing beyond D, eventually
\(\sigma_{xx} \to \sqrt{3} \cdot k \) (yield stress in tension), \(\sigma_{xy} \to 0 \).
We now work through an example problem that requires a numerical method, to illustrate how numerical methods can be applied to plasticity problems.

§1. Problem Statement

\[
\sigma_{yy} = 0 \\
\rightarrow \sigma_{xx}, \varepsilon_{xx}
\]

Plane strain condition: \(\varepsilon_{zz} = 0 \)

The material is loaded along \(x \)

\(y \)-surface is traction free: \(\sigma_{yy} = 0 \)

Assume von Mises yield criterion, no hardening

\(\nu < 0.5 \)

\((\text{If } \nu = 0.5, \text{ i.e. incompressible, then the problem can be solved analytically.}) \)

\((\text{The condition } \nu < 0.5 \text{ is what makes numerical method necessary}) \)

Find the stress-strain relation

\[\sigma_{xx}(\varepsilon_{xx}) \]
6.2. Elastic Regime

Before yield occurs, the stress-strain relation is linear

\[
\varepsilon_{xx} = \frac{1}{E} \sigma_{xx} - \frac{V}{E} \sigma_{yy} - \frac{V}{E} \sigma_{zz}
\]

\[
\varepsilon_{yy} = -\frac{V}{E} \sigma_{xx} + \frac{1}{E} \sigma_{yy} - \frac{V}{E} \sigma_{zz}
\]

\[
\varepsilon_{zz} = -\frac{V}{E} \sigma_{xx} - \frac{V}{E} \sigma_{yy} - \frac{V}{E} \sigma_{zz} = 0
\]

\[
\sigma_{zz} = \nu \sigma_{xx}, \quad \bar{\sigma} = \frac{1 + \nu}{2} \sigma_{xx}
\]

\[
\sigma_{xx} = \frac{\sigma_{yy}}{\sqrt{\nu^{2} - \nu + 1}} \quad (\text{This is higher than } \sigma_{y} \text{ due to the constraint } \varepsilon_{zz} = 0)
\]

\[
\varepsilon_{xx} = \frac{1}{E} (\sigma_{xx} - \nu \sigma_{zz}) = \frac{1 - \nu}{E} \sigma_{xx} = \frac{1 - \nu}{\sqrt{\nu^{2} - \nu + 1}} \cdot \frac{\sigma_{yy}}{E}
\]

The ratio \(\frac{\sigma_{yy}}{\sigma_{xx}}\) remains constant \(\nu\) within the elastic regime.
Our strategy is to choose the 'principal' unknowns of the problem, express every other unknowns in terms of them, and find sufficient number of equations to solve for the 'principal' unknowns.

We shall choose three principal unknowns: σ_{xx}, σ_{zz}, $\frac{\lambda}{2\mu}$

Every other quantity can be expressed in terms of these three variables and other known quantities.

We then need to identify three equations to solve the problem.

Recall $\sigma_{yy} = 0$

$$\bar{\sigma} = \frac{1}{3}(\sigma_{xx} + \sigma_{yy} + \sigma_{zz}) = \frac{1}{3}(\sigma_{xx} + \sigma_{zz})$$

$$\sigma_{xx} = \sigma_{xx} - \bar{\sigma}, \quad \sigma_{yy} = -\bar{\sigma}, \quad \sigma_{zz} = \sigma_{zz} - \bar{\sigma}$$

$$\varepsilon_{xx} = \varepsilon_{xx}^{el} + \varepsilon_{xx}^{pl} = \frac{\bar{\sigma}}{3K} + \frac{\sigma_{xx}}{2\mu}, \quad \varepsilon_{yy} = \frac{\bar{\sigma}}{3K} + \frac{\sigma_{yy}}{2\mu}, \quad \varepsilon_{zz} = \frac{\bar{\sigma}}{3K} + \frac{\sigma_{zz}}{2\mu}$$

$$\dot{\varepsilon}_{xx}^{pl} = \frac{\lambda}{2\mu} \dot{\sigma}_{xx}, \quad \dot{\varepsilon}_{yy}^{pl} = \frac{\lambda}{2\mu} \dot{\sigma}_{yy}, \quad \dot{\varepsilon}_{zz}^{pl} = \frac{\lambda}{2\mu} \dot{\sigma}_{zz}$$
Given that plasticity is path dependent, we need to solve the problem in small time increments.

Assume we know everything at time t:

$$\sigma_{xx}(t), \sigma_{zz}(t), \text{ etc.}$$

and we need to find the solution at $t + \Delta t$:

$$\sigma_{xx}(t+\Delta t), \sigma_{zz}(t+\Delta t), \text{ etc.}$$

We shall also treat $\varepsilon_{xx}(t+\Delta t), \varepsilon_{zz}(t+\Delta t)$ as known quantities because we wish to express everything in terms of ε_{xx}, and the plane strain condition requires $\varepsilon_{zz} = 0$.

Known: $\sigma_{xx}(t), \sigma_{zz}(t), \varepsilon_{xx}(t), \varepsilon_{zz}(t), \varepsilon_{xx}(t+\Delta t), \varepsilon_{zz}(t+\Delta t)$

Unknown: $\sigma_{xx}(t+\Delta t), \sigma_{zz}(t+\Delta t), \frac{\Delta \varepsilon_{xx}}{2\mu}$ (in the period $[t, t+\Delta t]$)

The change of stress from t to $t+\Delta t$ is

$$\Delta \sigma = \sigma(t+\Delta t) - \sigma(t), \quad \text{where} \quad \sigma(t+\Delta t) = \frac{1}{3} [\sigma_{xx}(t+\Delta t) + \sigma_{zz}(t+\Delta t)]$$

$$\sigma(t) = \frac{1}{3} [\sigma_{xx}(t) + \sigma_{zz}(t)]$$

$$\Delta \sigma_{xx} = \sigma_{xx}(t+\Delta t) - \sigma_{xx}(t)$$

$$\Delta \sigma_{zz} = \sigma_{zz}(t+\Delta t) - \sigma_{zz}(t)$$

This leads to a change of elastic strain

$$\Delta \varepsilon_{xx} = \frac{\Delta \sigma}{3K} + \frac{\Delta \sigma_{xx}}{2\mu}$$

$$\Delta \varepsilon_{zz} = \frac{\Delta \sigma}{3K} + \frac{\Delta \sigma_{zz}}{2\mu}$$
The plastic strain increment from t to $t + \Delta t$ can be approximated by:

$$
\Delta \varepsilon_{\text{pl}}^{xx} = \frac{\Delta t}{2\mu} \left(\frac{s_{xx}(t) + s_{xx}(t + \Delta t)}{2} \right)
$$

$$
\Delta \varepsilon_{\text{pl}}^{zz} = \frac{\Delta t}{2\mu} \left(\frac{s_{zz}(t) + s_{zz}(t + \Delta t)}{2} \right)
$$

Notice that the average deviatoric stress during period $[t, t + \Delta t]$ is approximated by the average value at t and $t + \Delta t$.

This corresponds to the Trapezoidal rule of numerical quadrature.

Compared with an alternative approximation based on forward Euler,

$$
\Delta \varepsilon_{\text{pl}}^{xx} = \frac{\Delta t}{2\mu} s_{xx}(t), \quad \Delta \varepsilon_{\text{pl}}^{zz} = \frac{\Delta t}{2\mu} s_{zz}(t)
$$

the Trapezoidal (or mid-point) rule is not only more accurate, but also (more importantly) more stable (hence tolerating larger Δt).

Now that everything is expressed in terms of $s_{xx}(t + \Delta t), s_{zz}(t + \Delta t)$, we are ready to write down the three equations:

$$
\begin{align*}
\varepsilon_{xx}(t) + \Delta \varepsilon_{\text{pl}}^{xx} + \Delta \varepsilon_{\text{el}}^{xx} & = \varepsilon_{xx}(t + \Delta t) \quad \text{(imposed strain)} \\
\varepsilon_{zz}(t) + \Delta \varepsilon_{\text{pl}}^{zz} + \Delta \varepsilon_{\text{el}}^{zz} & = \varepsilon_{zz}(t + \Delta t) \quad \text{(imposed strain)} \\
\frac{1}{2} \left[\dot{s}_{xx}(t + \Delta t) + S_{yy}(t + \Delta t) + S_{zz}(t + \Delta t) \right] - k \varepsilon_{\text{pl}} & = 0 \quad \text{(yield condition)}
\end{align*}
$$

This is a set of 3 non-linear equations for 3 unknowns.

It can be conveniently solved by the 'fsolve' command in Matlab.

The Matlab files are attached below (also on Coursework):

- `eqns-plane-strain-uniaxial-plast.m` implements the 3 equations which are solved by calling 'fsolve' in `plane-strain-uniaxial.m`
From the numerical solution, we can see that σ_{zz} transitions from ν to 0.5 during the plastic regime.
% ME342 Theory and Applications of Inelasticity
% Wei Cai, caiei@stanford.edu
%
% Example: plane strain uniaxial loading

% Material parameters
mu = 100; % shear modulus
nu = 0.3; % Poisson's ratio
sig_Y = 1; % yield stress

K = 2*mu*(1+nu)/3/(1-2*nu); % bulk modulus
E = 2*mu*(1+nu); % Young's modulus
k = sig_Y/sqrt(3);

% condition at yield
sig_xx = sig_Y/sqrt(nu^2-nu+1); % see HW 1.1(a)
sig_yy = 0;
sig_zz = nu*sig_xx;

% hydrostatic stress
sig_bar = (sig_xx + sig_yy + sig_zz)/3;

% deviatoric stress
s_xx = sig_xx - sig_bar;
s_yy = sig_yy - sig_bar;
s_zz = sig_zz - sig_bar;
J2 = (s_xx^2 + s_yy^2 + s_zz^2)/2; % J2 should equal k^2 at yield

% strain (elastic at onset of yield)
eps_xx = sig_bar/(3*K) + s_xx/(2*mu);
eps_yy = sig_bar/(3*K) + s_yy/(2*mu);
eps_zz = sig_bar/(3*K) + s_zz/(2*mu);

% strain array (going beyond yield point)
eps_xx_data = eps_xx + [0:120]*1e-4;

% initialize arrays to store results
sig_xx_data = zeros(size(eps_xx_data));
sig_zz_data = zeros(size(eps_xx_data));
lambda_dt_over_2mu_data = zeros(size(eps_xx_data));
s_xx_data = zeros(size(eps_xx_data));
s_yy_data = zeros(size(eps_xx_data));
s_zz_data = zeros(size(eps_xx_data));
J2_data = zeros(size(eps_xx_data));

% the first data point is the yield point considered above
sig_xx_data(1) = sig_xx;
sig_zz_data(1) = sig_zz;
s_xx_data(1) = s_xx;
s_yy_data(1) = s_yy;
s_zz_data(1) = s_zz;
J2_data(1) = J2;

for i = 2:length(eps_xx_data),
 param = [mu, nu, k, sig_xx_data(i-1), sig_zz_data(i-1), ...
 eps_xx_data(i-1), eps_xx_data(i)];
%options = optimset('Display','iter','TolFun',1e-10);
options = optimset('Display','off','TolFun',1e-10);
trial = [sig_xx_data(i-1), sig_zz_data(i-1), 0];
sol = fsolve('eqns_plane_strain_uniaxial_plast', trial, options, param);
sig_xx = sol(1); sig_zz = sol(2); lambda_dt_over_2mu = sol(3);

% compute hydrostatic stress and deviatoric stress
sig_bar = (sig_xx + sig_zz)/3;
s_xx = sig_xx - sig_bar;
s_yy = sig_yy - sig_bar;
s_zz = sig_zz - sig_bar;
J2 = (s_xx^2 + s_yy^2 + s_zz^2)/2;

% save results to array
sig_xx_data(i) = sig_xx; sig_zz_data(i) = sig_zz;
lambda_dt_over_2mu_data(i) = lambda_dt_over_2mu;
s_xx_data(i) = s_xx; s_yy_data(i) = s_yy; s_zz_data(i) = s_zz;
J2_data(i) = J2;
end

% plot solution
% plot stress
figure(1);
subplot(3,1,1);
plot(eps_xx_data, sig_xx_data, '.-');
xlabel('{{\epsilon_{xx}}}');
ylabel('{{\sigma_{xx}}}');
subplot(3,1,2);
plot([0 eps_xx_data], [0 sig_zz_data], '.-');
xlabel('{{\epsilon_{xx}}}');
ylabel('{{\sigma_{zz}}}');
subplot(3,1,3);
plot([0 eps_xx_data], [nu sig_zz_data./sig_xx_data], '.-');
xlabel('{{\epsilon_{xx}}}');
ylabel('{{\sigma_{zz}}/{{\sigma_{xx}}}'});

% plot deviatoric stress
figure(2);
subplot(3,1,1);
plot(eps_xx_data, s_xx_data, '.-');
xlabel('{{\epsilon_{xx}}}');
ylabel('{{s_{xx}}}');
subplot(3,1,2);
plot(eps_xx_data, s_yy_data, '.-');
xlabel('{{\epsilon_{xx}}}');
ylabel('{{s_{yy}}}');
 subplot(3,1,3);
 plot(eps_xx_data, s_zz_data, '.-');
 xlabel('\epsilon_{xx}');
 ylabel('s_{zz}');

 % plot lambda_dt_over_2mu and J2 (should equal k^2)
 figure(3);
 subplot(2,1,1);
 plot(eps_xx_data, [NaN lambda_dt_over_2mu_data(2:end)], '.-');
 xlabel('\epsilon_{xx}');
 ylabel('\lambda \Delta t / (2\mu)');
 subplot(2,1,2);
 plot(eps_xx_data, J2_data, '.-');
 xlabel('\epsilon_{xx}');
 ylabel('J_2');
 ylim([0.9 1.1]*k^2);
function F = eqns_plane_strain_uniaxial_plast(vars, param)
% F(1): \(\varepsilon_{xx_{\text{tot}}}\) (specified)
% F(2): \(\varepsilon_{zz_{\text{tot}}} = 0\)
% F(3): yield condition

sig_xx = vars(1);
sig_zz = vars(2);
lambda_dt_over_2mu = vars(3);
sig_yy = 0;

mu = param(1);
u = param(2);
k = param(3);
sig_xx_0 = param(4);
sig_zz_0 = param(5);
sig_yy_0 = 0;
eps_xx_0 = param(6); % total strain at previous time step
eps_xx = param(7); % total strain at current time step
eps_zz_0 = 0;
eps_zz = 0;

K = 2*mu*(1+nu)/(1-2*nu); % bulk modulus

% change of stress
dsig_xx = sig_xx - sig_xx_0;
dsig_yy = sig_yy - sig_yy_0;
dsig_zz = sig_zz - sig_zz_0;

dsig_bar = (dsig_xx + dsig_yy + dsig_zz)/3;
ds_xx = dsig_xx - dsig_bar;
ds_yy = dsig_yy - dsig_bar;
ds_zz = dsig_zz - dsig_bar;

% increment of elastic strain
deps_elast_xx = dsig_bar/(3*K) + ds_xx/(2*mu);
deps_elast_yy = dsig_bar/(3*K) + ds_yy/(2*mu);
deps_elast_zz = dsig_bar/(3*K) + ds_zz/(2*mu);

% hydrostatic stress
sig_bar = (sig_xx + sig_yy + sig_zz)/3;
sig_bar_0 = (sig_xx_0 + sig_yy_0 + sig_zz_0)/3;

% deviatoric stress
s_xx = sig_xx - sig_bar;
s_yy = sig_yy - sig_bar;
s_zz = sig_zz - sig_bar;
s_xx_0 = sig_xx_0 - sig_bar_0;
s_yy_0 = sig_yy_0 - sig_bar_0;
s_zz_0 = sig_zz_0 - sig_bar_0;

% average deviatoric stress
ave_s_xx = (s_xx + s_xx_0)/2;
ave_s_yy = (s_yy + s_yy_0)/2;
ave_s_zz = (s_zz + s_zz_0)/2;

% increment of plastic strain
deps_plast_xx = lambda_dt_over_2mu * ave_s_xx;
deps_plast_yy = lambda_dt_over_2mu * ave_s_yy;
deps_plast_zz = lambda_dt_over_2mu * ave_s_zz;

% construct equation
F = [0 0 0]';

% total strain in xx
F(1) = (eps_xx_0 + deps_elast_xx + deps_plast_xx) - eps_xx;

% total strain in zz
F(2) = (eps_zz_0 + deps_elast_zz + deps_plast_zz) - eps_zz;

% yield condition
J2 = (s_xx^2 + s_yy^2 + s_zz^2)/2;
F(3) = J2 - k^2;
Plane Strain Tension

\[\sigma_{xx}, \sigma_{zz} \text{ vs } \varepsilon_{xx} \]

\[\frac{\sigma_{zz}}{\sigma_{xx}} \text{ vs } \varepsilon_{xx} \]
Plane Strain Tension
This is our first example in which plastic and elastic regions coexist in the specimen.

This example is taken from Hill’s book “The Mathematical Theory of Plasticity”, IV.7 p.81

§1. Problem Statement

For a rectangular beam subjected to pure bending moment M, find the thickness of plastic region $(a-c)$ and bending curvature k as functions of M.

We expect the plastic region to appear if $M > M_y$, where M_y is a threshold value (onset of yield).

We also expect a maximum value M_{max} at which the plastic region extends to cover the entire cross section. The beam collapses at $M = M_{max}$ and cannot support a greater bending moment.

Find M_{max}/M_y.

For simplicity, we shall again assume that the material is incompressible ($\nu = 0.5$).
82. Elastic Bending \((M < M_y)\)

From strength of materials analysis

\[
\varepsilon_{xx} = -\frac{y}{R} \quad \left(\rho = \frac{1}{R} \text{ curvature radius} \right)
\]

\[
\sigma_{xx} = -\frac{Ey}{R}, \text{ all other stresses zero}
\]

These expressions follow from the assumption that planar cross sections remain planar.

For \(\nu = 0.5\), the above expression are exact (see Hill, p. 82)

\[
M = \int_{-a}^{a} -\sigma_{xx} y \, dy \cdot (2b) = E \cdot \frac{2b}{P} \int_{-a}^{a} y^2 \, dy
\]

Define \(I_z = (2b) \cdot \int_{-a}^{a} y^2 \, dy = (2b) \frac{(2a)^3}{12} = \frac{4a^3b}{3}\)

\[
M = E \cdot \frac{1}{P} \cdot I_z
\]

\[
K = \frac{1}{P} = \frac{M}{EI_z}, \quad \sigma_{xx} = -\frac{My}{I_z}
\]

Maximum stress magnitude occurs at \(y = \pm a\)

Take \(y = a\), \(\sigma_{xx} = -\frac{Ma}{I_z}\), \(\sigma_{yy} = \sigma_{zz} = 0\)

\[
J_z = \frac{1}{6} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right] = \frac{\sigma_{xx}^2}{3} = \frac{1}{3} \left(\frac{Ma}{I_z} \right)^2
\]

At onset of yield, \(M = M_y \quad J_z = k^2\)

\[
\frac{1}{3} \left(\frac{Ma}{I_z} \right)^2 = k^2 \quad |\sigma_{xx}| = \frac{Mc_a}{I_z} = \frac{1}{3} k = \sigma_y
\]

\[
M_y = \frac{I_z \sigma_y}{a}
\]
ME342

Bending

The critical curvature at onset of yielding is

\[
\kappa_y = \frac{1}{R_y} = \frac{M_y}{E I z} = \frac{\sigma_y}{E a}
\]

\[
R_y = \frac{E a}{\sigma_y}
\]

At \(M = M_y \), the plastic region is still infinitesimal, i.e. \(a - c = 0 \).
Stress field is still linear with \(y \).

\[\text{§3. Plastic Bending (} M > M_y \text{)}\]

Hill showed that if \(V = 0.5 \), then

\[
E_{xx} = -\frac{y}{P}, \quad \sigma_{xx} \text{ is the only non-zero stress}
\]

are still true even in the plastic regime \((M > M_c) \). (Hill, p.83)

Since \(\sigma_{xx} \) is the only non-zero stress component, every point in the beam is in the state of simple tension (or compression).

Hence

\[
\left\{ \begin{array}{l}
|\sigma_{xx}| = \sigma_y \quad \text{in the plastic region: } [-a, -c] \text{ and } [c, a] \\
\sigma_{xx} = -\frac{E y}{P} \quad \text{in the elastic region: } [-c, c]
\end{array} \right.
\]

For continuity at \(y = c \), \(\frac{E c}{P} = \sigma_y \)

\[
M = \int_{-a}^{a} \sigma_{xx} y \, dy \quad \text{(2b)} = \int_{-c}^{c} \frac{E y^2}{P} \, dy + 2 \int_{c}^{a} \sigma_y y \, dy \quad \text{(2b)}
\]

\[
= \left[\frac{E}{P} \frac{(a^3)}{12} + \frac{E c}{P} (a^2 - c^2) \right] \cdot \text{(2b)}
\]

\[
= \frac{E c}{P} \left(a^2 - \frac{c^2}{3} \right) \cdot 2b = \sigma_y \left(a^2 - \frac{c^2}{3} \right) \cdot 2b
\]
Bending

\[C = \sqrt{3} \cdot \sqrt{a^2 - \frac{M}{\sigma_Y \cdot 2b}} \quad \text{for} \quad M > M_c = \frac{I_2 \sigma_Y}{a} \]

\[k = \frac{1}{p} = \frac{\sigma_Y}{EC} = \frac{\sigma_Y}{E \sqrt{\frac{1}{3} \cdot I_2 \cdot \frac{M}{\sigma_Y \cdot 2b}}} \]

\[M = M_{\text{max}} \text{ when } C = 0, \quad a^2 = \frac{M_{\text{max}}}{\sigma_Y \cdot 2b}, \quad M_{\text{max}} = \sigma_Y \cdot 2a^2b \]

\[\frac{M_{\text{max}}}{M_c} = \frac{\sigma_Y \cdot 2a^2b}{\sigma_Y \cdot \frac{I_2}{a}} = \frac{2a^2b}{\frac{4}{3}a^2b} = \frac{3}{2} \]

\[K = \frac{1}{p} = \frac{3M}{E \cdot a^2b} \]
§4. Simply supported beam under uniform load

The result obtained above can be used to study a beam in which the internal moment is not uniform.

(Poage & Hodge, §7, P.44)

\[V(-L) = PL, \quad V(L) = -PL \]
\[V'(x) = -P \]
\[V(x) = -PLx \]

\[M(-L) = 0, \quad M(L) = 0 \]
\[M'(x) = V(x) \]
\[M(x) = \frac{1}{2} P (L^2 - x^2) \]

Shear force gives rise to \(\sigma_{xy} \)
if entire beam is in elastic regime,
\[\sigma_{xy} = V(x) \cdot \frac{3}{2} (x^2 - y^2) \]

Bending moment gives rise to \(\sigma_{xx} \)
if entire beam is in elastic regime,
\[\sigma_{xx} = -\frac{M(x)y}{I_z} \]

Yield condition : \(J_2 = \frac{1}{3} \sigma_{xx} + \sigma_{xy}^2 = k^2 \)

In practice: \(|\sigma_{xy}| \ll |\sigma_{xx}| \)
\[J_2 \approx \frac{1}{3} \sigma_{xx}^2 \]
Hence yield condition is the same as in §2.

Assuming the maximum bending moment (\(\frac{1}{2} PL^2 \) at \(x = 0 \)) already exceeds \(M_y \) then in the plastic section (see §3, p.3)

\[M(x) = \sigma_y \left(a^2 - \frac{c^2}{3} \right) 2b = \frac{1}{2} P (L^2 - x^2) \]

\[c(x) = \sqrt{a^2 - \frac{P}{4b\sigma_y} (L^2 - x^2)} \]

(Exercise: Find deflection of the beam's neutral axis)
Consider again a beam in pure bending. Suppose \(M \) has increased from 0 to \(M > M_r \). We now let \(M \) decrease from \(M_r \) back to 0.

Q: What is the residual stress in the beam?

What is the curvature of the beam when it is fully unloaded (\(M = 0 \))?

Is the residual stress strong enough to cause plastic flow (in the reverse direction)?

\[
\sigma_{xx} = \frac{-M y}{I_z}
\]

\[
\varepsilon_{xx} = \frac{M y}{E I_z}
\]

\[
\varepsilon_{xx}^t = \frac{y}{P_i}
\]

\[
\varepsilon_{xx} = \frac{-y}{P_i}
\]

\[
\sigma_{y} = \begin{cases} \frac{-E y}{P_i} & -\xi \leq y \leq \xi \\ \pm \sigma_r & |y| > \xi \end{cases}
\]

\[
c_1 = \frac{13}{2} \cdot \frac{a^2 - M_r}{\sigma_r \cdot 2b}
\]

\[
P_i = \frac{\sigma_r}{E G} = \frac{\sigma_r}{E B \cdot \sqrt{a^2 - M_r/(\sigma_r \cdot 2b)}}
\]
Unloading $0 < M < M_1$

\[\sigma_{xx} = E \cdot \varepsilon_{xx} \]

\[\varepsilon_{xx} = \frac{-y - (M-M_1)y}{\frac{1}{E} \cdot \frac{M_1}{I_2}} \]

During unloading, as long as stress stay below σ_f,

ε_{xx} remains unchanged.

all strain changes are accommodated by ε_{el}

Unloading $M = 0$

\[\sigma_{xx} = E \cdot \varepsilon_{el} \]

\[\varepsilon_{el} = \frac{-y + \frac{M_1 y}{E I_2}}{\frac{1}{E} \cdot \frac{M_1}{I_2}} \]

Residual curvature

\[\frac{1}{P_0} = \frac{1}{P_1} - \frac{M_1}{E I_2} = \frac{\sigma_f}{E I_2} \cdot \frac{1}{13 \cdot \alpha^2 - M_1 (67 - 2b)} - \frac{M_1}{E I_2} \]

Residual stress

\[\sigma_{xx} \bigg|_{y = c_1} = -\sigma_f + \frac{M_1 c_1}{I_2} \]

\[\sigma_{xx} \bigg|_{y = a} = -\sigma_f + \frac{M_1 a}{I_2} \]
Recall \[M_Y \leq M_1 \leq M_{\text{max}} \quad (M_{\text{max}} = \frac{3}{2} M_Y) \quad (M_Y = \frac{I_2 \sigma_Y}{a}) \]

When \(M_1 = M_Y \) (lower limit) \(c_1 = a \).

\[
\sigma_{xx} \big|_{y=c_1} = \sigma_{xx} \big|_{y=0} = -\sigma_Y + \frac{M_Y a}{I_2} = 0 \quad \rightarrow \text{no residual stress}
\]

When \(M_1 = M_{\text{max}} \) (upper limit) \(c_1 = 0 \).

\[
\sigma_{xx} \big|_{y=0} = -\sigma_Y
\]

\[
\sigma_{xx} \big|_{y=a} = -\sigma_Y + \frac{\frac{3}{2} I_2 \sigma_Y}{a} \cdot \frac{a}{I_2} = \frac{1}{2} \sigma_Y
\]

In general, for \(M_Y < M < M_{\text{max}} \)

\(-\sigma_Y < \sigma_{xx} \big|_{y=c_1} < 0\)

\(0 < \sigma_{xx} \big|_{y=a} < \frac{\sigma_Y}{2}\)

Hence plastic flow \{ should not \} (choose one) occur during unloading

Q: After unloading, suppose we apply a bending moment in the reverse direction, at which bending moment \(M_Y \) will plastic flow occur again? Where will yield occur first?

(Bauschinger effect if \(|M_1| < M_Y \))
We will study the torsion of prismatic bar beyond yield condition.
Similar to the bending example, we expect the plastic region to initiate at the periphery and grow inward on the cross section.
We shall start with a quick review of the elastic solution using Prandtl's stress function and then extend it to plastic regime.

31. Problem Statement

A prismatic bar is subjected to torque T along its (z) axis.
Find the plastic region (shaded) and twist per unit length as functions of T.
We expect the plastic region to appear if T > T_Y, where T_Y is a threshold value (onset of yield).
We also expect a maximum value T_{max}, at which the plastic region extends to cover the entire cross section.
The bar collapses at T = T_{max} and cannot support a greater torque.

\[\text{Find } \frac{T_{\text{max}}}{T_Y} \]

\[\theta(z) = \beta \cdot z \quad \beta, \text{ twist per unit length} \]

Displacement field

\[\begin{align*}
 u_x &= -\theta y = -\beta z y \\
 u_y &= \theta x = \beta z x \\
 u_z &= \beta \cdot f(x,y)
\end{align*} \]

Strain field

\[\begin{align*}
 \varepsilon_{xx} &= \varepsilon_{yy} = \varepsilon_{zz} = 0 \\
 \varepsilon_{xy} &= 0 \\
 \varepsilon_{xz} &= \frac{1}{2}(-\beta y + \beta f,x) \\
 \varepsilon_{yz} &= \frac{1}{2} (\beta x + \beta f,y)
\end{align*} \]

Stress field

\[\begin{align*}
 \sigma_{xx} &= 6\varepsilon_{yy} = 6\varepsilon_{zz} = 0 \\
 \sigma_{xy} &= 0 \\
 \sigma_{xz} &= M \beta (-y+f,x) \\
 \sigma_{yz} &= M \beta (x+f,y)
\end{align*} \]

Introduce Prandtl's stress function, \(\phi(x,y) \) such that

\[\sigma_{xx} = \phi_y \quad \sigma_{yy} = -\phi_x \]

so that the equilibrium condition \(\sigma_{xx,x} + \sigma_{yy,y} + \sigma_{zz,z} = 0 \)

is automatically satisfied.

\(\phi(x,y) \) satisfies PDE:

\[\nabla^2 \phi = \phi_{xx} + \phi_{yy} = -2\mu \beta \quad \text{(Poisson equation)} \]

Traction free boundary condition on outer surface of bar

\[\phi = \text{const} \quad \text{on} \quad \Gamma \]

without loss of generality, we choose \(\phi = 0 \quad \text{on} \quad \Gamma^* \).

Torque \(T \) is related to \(\phi \) through:

\[T = \iint_A \left(x\sigma_{yy} - y\sigma_{xx} \right) \, dx\,dy = \iint_A \left(-x \phi_{,x} - y \phi_{,y} \right) \, dx\,dy \]

\[T = 2 \iint_A \phi \, dx\,dy \]

\[T = \sqrt{(\phi_{,x})^2 + (\phi_{,y})^2} \quad S_1 = \Gamma, \quad S_2 = -\Gamma, \quad S_3 = 0, \quad J_2 = \Gamma^2 \]
§2.1 Circular cross section

\[\phi(x, y) = -\frac{M\beta}{2} (x^2 + y^2 - a^2) \quad r = \sqrt{x^2 + y^2} \]
\[\phi(r) = -\frac{M\beta}{2} (r^2 - a^2) \]

\[T = \mu \beta K_t \quad K_t = \text{torsional rigidity} \]

\[K_t = \frac{\pi}{2} a^4 = J \quad \text{for circular cross section} \]

\[T = \sqrt{\sigma x^2 + \sigma y^2} = \left| \frac{\partial \phi}{\partial r} \right| = M\beta r \quad r \]

\[T_{max} = \mu \beta a = \frac{T}{K_t} a = \frac{2T}{\pi a^3} \quad a \neq r = a \]

When \(T = T_Y \), \(T_{max} = k = \frac{\sigma x}{15}, \quad T_Y = \frac{\pi}{2} k a^3 \]

§2.2 Elliptical cross section

\[\phi(x, y) = -\frac{M\beta a^2 b^2}{a^2 + b^2} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 \right) \]

\[T = \mu \beta K_t \]

\[K_t = \frac{\pi a^3 b^3}{a^2 + b^2} \leq J = \frac{\pi ab}{4} \left(a^2 + b^2 \right) \]

\[J \equiv \int r^2 dA \quad \text{polar moment of inertia} \]

\[T_{max} = \left| \sigma x^2 \right|_{x=0, y=b} = \left| \frac{\partial \phi}{\partial y} \right|_{x=0, y=b} = \frac{M\beta a^2 b}{a^2 + b^2} \cdot \frac{2b}{b^2} \]

\[T_{max} = \frac{2\mu \beta a^2 b}{a^2 + b^2} = \frac{T}{K_t} \frac{2a^2 b}{a^2 + b^2} = \frac{2T}{\pi ab} \]

when \(T = T_Y \), \(T_{max} = k = \frac{\sigma x}{15}, \quad T_Y = \frac{\pi}{2} k a b^2 \]
\[\phi(x, y) \text{ must be solved numerically.} \]

\[T = \mu \beta K_t \]

\[K_t \approx 2.24 a^4 \leq J = \frac{8}{3} a^4 \]

\[\frac{K_t}{J} \approx 0.84 \]

\[\tau_{\text{max}} = |\sigma_{y2}| \bigg|_{x=\pm a \atop y=0} = |\sigma_{x2}| \bigg|_{x=0 \atop y=\pm a} \]

\[\approx 0.60 \frac{T}{a^3} \]

when \(T = T_Y \), \[\tau_{\text{max}} = k = \frac{\sigma_T}{f} = \frac{17}{3} \]

\[T_Y \approx 17 k a^3 \]

* exercise: plot contours of \(\phi(x, y) \) for circular, elliptic and square cross sections.
§3. Plastic Torsion ($T > T_Y$)

For perfectly plastic material (no hardening), the shear stress T inside the torsion bar cannot exceed $k = \frac{6T}{3I}$ (Von Mises).

In the plastic region $T = k$, i.e. $|\nabla \phi(x,y)| = k$.

In other words, the slope of function $\phi(x,y)$ cannot exceed k.

83.1 Circular Cross Section

\[r = \sqrt{x^2 + y^2} \]

\[\phi(x,y) = k(a-r) \quad c \leq r \leq a \]

\[\phi(x,y) = -\frac{MB}{2} \left(r^2 - c^2 \right) + k(a-r) \quad 0 \leq r \leq c \]

continuity of $\frac{d\phi}{dr}$ at $r = c$

\[k = \frac{MB}{2} \]

\[\beta = \frac{k}{\mu c} \]

\[T = \int_0^a \frac{2\phi}{dr} \cdot r \cdot 2\pi r \, dr \]

\[= \int_0^c \mu \beta r^2 \cdot 2\pi r \, dr + \int_c^a k \cdot r^2 \cdot 2\pi r \, dr \]

\[= \frac{\pi}{2} \mu \beta c^4 + \frac{2\pi}{3} k (a^3 - c^3) \]

\[= \frac{\pi}{2} k c^3 + \frac{2\pi}{3} k (a^3 - c^3) \]

\[= \pi k \left(\frac{2}{3} a^3 - \frac{1}{6} c^3 \right) = \frac{\pi k}{6} (4a^3 - c^3) \]

\[C = (4a^3 - \frac{6T}{\pi k})^{\frac{1}{3}}, \quad C = 0 \text{ at } T = T_{max} = \frac{2\pi}{3} ka^3 \]

\[\beta = \frac{k}{\mu} \left(4a^3 - \frac{6T}{\pi k} \right)^{\frac{1}{3}} \]

\[\frac{T_{max}}{T_Y} = \frac{4}{3} \]

Compare with bending
3.2 Elliptic Cross Section

\[A_{el} \] (Area of elastic region)

\[T_{ab} \]

\[0 \]

\[T_Y \]

\[T_{max} \]

\[\beta \]

\[0 \]

\[T_Y \]

\[T_{max} \]

(Numerical solution required)

3.3 Square Cross Section

(Left as exercise problem)

sketch elastic & plastic regions

\[T_Y < T < T_{max} \]

\[T_{max} = \frac{T_{max}}{T_Y} \]
%%%
% 2D Cylinder Example: Torsion with plasticity using triangular elements
%
% Wei Cai caiwei@stanford.edu
% William Kuykendall wpkuyken@stanford.edu
%
% adapted from FeCalc.m written by Peter Pinsky pinsky@stanford.edu
% universal meshing from Michael Hunsweck
%
% First Adapted 01/03/2013
%
% Last Modified 04/22/2013
%%%
%%% Part 1: Set simulation parameters
%%%
%clear;
global nNodes nElements Coord u IEN K F Nxe Nye EBC ID g penalty_factor
nDoF = 1; % number of degrees of freedom
nDim = 2; % number of dimensions
L: [l w pl pw]
 l, w: domain length and width [m]
 pl, pw: density of triangles along length and width

% Circular cylinder [x0 y0 r]--[center coordinates, radius] [m m m]
shape = 'circle'; L = [0.8 0.8 10 10]; c = [0 0 0.2];
% Elliptical cylinder [x0 y0 a b]--[(x-x0)/a]^2+[(y-y0)/b]^2=1
%shape = 'ellipse'; L = [1.3 1.3 10 10]; c = [0 0 0.6 0.2];
% Rectangular rod [x0 y0 a b]-- [x_center, y_center, length, width]
shape = 'rectangle'; L = [0.6 0.4 5 5]; c = [0 0 0.4 0.4];
E = 200e9;
nu = 0.32;
mu = E/(2*(1+nu));% shear modulus [N/m^2]
tau_max = 4.0e6; % maximum shear stress
beta = 3.5e-4; % twist per unit length [1/m]
beta = 4e-4; % twist per unit length [1/m]

% options for solving plasticity problem by iteration
Niter = 2000; dt = 5e6; plotfreq = 100; penalty_factor = 2e-14;

% set axis limits for plotting
if strcmp(shape,'circle')
 clim = c(3);
elseif strcmp(shape,'ellipse')
 clim = max(c(3:4));
elseif strcmp(shape,'rectangle')
 clim = max(c(3:4))/2;
else
 fprintf('Unrecognized shape for plotting.
');
 clim = 1;
end
%% Part 2: Generate Mesh, Initialize Arrays, Set Up Boundary Conditions

% Step 1: Generate solution mesh
[Coord, IEN, c, shape] = CreateMesh(L, c, shape); % Generates the mesh
IEN = IEN';
nNodes = size(Coord,1); % Number of nodes
nElements = size(IEN,2); % Number of elements
nNodesElement = size(IEN,1); % Number of nodes per element
nEdgesElement = 3; % Number of edges per element

% Step 2: Set Tolerance for detecting boundary nodes
boundary_tol = 1e-8;
onSurface = logical(zeros(1,nNodes));

% Step 3: Allocate Arrays
C = spalloc(nElements, nDoF, nElements);
f = spalloc(nElements, nDoF, nElements);
g = spalloc(nNodes, nDoF, round(nNodes/4));
EBC = spalloc(nNodes, nDoF, round(nNodes/4));

% Step 4: Set Essential Boundary Condition
% Step 4.1: Get coordinates of all nodes
X = Coord(:,1); % x-position of all nodes
Y = Coord(:,2); % y-position of all nodes

% Step 4.2: Define essential boundary condition value(s)
T = [0]; % Traction

% Step 4.3: Set g, EBC for all nodes on the surface
% Step 4.3a: Find all nodes on external surface
if strcmp(shape,'circle')
 % distance squared of node from circle center
 D2 = (X-c(1)).^2 + (Y-c(2)).^2;
onSurface = (D2 >= c(3)^2-boundary_tol);
elseif strcmp(shape,'ellipse')
 % distance squared of node from ellipse center
 D2 = ((X-c(1))/c(3)).^2 + ((Y-c(2))/c(4)).^2;
onSurface = (D2 >= 1-boundary_tol);
elseif strcmp(shape,'rectangle')
 for ii = 1:nNodes
 onSurface(ii) = abs(X(ii)-c(1))>(c(3)/2-boundary_tol) ...
 || abs(Y(ii)-c(2))>(c(4)/2-boundary_tol) ;
 end
else
 error('Code should not get here. Shape should have been set.
');
end

% Adjust the interior mesh coords
[newCoord] = AdjustMesh(Coord, IEN, onSurface, 200, 0e-1, 200);
Coord = newCoord;
%% Step 4.3b: Set g, EBC for node on surface
EBC(onSurface) = 1;
g(onSurface) = T;

%% Step 5: Define the Natural Boundary Condition
%% Step 5.1: Allocate h array
h = spalloc(nEdgesElement,nElements,round(nElements/4));
%% In this problem there is not any natural boundary condition applied
%% Step 6: Define the Load Value (often RHS of equation you are solving)
%% Step 1: Set f for all elements
f(:) = 0.1;
f(:) = 10;
f(:) = 1;

%%%
%%% Part 3: Create Destination Array (ID) and Location Matrix (LM)
%%%
%% Step 1: Create Data Processing Arrays
%% Step 1.1: Allocate arrays
ID = zeros(nNodes,nDoF)';
 % Destination Array: ID(A) = P if A is not on essential boundary
 % 0 if A is on the essential boundary
 % index is global node number (A)
 % result is global equation number (P)
LM = zeros(nNodesElement*nDoF,nElements);
 % Location Matrix: P = LM(a,e)
 % row is degree of freedom (a)
 % column is element number (e)
 % result is global equation number (P)
%% Step 1.2: Populate ID Array
I = full(EBC' == 0); % Creates logical indexing array
nEquations = sum(sum(I)); % Count number of DoF's
ID(I) = 1:nEquations; % Assign Equation numbers
ID = ID';
%% Step 1.3: Populate LM Array
P = ID(IEN,:)';
LM(:) = P(:);

%%%
%%% Part 4: Assembly of K and F Matrices
%%%
%% Step 1: Allocate K and F
K = spalloc(nEquations,nEquations,20*nDoF*nEquations);
F = spalloc(nEquations,1,nEquations);
%% Step 2: Assemble K and F
 % Step 2.1: Compute element contributionions
 % e = 1:nElements
for e = 1:nElements
 % Step 2.2: Get coordinates of element nodes
 x = Coord(IEN(:,e),1);
y = Coord(IEN(:,e),2);
 % Step 2.3: Define Shorthand
x12 = x(1) - x(2); x23 = x(2) - x(3); x31 = x(3) - x(1);
y12 = y(1) - y(2); y23 = y(2) - y(3); y31 = y(3) - y(1);

% Step 2.4: Compute element Jacobian
J_e = [-x31, x23; -y31 y23];

% Step 2.5: Compute element size
elementSize = 0.5*det(J_e);
Ae = elementSize;

% Subsection 1: Computation of k_e
%==
% For isotropic case.
k_e = 1/(4*2*mu*beta*Ae)* ...
 [y23^2+x23^2, y23*y31+x23*x31, y23*y12+x23*x12;
 y23*y31+x23*x31, y31^2+x31^2, y31*y12+x31*x12;
 y23*y12+x23*x12, y31*y12+x31*x12, y12^2+x12^2];
%==

% Subsection 2: Computation of f_e

ff = f(IEN(1,e));
f_e = ff*Ae/3*[1;1;1];

% Subsection 3: Computation of f_g

g_e = g(IEN(:,e));
f_g = -k_e*g_e;

% Subsection 4: Computation of f_h

% Step 4.1a: Edge load intensity (homogeneous boundary)
f_h = h(:,e);
% Step 4.1b: Edge load intensity (non-homogeneous boundary)
l12 = sqrt(x12^2 + y12^2);
l23 = sqrt(x23^2 + y23^2);
l31 = sqrt(x31^2 + y31^2);
h_e = h(:,e);
f_h = h_e(1)*l12/2*[1;1;0] + h_e(2)*l23/2*[0;1;1] + h_e(3)*l31/2*[1;0;1];

% End of Subsections

% Global matrices for computing spatial gradients and area of elements
Nxe = zeros(nElements,nNodes); Nye = zeros(nElements,nNodes); Ae = zeros(nElements,1);
for e = 1:nElements
 % Get element coordinates
 xe = Coord(IEN(:,e),1);
 ye = Coord(IEN(:,e),2);
 % Define Shorthand
 x12 = xe(1) - xe(2); x23 = xe(2) - xe(3); x31 = xe(3) - xe(1);
 y12 = ye(1) - ye(2); y23 = ye(2) - ye(3); y31 = ye(3) - ye(1);
 % Area of a triangle:
 Ae(e) = (xe(1)*(ye(2)-ye(3))+xe(2)*(ye(3)-ye(1))+xe(3)*(ye(1)-ye(2)))/2;
 % Compute element jacobian
 J_e = [-x31, x23; -y31 y23];
 % Calculate natural derivatives of N1,N2,N3
 N1es = 0; N2es = 1; N3es = -1;
 N1er = 1; N2er = 0; N3er = -1;
 d_Nrs = [N1er N1es; N2er N2es; N3er N3es];
 d_Nxy = d_Nrs/J_e;
 Nxe(e,IEN(:,e)) = d_Nxy(:,1)'
 Nye(e,IEN(:,e)) = d_Nxy(:,2)'
end

% compute volume contribution from each node
for ii = 1:nNodes
 [row,col] = find(IEN == ii);
 V_ave(ii)= sum(Ae(col))/3; % 3 for triangular elements
end

%%%
%%% Part 5: Compute Finite Element Solution (including plasticity)
%%%
% Step 1: Solve elasticity problem
d_slash = K\F;

% Step 2: Solve plasticity problem by
% minimize (0.5*d'*K*d - F'*d) in elast_region + (penalty) in plast_region
% using steepest descent algorithm
% Plast_region is defined for nodes on elements whose slope exceeds tau_max
% Elast_region is defined for remaining nodes
% For nodes in Plast_region, the (elastic) gradient
% from (0.5*d'*K*d - F'*d) term is set to zero, and the gradient from
% penalty function = (tau^2-tau_max^2)*penalty_factor is added.
% initialize d from elasticity solution (scaled)
if ~exist('d')
 d = d_slash*0.25;
end
I = (EBC == 0); u = zeros(size(g)); tau_max2 = tau_max^2;
for iter = 1:Niter,
 % grad is the residual of Poisson's equation
 grad = K*d - F;
 u(I) = d(ID(I)); u(~I) = g(~I);
 dxe = Nxe*u; dye = Nye*u;
% total torque
Torque = 2*dot(V_ave, u);

% find elements whose slope exceeds tau_max
tau2 = (dxe).^2+(dye).^2;
element_factor = (tau2 >= tau_max2);
ind_e = find(element_factor);
id_in_elements = reshape(ID(IEN(:,ind_e)),length(ind_e)*3,1);
non_zero_entries = find(id_in_elements>0);
% for these elements, set the residual term from Poisson's equation to zero
grad(id_in_elements(non_zero_entries)) = 0;

% for elements whose slope exceeds tau_max, add penalty function
penalty = sum((tau2-tau_max2).*element_factor) * penalty_factor;
dpenalty_du = zeros(size(u));
dpenalty = zeros(size(d));
for e = 1:nElements,
 if element_factor(e)
 % derivative of slope wrt nodal value
 dpenalty_du = dpenalty_du + ...
 (2*(Nxe(e,:)*u)*Nxe(e,:)' + 2*(Nye(e,:)*u)*Nye(e,:)')' + 2*(Nye(e,:)*u)*Nye(e,:)');
 end
end

penalty_du = dpenalty_du * penalty_factor;
dpenalty(ID(I)) = dpenalty_du(I);
grad = grad + dpenalty;

% move d in the steepest descent direction

d = d - grad*dt;

% plot intermediate results during minimization
if (mod(iter,plotfreq)==0)
 disp(sprintf('iter = %d/%d Torque = %e sum(d) = %e norm(grad) = %e', ...
 iter,Niter,Torque,sum(d),norm(grad)));
 figure(1)
 x = Coord;
 T = trisurf(IEN',x(:,1),x(:,2),u);
xlim([-clim clim]); ylim([-clim clim]);
 figure(3)
 for ii = 1:nNodes
 [row,col] = find(IEN == ii);
 du_ave(ii,1)= mean(dxe(col,:),1);
 du_ave(ii,2)= mean(dye(col,:),1);
 end;
 T = trisurf(IEN',x(:,1),x(:,2),sqrt(du_ave(:,2).^2+du_ave(:,1).^2));
xlim([-clim clim]); ylim([-clim clim]);
drawnow
end
end

% Step 3: Arrange results (d) into solution vector (u)
\begin{verbatim}
u = zeros(nNodes,nDoF);
I = (EBC == 0);
u(I) = d(ID(I));
u(~I) = g(~I);
Torque = 2*dot(V_ave, u);

% Step 4: Create coordinate array
x = Coord;

% Step 5: compute average slope on nodes
for ii = 1:nNodes
 [row,col] = find(IEN == ii);
 du_ave(ii,1)= mean(dxe(col,:),1);
 du_ave(ii,2)= mean(dye(col,:),1);
end;

%%%
%%% Part 6: Plotting
%%%
% Step 1: Plot Prandtl's stress function (u, i.e. phi)
figure(1)
T = trisurf(IEN',x(:,1),x(:,2),u);
title('Torsion: Prandtl Stress Function',...
 'Interpreter','Latex','FontSize',12);
xlabel('x','Interpreter','Latex','FontSize',12);
ylabel('y','Interpreter','Latex','FontSize',12);
zlabel('ϕ','Interpreter','Latex','FontSize',12);
set(gca,'FontSize',8);
axis([-clim clim -clim clim 0 max(u*1.1)])
co = colorbar;
set(co,'FontSize',8);
colormap jet
shading interp
set(T,'EdgeColor','k');

% Step 2: Plot sigma_xz and sigma_yz (gradient of u)
figure(2)
subplot(2,1,1)
T = trisurf(IEN',x(:,1),x(:,2),du_ave(:,2));
axis equal
axis([-clim clim -clim clim])
view([0 90])
title('FE Solution for σ_{xz}',...
 'Interpreter','Latex','FontSize',12);
xlabel('x','Interpreter','Latex','FontSize',12);
ylabel('y','Interpreter','Latex','FontSize',12);
set(T,'EdgeColor','k');

% Step 3: Plot sigma_yz (gradient of u)
figure(3)
subplot(2,1,1)
T = trisurf(IEN',x(:,1),x(:,2),du_ave(:,1));
axis equal
axis([-clim clim -clim clim])
view([0 90])
title('FE Solution for σ_{yz}',...
 'Interpreter','Latex','FontSize',12);
xlabel('x','Interpreter','Latex','FontSize',12);
ylabel('y','Interpreter','Latex','FontSize',12);
set(T,'EdgeColor','k');

% Step 4: Plot sigma_xx (gradient of u)
figure(4)
subplot(2,1,1)
T = trisurf(IEN',x(:,1),x(:,2),du_ave(:,3));
axis equal
axis([-clim clim -clim clim])
view([0 90])
title('FE Solution for σ_{xx}',...
 'Interpreter','Latex','FontSize',12);
xlabel('x','Interpreter','Latex','FontSize',12);
ylabel('y','Interpreter','Latex','FontSize',12);
set(T,'EdgeColor','k');

% Step 5: Plot stress function (u, i.e. phi)
figure(5)
T = trisurf(IEN',x(:,1),x(:,2),u);
title('Torsion: Prandtl Stress Function',...
 'Interpreter','Latex','FontSize',12);
xlabel('x','Interpreter','Latex','FontSize',12);
ylabel('y','Interpreter','Latex','FontSize',12);
zlabel('ϕ','Interpreter','Latex','FontSize',12);
set(gca,'FontSize',8);
axis([-clim clim -clim clim 0 max(u*1.1)])
co = colorbar;
set(co,'FontSize',8);
colormap jet
shading interp
set(T,'EdgeColor','k');

% Step 6: Plot sigma_xz and sigma_yz (gradient of u)
figure(6)
subplot(2,1,1)
T = trisurf(IEN',x(:,1),x(:,2),du_ave(:,2));
axis equal
axis([-clim clim -clim clim])
view([0 90])
title('FE Solution for σ_{xz}',...
 'Interpreter','Latex','FontSize',12);
xlabel('x','Interpreter','Latex','FontSize',12);
ylabel('y','Interpreter','Latex','FontSize',12);
set(T,'EdgeColor','k');

% Step 7: Plot sigma_yz (gradient of u)
figure(7)
subplot(2,1,1)
T = trisurf(IEN',x(:,1),x(:,2),du_ave(:,1));
axis equal
axis([-clim clim -clim clim])
view([0 90])
title('FE Solution for σ_{yz}',...
 'Interpreter','Latex','FontSize',12);
xlabel('x','Interpreter','Latex','FontSize',12);
ylabel('y','Interpreter','Latex','FontSize',12);
set(T,'EdgeColor','k');

% Step 8: Plot sigma_xx (gradient of u)
figure(8)
subplot(2,1,1)
T = trisurf(IEN',x(:,1),x(:,2),du_ave(:,3));
axis equal
axis([-clim clim -clim clim])
view([0 90])
title('FE Solution for σ_{xx}',...
 'Interpreter','Latex','FontSize',12);
xlabel('x','Interpreter','Latex','FontSize',12);
ylabel('y','Interpreter','Latex','FontSize',12);
set(T,'EdgeColor','k');
\end{verbatim}
T = trisurf(IEN',x(:,1),x(:,2),-du_ave(:,1));
axis equal
axis([-clim clim -clim clim])
view([0 90])
title('FE Solution for σ_{yz}',
 'Interpreter','Latex','FontSize',12);
xlabel('x','Interpreter','Latex','FontSize',12);
ylabel('y','Interpreter','Latex','FontSize',12);
zlabel('σ_{yz}','Interpreter','Latex','FontSize',12);
co = colorbar; set(co,'FontSize',8);
colormap jet; shading interp
set(T,'EdgeColor','k');

% Step 3: Plot maximum shear stress (magnitude of gradient of u)
figure(3)
T = trisurf(IEN',x(:,1),x(:,2),sqrt(du_ave(:,2).^2+du_ave(:,1).^2));
xlim([-clim clim]); ylim([-clim clim]);
title('Torsion: Maximum Shear Stress',
 'Interpreter','Latex','FontSize',12);
xlabel('x','Interpreter','Latex','FontSize',12);
ylabel('y','Interpreter','Latex','FontSize',12);
zlabel('σ_{xz}','Interpreter','Latex','FontSize',12);
cbar = colorbar; set(cbar,'FontSize',8);
colormap jet; shading interp
set(T,'EdgeColor','k');

% Step 4: Plot contour of stress function with elast-plast boundary
figure(4);
[lxi,lyi] = meshgrid(linspace(-1,1,300));
[ui,xi,yi] = meshgrid(linspace(-1,1,300));
ui = griddata(x(:,1),x(:,2),u,xi,yi,'cubic');
dui = griddata(x(:,1),x(:,2),sqrt(du_ave(:,2).^2+du_ave(:,1).^2),xi,yi,'cubic');
[c h]=contour(xi,yi,ui,20);
hold on
c2=contourc(lxi,lyi,dui,[0.95 0.95]*tau_max,'b--');
hold off
title('Torsion: Prandtl Stress Function',
 'Interpreter','Latex','FontSize',12);
axis equal; axis([-clim clim -clim clim])
figure(5);
[xi,yi] = meshgrid(linspace(-1,1,300));
contour(xi,yi,dui,20);
title('Torsion: Maximum Shear Stress',
 'Interpreter','Latex','FontSize',12);
axis equal; axis([-clim clim -clim clim])
This is our first 2D plane-strain example. The axisymmetry makes the problem simpler than the general 2D plane-strain problem, which will be discussed in the next lecture note.

81. Problem Statement

Consider a thick-walled cylindrical tube (pressure vessel) with internal (gas) pressure \(p_0 \).

Determine the thickness of plastic region (shaded) with increasing \(p_0 \).

Determine if plastic flow occurs if \(p_0 \) is reduced back to zero.

We expect the plastic region to appear if \(p_0 > p_y \), where \(p_y \) is a threshold value (onset of yield).

There is also a maximum value \(P_{\text{max}} \), at which the pressure vessel will burst!

Find \(\frac{P_{\text{max}}}{p_y} \).
§2. Plane-strain Elasticity

\[u_z = 0, \quad \text{Solution independent of} \ z \ (i.e. \ \frac{\partial}{\partial z} = 0) \]

Look for: \(u_x(x,y) \), \(\varepsilon_{xx} \), \(\sigma_{xx} \)
\(u_y(x,y) \), \(\varepsilon_{yy} \), \(\sigma_{yy} \)
\(\varepsilon_{xy} \), \(\sigma_{xy} \)

\[\varepsilon_{zz} = \frac{1}{E} \sigma_{xx} - \frac{1}{E} \sigma_{yy} + \frac{1}{E} \sigma_{zz} = 0 \rightarrow \sigma_{zz} = \nu (\sigma_{xx} + \sigma_{yy}) \]

Equilibrium condition:
\[\sigma_{xx}, x + \sigma_{yy}, y + F_x = 0 \]
\[\sigma_{xy}, x + \sigma_{yy}, y + F_y = 0 \]

Compatibility condition:
\[\varepsilon_{xx}, yy + \varepsilon_{yy}, xx - 2 \varepsilon_{xy}, xy = 0 \]

Generalized Hooke's Law:
\[\varepsilon_{xx} = \frac{1 - \nu}{E} \sigma_{xx} - \frac{\nu}{E} (1 + \nu) \sigma_{yy} \]
\[\varepsilon_{yy} = -\frac{\nu}{E} (1 + \nu) \sigma_{xx} + \frac{1 - \nu}{E} \sigma_{yy} \]
\[\varepsilon_{xy} = \frac{1}{2} \sigma_{xy} \]
\[E = 2\mu (1 + \nu) \]

Introduce Airy Stress function: \(\phi(x,y) \), such that
\[\sigma_{xx} = \phi_y, \quad \sigma_{yy} = \phi_x, \quad \sigma_{xy} = -\phi_{xy} \]

Then in the absence of body force \(F_x = F_y = 0 \),
the equilibrium condition is automatically satisfied.

The compatibility condition becomes (biharmonic equation)
\[\nabla^4 \phi = \phi_{xxxx} + \phi_{yyyy} - 2 \phi_{xxyy} = 0 \]

In polar coordinates, \(\phi(r,\theta) = r^m e^{in\theta} \) satisfies biharmonic equation,
as long as \(m = n, \quad -n, \quad 2n, \quad 2-n \).

(See ME340 Winter 2013 Lecture Notes, "Polar Coordinates".)

For problems with axial symmetry, \(n = 0 \), (Mitchell solution)
\[\phi = A_1 \frac{\phi}{r} + A_2 \frac{\phi}{r^2} + A_3 \frac{\phi}{r^3} + A_4 \phi \]
\[\sigma_r = \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{A_2}{r^3} \frac{\partial \phi}{\partial \theta}, \quad \sigma_\theta = -\frac{2}{r} \frac{\partial \phi}{\partial \theta} \left(\frac{1}{r} \frac{\partial \phi}{\partial r} \right), \quad \sigma_\phi = \frac{A_2}{r^2} \frac{\partial \phi}{\partial \theta} \]
\[\sigma_{rr} = A_1 \cdot 2 + A_2 \cdot (2lnr + 1) + A_3 \cdot \frac{1}{r^2} \]
\[\sigma_{\theta\theta} = -A_4 \cdot \frac{1}{r^4} \]
\[\sigma_{\theta\theta} = A_1 \cdot 2 + A_2 \cdot (2lnr + 3) + A_3 \cdot \left(\frac{1}{r^2} \right) \]

Boundary condition for pressurized tube:
\[\begin{aligned}
\sigma_{rr} \bigg|_{r=a} &= -p_0 \\
\sigma_{\theta\theta} \bigg|_{r=a} &= 0 \\
\sigma_{r\theta} \bigg|_{r=a} &= 0 \\
\sigma_{rr} \bigg|_{r=b} &= 0 \\
\sigma_{r\theta} \bigg|_{r=b} &= 0
\end{aligned} \]

\[A_2 = A_3 = 0, \quad A_1 = \frac{p_0 \cdot a^2}{b^2 - a^2}, \quad A_3 = -\frac{p_0 a b^2}{b^2 - a^2} \]

\[\sigma_1 = \sigma_{\theta\theta}, \quad \sigma_2 = \sigma_{rr}, \quad \sigma_3 = \sigma_{zz} = \nu(\sigma_{rr} + \sigma_{\theta\theta}) = \frac{p_0 a^2}{b^2 - a^2} \cdot \nu \]

\[\overline{\sigma} = \frac{1}{3}(\sigma_{\theta\theta} + \sigma_{rr} + \sigma_{zz}) = \frac{1 + \nu}{3} (\sigma_{rr} + \sigma_{\theta\theta}) = \frac{2(1+\nu)}{3} \frac{p_0 a^2}{b^2 - a^2} \]

\[S_1 = \sigma_1 - \overline{\sigma} = \frac{p_0 a^2}{b^2 - a^2} \left(\frac{1-2\nu}{3} + \frac{b^2}{r^2} \right) \]
\[S_2 = \sigma_2 - \overline{\sigma} = \frac{p_0 a^2}{b^2 - a^2} \left(\frac{1-2\nu}{3} - \frac{b^2}{r^2} \right) \]
\[S_3 = \sigma_3 - \overline{\sigma} = -\frac{p_0 a^2}{b^2 - a^2} \cdot \frac{2(1-2\nu)}{3} \]

\[\text{define } p' = \frac{p_0 a^2}{b^2 - a^2} \]
\[J_2 = \frac{p' \left[\frac{(1-2\nu)^2}{3} + \frac{b^4}{r^4} \right]}{3(1-2\nu)} \]

\[\sigma_{rr} = p' (1 - b^{-1}) \]
\[\sigma_{r\theta} = 0 \]
\[\sigma_{\theta\theta} = p' (1 + b^{-1}) \]
maximum \(J_2 \) occurs at \(r=a \).

At onset of yield \(J_2 \bigg|_{r=a} = (p^2) \left(\frac{(1 - 2\nu)^2}{3} + \frac{b^4}{a^4} \right) = k^2 \)

\[p_0 = k \cdot \frac{b^2 - a^2}{a^2} \cdot \left[\frac{(1 - 2\nu)^2}{3} + \frac{b^4}{a^4} \right]^{-1/2} \]

\section*{3. Elastic region after yield}

For \(p_0 > p_0^Y \), the tube contains a plastic region.

Suppose \(p_0 \) increases monotonically from 0 to a value greater than \(p_0^Y \). Then the plastic region starts from the inner wall \((r=a) \) and grows thicker.

Let \(r=p \) be the elastic-plastic boundary.

The elastic region \(p \leq r \leq b \) has similar boundary conditions as before:

\[
\begin{align*}
\sigma_{rr} \bigg|_{r=p} &= -p_p \\
\sigma_{rr} \bigg|_{r=b} &= 0 \\
\sigma_{\theta \theta} \bigg|_{r=p} &= 0 \\
\sigma_{\theta \theta} \bigg|_{r=b} &= 0
\end{align*}
\]

So the stress field in the elastic region must be:

\[
\begin{align*}
\sigma_{rr} &= \frac{p_p}{b^2 - p^2} \left(1 - \frac{b^2}{r^2} \right) \\
\sigma_{\theta \theta} &= 0 \\
\sigma_{\theta \theta} &= \frac{p_p}{b^2 - p^2} \left(1 + \frac{b^2}{r^2} \right)
\end{align*}
\]

\[J_2 \bigg|_{r=p} = \frac{p_p^2}{b^2 - p^2} \left[\frac{(1 - 2\nu)^2}{3} + \frac{b^4}{p^4} \right] = k^2 \]

\[
\therefore \quad p_p = k \cdot \frac{b^2 - p^2}{p^2} \left[\frac{(1 - 2\nu)^2}{3} + \frac{b^4}{p^4} \right]^{-1/2}
\]

This is the magnitude of the normal stress \(|\sigma_{rr}| \) at the elastic-plastic boundary.
ME342

Cylindrical Tube

Define \(p'' = \frac{P_0 \rho^2}{b^2 - \rho^2} = k \left[\frac{(1-\nu)^2}{3} + \frac{b^4}{\rho^4} \right]^{-\frac{1}{2}} \)

Then in the elastic region \(p \leq \rho \leq b \),

\[
\begin{align*}
\sigma_{rr} &= p'' \cdot (1 - \frac{b^2}{\rho^2}) \\
\sigma_{\theta \theta} &= 0 \\
\sigma_{\phi \phi} &= p'' \cdot (1 + \frac{b^2}{\rho^2})
\end{align*}
\]

(very similar to the expression in p.3)

With increasing \(P_0 \), \(p \) increases from \(a \) to \(b \).
34. Numerical Solution in Elastic Regime

Before discussing the plastic regime, let us see how the same solution in the elastic regime as derived above can be obtained numerically. This prepares us for the numerical solution in the plastic regime.

Equilibrium condition in polar coordinates:

\[
\frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\theta \theta}}{\partial \theta} + \frac{\partial \tau_{r\theta}}{\partial \theta} + F_r = 0
\]

\[
\frac{1}{r} \frac{\partial \sigma_{\theta \theta}}{\partial \theta} + \frac{\partial \tau_{r\theta}}{\partial r} + F_\theta = 0
\]

In our example, \(\sigma_{r\theta} = 0 \), \(F_r = F_\theta = 0 \), \(\frac{\partial \sigma_{rr}}{\partial r} = 0 \)

\[
\frac{\partial \sigma_{rr}}{\partial r} + \frac{\partial \tau_{r\theta}}{\partial \theta} = 0 \quad \text{(equilibrium condition)}
\]

The **compatibility condition** can be obtained from the definition of strain (in polar coordinates)

\[
\begin{align*}
\varepsilon_{rr} &= \frac{1}{2} \frac{\partial u_r}{\partial r} \\
\varepsilon_{\theta \theta} &= \frac{1}{2} \left(\frac{1}{r} \frac{\partial u_r}{\partial \theta} + \frac{\partial u_\theta}{\partial r} \right) \\
\varepsilon_{r \theta} &= \frac{1}{2} \left(\frac{\partial u_r}{\partial \theta} + \frac{\partial u_\theta}{\partial r} \right)
\end{align*}
\]

By symmetry, in our example, we have only one non-zero displacement field: \(u_r \)

\[
\begin{align*}
\varepsilon_{rr} &= \frac{1}{2} \frac{\partial u_r}{\partial r} \\
\varepsilon_{\theta \theta} &= \frac{1}{2} \left(\frac{1}{r} \frac{\partial u_r}{\partial \theta} + \frac{\partial u_\theta}{\partial r} \right) \\
\varepsilon_{r \theta} &= 0
\end{align*}
\]

\[
\varepsilon_{rr} = \frac{1}{2} \left(\varepsilon_{rr} + \varepsilon_{\theta \theta} + \varepsilon_{r \theta} \right) = \frac{1}{2} \left(\frac{\partial u_r}{\partial r} + \frac{\partial u_\theta}{\partial r} \right)
\]

\[
\frac{\partial \varepsilon_{\theta \theta}}{\partial r} = \frac{1}{r} (\varepsilon_{rr} - \varepsilon_{\theta \theta}) \quad \text{(compatibility condition)}
\]
Generalized Hooke's Law:

\[
\sigma_{yy} = (\lambda + 2\mu) \varepsilon_{yy} + \lambda \varepsilon_{oo}
\]

\[
\sigma_{oo} = \lambda \varepsilon_{oo} + (\lambda + 2\mu) \varepsilon_{oo}
\]

\[
\sigma_{zz} = \lambda \varepsilon_{oo} + \lambda \varepsilon_{oo}
\]

\[
\sigma_{yy} - 2\sigma_{oo} = 2\mu (\varepsilon_{yy} - \varepsilon_{oo})
\]

Plug into equilibrium condition:

\[
(\lambda + 2\mu) \frac{\partial \varepsilon_{yy}}{\partial y} + \lambda \frac{\partial \varepsilon_{oo}}{\partial y} + \frac{2\mu}{r} (\varepsilon_{yy} - \varepsilon_{oo}) = 0
\]

So we have two equations for the two unknowns \(\varepsilon_{yy}, \varepsilon_{oo} \).

Boundary conditions:

\[
\begin{align*}
\sigma_{yy} \bigg|_{y=a} &= (\lambda + 2\mu) \varepsilon_{yy} \bigg|_{y=a} + \lambda \varepsilon_{oo} \bigg|_{y=a} = -p_a \\
\sigma_{yy} \bigg|_{y=b} &= (\lambda + 2\mu) \varepsilon_{yy} \bigg|_{y=b} + \lambda \varepsilon_{oo} \bigg|_{y=b} = 0
\end{align*}
\]

A Matlab code that finds \(\varepsilon_{yy}(y) \) and \(\varepsilon_{oo}(y) \) that satisfy
the compatibility, equilibrium, and boundary condition
is written — cylind_tube_elast.m, eqns_cylind_tube_elast.m

It makes uses of Matlab's fsolve function.
Elastic solution

![Graph showing elastic solution with labels and axes.](image)
Chapter 9. Plastic Region

Our next task is to find the relation between p_0 and p (p is the radius of elastic-plastic boundary, when $p_0 > p$) and to find the stress and strain field inside the plastic region as $r < p$.

We shall choose our unknowns as $\frac{\sigma_{rr}}{\varepsilon_{rr}}$, $\frac{\sigma_{oo}}{\varepsilon_{oo}}$, $\frac{\varepsilon_{zz}}{\varepsilon_{zz}}$

total strain deviatoric stress

and establish 3 PDE’s.

All other quantities of interest can be expressed in terms of these three.

Hydrostatic strain: $\varepsilon = \frac{1}{3} (\varepsilon_{rr} + \varepsilon_{oo})$

deviatoric strain: $\varepsilon_{rr} = \varepsilon - \bar{\varepsilon} = \frac{1}{3} \varepsilon_{rr} - \frac{1}{3} \varepsilon_{oo}$
$\varepsilon_{oo} = \varepsilon_{oo} - \bar{\varepsilon} = -\frac{1}{3} \varepsilon_{rr} + \frac{2}{3} \varepsilon_{oo}$
$\varepsilon_{zz} = \varepsilon_{zz} - \bar{\varepsilon} = -\frac{1}{3} \varepsilon_{rr} - \frac{1}{3} \varepsilon_{oo}$

Hydrostatic stress: $\bar{\sigma} = 3K \bar{\varepsilon} = K (\varepsilon_{rr} + \varepsilon_{oo})$

deviatoric stress: σ_{rr}, σ_{oo}, σ_{zz}

$s_{rr} + s_{oo} + s_{zz} = 0$, $s_{zz} = -(s_{rr} + s_{oo})$

in the plastic region, stress must satisfy yield condition

$J_2 = \frac{1}{2} (s_{rr}^2 + s_{oo}^2 + s_{zz}^2) = s_{rr}^2 + s_{oo}^2 + s_{rrs_{oo}} = k^2$

$\sigma_{oo} = \frac{1}{2} \left(-s_{rr} \pm \sqrt{4k^2 - 3s_{rr}^2} \right)$

choose + sign, why?

Stress: $\bar{\sigma}_{rr} = \sigma_{rr} + \bar{\sigma} = \sigma_{rr} + K (\varepsilon_{rr} + \varepsilon_{oo})$
$\bar{\sigma}_{oo} = \sigma_{oo} + \bar{\sigma}$
$\sigma_{rr} - \sigma_{oo} = \sigma_{rr} - \sigma_{oo}$
We now set up the 3 PDE's for ε_{rr}, $\varepsilon_{\theta\theta}$, ε_{rrr}.

Equilibrium condition:

\[
\frac{\partial \varepsilon_{rr}}{\partial r} + \frac{\varepsilon_{rr} - \varepsilon_{\theta\theta}}{r} = 0
\]

now becomes

\[
\frac{\partial \varepsilon_{rr}}{\partial r} + K \left(\frac{\partial \varepsilon_{rr}}{\partial r} + \frac{\partial \varepsilon_{\theta\theta}}{\partial r} \right) + \frac{\varepsilon_{rr} - \varepsilon_{\theta\theta}}{r} = 0
\]

Compatibility condition:

\[
\frac{\partial \varepsilon_{\theta\theta}}{\partial r} = \frac{1}{r} (\varepsilon_{rr} - \varepsilon_{\theta\theta})
\]

Plastic flow rule will lead to the following equation:

\[
2\mu \left[\left(\frac{2}{3} \frac{\partial \varepsilon_{rr}}{\partial r} - \frac{1}{3} \frac{\partial \varepsilon_{\theta\theta}}{\partial r} \right) S_{rr} - \left(\frac{2}{3} \frac{\partial \varepsilon_{rr}}{\partial r} - \frac{1}{3} \frac{\partial \varepsilon_{\theta\theta}}{\partial r} \right) S_{rr} \right] = \frac{\partial \varepsilon_{rr}}{\partial r} S_{\theta\theta} - \frac{\partial \varepsilon_{\theta\theta}}{\partial r} S_{rr} \quad \cdots \cdot 3
\]

Note this is the only PDE with $\frac{\partial}{\partial r}$.

PDE 3 is derived in p.10

Compare these equations with those in the elastic regime (Sec).

The compatibility condition is the same.

But the equilibrium condition here cannot be written in terms of ε_{rr}, $\varepsilon_{\theta\theta}$ alone (because of the plastic strain).

Instead, ε_{rr} is introduced here as the 3rd unknown and the 3rd PDE is supplied by the plastic flow rule.

The equations now need to be solved in the 2D space of r and p.

The solution in the elastic region is already known.
The plastic strain rate is in the same direction as the deviatoric stress

\[
\begin{align*}
\dot{\varepsilon}_{rr} &= \frac{\lambda}{2\mu} S_{rr} \\
\dot{\varepsilon}_{\theta\theta} &= \frac{\lambda}{2\mu} S_{\theta\theta} \\
\dot{\varepsilon}_{zz} &= \frac{\lambda}{2\mu} S_{zz} \\
\dot{\varepsilon}_{r\theta} &= \frac{\lambda}{2\mu} S_{r\theta} = 0
\end{align*}
\]

(plastic flow rule)

The deviatoric elastic strain is in the same direction as the deviatoric stress

\[
\begin{align*}
\varepsilon_{rr} &= \frac{1}{2\mu} S_{rr} \\
\varepsilon_{\theta\theta} &= \frac{1}{2\mu} S_{\theta\theta} \\
\varepsilon_{zz} &= \frac{1}{2\mu} S_{zz} \\
\varepsilon_{r\theta} &= \frac{1}{2\mu} S_{r\theta} = 0
\end{align*}
\]

Total strain rate (deviatoric part)

\[
\begin{align*}
\dot{\varepsilon}_{rr} &= \dot{\varepsilon}_{rr} + \dot{\varepsilon}_{rl} = \frac{1}{2\mu} \left(S_{rr} + \lambda S_{rl} \right) \\
\dot{\varepsilon}_{\theta\theta} &= \dot{\varepsilon}_{\theta\theta} + \dot{\varepsilon}_{\theta l} = \frac{1}{2\mu} \left(S_{\theta\theta} + \lambda S_{\theta l} \right) \\
\dot{\varepsilon}_{zz} &= \dot{\varepsilon}_{zz} + \dot{\varepsilon}_{zl} = \frac{1}{2\mu} \left(S_{zz} + \lambda S_{zl} \right) \\
\dot{\varepsilon}_{r\theta} &= \dot{\varepsilon}_{r\theta} + \dot{\varepsilon}_{rl} = 0
\end{align*}
\]

\[
(2\mu \dot{\varepsilon}_{rr} - S_{rr}) S_{\theta\theta} = \lambda S_{rr} S_{\theta\theta} = (2\mu \dot{\varepsilon}_{\theta\theta} - S_{\theta\theta}) S_{rr}
\]

\[
2\mu (\dot{\varepsilon}_{rr} S_{\theta\theta} - \dot{\varepsilon}_{\theta\theta} S_{rr}) = S_{rr} S_{\theta\theta} - S_{\theta\theta} S_{rr}
\]

Imagine that the elastic-plastic boundary is moving at rate \(\dot{\rho} \)

Divide the equation by \(\dot{\rho} \), note \(\varepsilon_{rr} = \frac{d\varepsilon_{rr}}{dt} \)

\[
2\mu \left(\frac{2\varepsilon_{rr}}{\dot{\rho}} S_{\theta\theta} - \frac{2\varepsilon_{\theta\theta}}{\dot{\rho}} S_{rr} \right) = \frac{3}{\dot{\rho}} S_{rr} S_{\theta\theta} = \frac{2S_{\theta\theta}}{\dot{\rho}} S_{rr}
\]

plug in \(\varepsilon_{rr} = \frac{2}{3} \varepsilon_{rr} - \frac{1}{3} \varepsilon_{\theta\theta}, \quad \varepsilon_{\theta\theta} = \frac{2}{3} \varepsilon_{\theta\theta} - \frac{1}{3} \varepsilon_{rr} \)

we arrive at PDE \(\delta \) on p.9.
56. Numerical Solution in Plastic Region

Suppose the solution is already known at \((r, \rho) : (E_{rr}, E_{\theta\theta}, S_{rr})\)
and \((r + \Delta r, \rho + \rho \Delta \rho) : (E_{rr}^\circ, E_{\theta\theta}^\circ, S_{rr}^\circ)\).

Here we describe an algorithm to find the solution at
\((r, \rho + \rho \Delta \rho) : (E_{rr}, E_{\theta\theta}, S_{rr})\).

The discretized PDE becomes:

Equilibrium Condition:

\[
\frac{S_{rr}^\circ - S_{rr}}{\Delta r} + K \left[\frac{E_{rr}^\circ - E_{rr}}{\Delta r} + \frac{E_{\theta\theta}^\circ - E_{\theta\theta}}{\Delta r} \right] + \frac{1}{\rho A r} \left[\frac{(S_{rr}^\circ + S_{rr})}{2} - \frac{(S_{rr}^\circ + S_{rr})}{2} \right] = 0
\]

Compatibility Condition:

\[
\frac{E_{\theta\theta} - E_{\theta\theta}}{\Delta r} - \frac{1}{\rho A r} \left[\frac{(S_{rr}^\circ + S_{rr})}{2} - \frac{(S_{rr}^\circ + S_{rr})}{2} \right] = 0
\]

Plastic Flow Rule:

\[
2M \left[\left(\frac{2}{3} \frac{E_{rr} - S_{rr}^\circ}{\Delta \rho} - \frac{1}{3} \frac{E_{\theta\theta} - S_{\theta\theta}^\circ}{\Delta \rho} \right) \left(\frac{S_{rr}^\circ + S_{rr}}{2} \right) - \left(\frac{2}{3} \frac{E_{\theta\theta} - S_{\theta\theta}^\circ}{\Delta \rho} - \frac{1}{3} \frac{S_{rr} - S_{rr}^\circ}{\Delta \rho} \right) \left(\frac{S_{rr} + S_{rr}^\circ}{2} \right) \right] = 0
\]

\[
S_{\theta\theta} = \frac{1}{2} \left(- S_{rr} + \sqrt{4R^2 - 3S_{rr}^2} \right)
\]

Numerical solution obtained by

cylind Tube plast.m, eqns_cylind Tube plast.m.
Plastic solution

\[\frac{\sigma_{rr}}{2k} \]

\[\frac{\sigma_{\theta\theta}}{2k} \]

\[\frac{\sigma_{zz}}{2k} \]
% 2D Example: solve strain field in pressurized cylindrical tube
% elastic deformation only
%
% Wei Cai caiwei@stanford.edu
% Created 03/24/2013
% Last Modified 04/29/2013

mu = 100;
nu = 0.3;
lambda = 2*mu*nu/(1-2*nu);

a = 1; b = 2;
dr = 0.05;
r = [a:dr:b];
p0 = 1;

eps_rr = zeros(size(r));
eps_qq = zeros(size(r));

Niter = 10000;
plotfreq = 1000; % 50;

param = [a b dr mu nu p0];

F0 = eqns_cylind_tube_elast([eps_rr, eps_qq],param);
%options = optimset('Display','iter','TolFun',1e-8);
options = optimset('Display','off','TolFun',1e-8);
sol = fsolve('eqns_cylind_tube_elast', [eps_rr, eps_qq], options, param);
sol = sol(1:end/2); eps_qq = sol(end/2+1:end);
F1 = eqns_cylind_tube_elast([eps_rr, eps_qq],param);

% (Alternative method using cgrelax, require gradient evaluation)
% [U dUdepsrrqq] = grad_cylind_tube_elast([eps_rr, eps_qq],param);
% acc = 1e-6; maxfn = 40000; dfpred = 1e-5; n = length([eps_rr, eps_qq]);
% [U,eps_rrqq_rlx] = cgrelax('grad_cylind_tube_elast',n,acc,maxfn,dfpred,...
% [eps_rr,eps_qq],param);
% eps_rr = eps_rrqq_rlx(1:end/2); eps_qq = eps_rrqq_rlx(end/2+1:end);

% stress field
sig_rr = (lambda + 2*mu) * eps_rr + lambda * eps_qq;
sig_qq = (lambda + 2*mu) * eps_qq + lambda * eps_rr;
sig_zz = lambda * (eps_rr + eps_qq);

pp=p0*a^2/(b^2-a^2); E = 2*mu*(1+nu);
sig_rr_anl = pp*(1-b^2./r.^2);
sig_qq_anl = pp*(1+b^2./r.^2);
sig_rr_anl = (1-nu^2)/E*sig_rr_anl - nu*(1+nu)/E*sig_qq_anl;
sig_qq_anl = (1-nu^2)/E*sig_qq_anl - nu*(1+nu)/E*sig_rr_anl;
% plot solution
fs = 17;
figure(1);
plot(r, eps_rr /p0*mu, '.', r, eps_qq/p0*mu, 'd', ...
 r, eps_rr_anl/p0*mu, r, eps_qq_anl/p0*mu);
xlim([0 max(r)*1.5]);
set(gca,'FontSize',fs);
xlabel('r'); ylabel('$\epsilon \mu / p_0$');
legend('ϵ_{rr}^{num}','$\epsilon_{\theta\theta}^{num}$',...
 'ϵ_{rr}^{anl}','$\epsilon_{\theta\theta}^{anl}$');
figure(2);
plot(r, sig_rr/p0, '.', r, sig_qq/p0, 'o', r, sig_rr_anl/p0, r, sig_qq_anl/p0);
xlim([0 max(r)*1.5]);
set(gca,'FontSize',fs);
xlabel('r'); ylabel('σ / p_0');
legend('σ_{rr}^{num}','$\sigma_{\theta\theta}^{num}$',...
 'σ_{rr}^{anl}','$\sigma_{\theta\theta}^{anl}$');
function F = eqns_cylind_tube_elast(vars, param)

% F(1:N-1): equilibrium equation
% F(N:2N-2): compatibility equation
% F(2N-1:2N): boundary condition

%% Example: solve strain field in pressurized cylindrical tube
%% elastic deformation only
%% Construct the equations to be solved by cylind_tube_elast.m

a = param(1);
b = param(2);
dr = param(3);
mu = param(4);
nu = param(5);
p0 = param(6);

N = length(vars)/2; F = zeros(1,2*N);
eps_rr = vars(1:N); eps_qq = vars(N+1:end);

lambda = 2*mu*nu/(1-2*nu);
r = [a:dr:b]; r_avg = (r(2:end) + r(1:end-1)) / 2;

% stress field
sig_rr = (lambda + 2*mu) * eps_rr + lambda * eps_qq;
sig_qq = (lambda + 2*mu) * eps_qq + lambda * eps_rr;
sig_zz = lambda * (eps_rr + eps_qq);

dsigrrdr = (sig_rr(2:end) - sig_rr(1:end-1)) / dr;
sig_rr_avg = (sig_rr(2:end) + sig_rr(1:end-1)) / 2;
sig_qq_avg = (sig_qq(2:end) + sig_qq(1:end-1)) / 2;

% equilibrium equation
F(1:N-1) = dsigrrdr + (sig_rr_avg-sig_qq_avg)./r_avg;

% strain field
depsqqdr = (eps_qq(2:end) - eps_qq(1:end-1)) / dr;
eps_qq_avg = (eps_qq(2:end) + eps_qq(1:end-1)) / 2;
eps_rr_avg = (eps_rr(2:end) + eps_rr(1:end-1)) / 2;

% compatibility condition
F(N:2*N-2) = depsqqdr - (eps_qq_avg-eps_qq_avg)./r_avg;

% boundary condition
F(2*N-1:2*N) = [sig_rr(1) + p0, sig_rr(end)];
% 2D Example: solve strain field in pressurized cylindrical tube
% pressure large enough to cause plastic deformation
%
% Wei Cai caiwei@stanford.edu
% Created 03/24/2013
% Last Modified 04/29/2013
%%%

mu = 100;
nu = 0.3;
k = 4; % yield stress / sqrt(3)
E = 2*mu*(1+nu); % Young’s modulus
K = 2*mu*(1+nu)/3/(1-2*nu); % bulk modulus

a = 1; b = 2;
dr = 0.02; drho = dr;
r = [a:dr:b]; rho = r;
p0 = 1;

S_rr_sol = zeros(length(r), length(rho));
S_qq_sol = zeros(length(r), length(rho));
sig_rr_sol = zeros(length(r), length(rho));
sig_qq_sol = zeros(length(r), length(rho));
sig_zz_sol = zeros(length(r), length(rho));
eps_rr_sol = zeros(length(r), length(rho));
eps_qq_sol = zeros(length(r), length(rho));

% analytic solution in elastic region
for i=1:length(r),
 for j=1:length(rho),
 % limit to elastic region
 if r(i) >= rho(j),
 ppp = k*((1-2*nu)^2/3 + b^4/rho(j)^4)^(-1/2);
sig_rr_1 = ppp*(1-b^2./r(i).^2);
sig_qq_1 = ppp*(1+b^2./r(i).^2);
sig_zz_1 = nu*(sig_rr_1 + sig_qq_1);
S_rr_1 = sig_rr_1 - (sig_rr_1+sig_qq_1+sig_zz_1)/3;
S_qq_1 = sig_qq_1 - (sig_rr_1+sig_qq_1+sig_zz_1)/3;
eps_rr_1 = (1-nu^2)/E*sig_rr_1 - nu*(1+nu)/E*sig_qq_1;
eps_qq_1 = (1-nu^2)/E*sig_qq_1 - nu*(1+nu)/E*sig_rr_1;
S_rr_sol(i,j) = S_rr_1;
S_qq_sol(i,j) = S_qq_1;
sig_rr_sol(i,j) = sig_rr_1;
sig_qq_sol(i,j) = sig_qq_1;
sig_zz_sol(i,j) = sig_zz_1;
eps_rr_sol(i,j) = eps_rr_1;
eps_qq_sol(i,j) = eps_qq_1;
 end
 end
end
% find solution in plastic region
disp('find solution in plastic region...');
for j=2:length(rho),
 disp(sprintf('j = %d / %d',j, length(rho)));
 for i=j-1:-1:1,
 % find solution at (r, rho+drho)
 eps_rr_1 = eps_rr_sol(i,j-1); eps_qq_1 = eps_qq_sol(i,j-1);
 S_rr_1 = S_rr_sol(i,j-1);
 eps_rr_2 = eps_rr_sol(i+1,j); eps_qq_2 = eps_qq_sol(i+1,j);
 S_rr_2 = S_rr_sol(i+1,j);
 param = [r(i), dr, mu, nu, k, eps_rr_1, eps_qq_1, ...
 S_rr_1, eps_rr_2, eps_qq_2, S_rr_2];
 switch exitflag
 case 0, fprintf(['Solution incorrect: ' ...
 'Maximum number of function evaluations or iterations reached.'
 '
']);
 case -1, fprintf(['Solution incorrect: ' ...
 'Algorithm terminated by the output function.'
 '
']);
 case -2, fprintf(['Solution incorrect: ' ...
 'Algorithm seems to be converging to a point that is not a root.'
 '
']);
 case -3, fprintf(['Solution incorrect: ' ...
 'Trust region radius became too small.'
 '
']);
 case -4, fprintf(['Solution incorrect: ' ...
 'Line search cannot sufficiently decrease the residual '...
 'along the current search direction.'
 '
']);
 end
 [sol,Fval,exitflag] = fsolve('eqns_cylind_tube_plast', ...
 [eps_rr_1, eps_qq_1, S_rr_1], options, param);
 switch exitflag
 case 0, fprintf(['Solution incorrect: ' ...
 'Maximum number of function evaluations or iterations reached.'
 '
']);
 case -1, fprintf(['Solution incorrect: ' ...
 'Algorithm terminated by the output function.'
 '
']);
 case -2, fprintf(['Solution incorrect: ' ...
 'Algorithm seems to be converging to a point that is not a root.'
 '
']);
 case -3, fprintf(['Solution incorrect: ' ...
 'Trust region radius became too small.'
 '
']);
 case -4, fprintf(['Solution incorrect: ' ...
 'Line search cannot sufficiently decrease the residual '...
 'along the current search direction.'
 '
']);
 end
 % verify solution
 disp('verify solution in plastic region...');
 for j=2:length(rho),
 for i=j-1:-1:1,
 % find solution at (r, rho+drho)
 eps_rr_1 = eps_rr_sol(i,j-1); eps_qq_1 = eps_qq_sol(i,j-1);
 S_rr_1 = S_rr_sol(i,j-1);
 eps_rr_2 = eps_rr_sol(i+1,j); eps_qq_2 = eps_qq_sol(i+1,j);
% compile the stress field from (5.3) to (5.6)
S_rr_2 = S_rr_sol(i+1,j);
param = [r(i), dr, mu, nu, k, eps_rr_1, eps_qq_1, ...
S_rr_1, eps_rr_2, eps_qq_2, S_rr_2];
F = eqns_cylind_tube_plast([eps_rr_sol(i,j), eps_qq_sol(i,j), ...
S_rr_sol(i,j)], param);
disp(sprintf('i = %d j = %d F = %e %e %e',i,j,F(1),F(2),F(3)));
end
end

% plot solution
fs = 17;
figure(1);
skip = find(r/r(1)==1.2,1,'First')-1;
plot(r/a, sig_rr_sol(:,1:skip:end)/(2*k), '.-');
set(gca,'FontSize',fs);
xlabel('r / a');
ylabel('\sigma_{rr} / (2k)');
legend('\rho/a = 1', '1.2', '1.4', '1.6', '1.8', '2.0', 'Location','SouthEast');

figure(2);
plot(r, sig_qq_sol(:,1:skip:end)/(2*k), '.-');
set(gca,'FontSize',fs);
xlabel('r / a');
ylabel('\sigma_{\theta\theta} / (2k)');
legend('\rho/a = 1', '1.2', '1.4', '1.6', '1.8', '2.0', 'Location','NorthWest');

figure(3);
plot(r, sig_zz_sol(:,1:skip:end)/(2*k), '.-');
set(gca,'FontSize',fs);
xlabel('r / a');
ylabel('\sigma_{zz} / (2k)');
legend('\rho/a = 1', '1.2', '1.4', '1.6', '1.8', '2.0', 'Location','SouthEast');
function F = eqns_cylind_tube_plast(vars, param)
% F(1): equilibrium equation
% F(2): compatibility equation
% F(3): plastic flow rule

eps_rr = vars(1);
eps_qq = vars(2);
S_rr = vars(3);

r = param(1);
dr = param(2); drho = dr;
mu = param(3);
u = param(4);
k = param(5);
eps_rr_1 = param(6);
eps_qq_1 = param(7);
S_rr_1 = param(8);
eps_rr_2 = param(9);
eps_qq_2 = param(10);
S_rr_2 = param(11);

K = 2*mu*(1+nu)/3/(1-2*nu); % bulk modulus
F = [0 0 0]';

S_qq = (-S_rr + sqrt(4*k^2-3*S_rr^2))/2;
S_qq_1 = (-S_rr_1 + sqrt(4*k^2-3*S_rr_1^2))/2;
S_qq_2 = (-S_rr_2 + sqrt(4*k^2-3*S_rr_2^2))/2;

dSrr_dr = (S_rr_2-S_rr)/dr;
dSqq_dr = (S_qq_2-S_qq)/dr;
depsrr_dr = (eps_rr_2-eps_rr)/dr;
depsqq_dr = (eps_qq_2-eps_qq)/dr;

depsrr_drho = (eps_rr - eps_rr_1)/drho;
depsqq_drho = (eps_qq - eps_qq_1)/drho;
dSrr_drho = (S_rr - S_rr_1)/drho;
dSqq_drho = (S_qq - S_qq_1)/drho;
% equilibrium condition
F(1) = dSrr_dr + K*(depsrr_dr + depsqq_dr) ...
 + ((S_rr_2+S_rr)/2 - (S_qq_2+S_qq)/2) / (r+dr/2);

% compatibility condition
F(2) = depsqq_dr - ((eps_rr_2+eps_rr)/2 - (eps_qq_2+eps_qq)/2) / (r+dr/2);

% plastic flow rule
F(3) = 2*mu*((2/3*depsrr_drho - 1/3*depsqq_drho)*(S_qq+S_qq_1)/2 ...
 -(2/3*depsqq_drho - 1/3*depsrr_drho)*(S_rr+S_rr_1)/2) ...
 - dSrr_drho*(S_qq+S_qq_1)/2 + dSqq_drho*(S_rr+S_rr_1)/2 ;
To perform theoretical analysis for general plane strain problems, we shall have to assume the plastic-rigid model for simplicity. This means we shall ignore elastic strain. This is a good approximation when plastic strain is large, e.g. in metal forming.

We will introduce the slip line method to construct solutions to this class of problems.

Due to time constraints, we limit our scope to the interpretation of existing (classical) slip line solutions.

8.1 Equations in Plane Strain Plastic-rigid model

\[\varepsilon_{x} = 0, \quad \varepsilon_{yy} = 0 \]

\[\varepsilon_{xx} = 0 \quad \Rightarrow \quad \text{incompressibility} : \quad \nu = \frac{1}{2} \]

\[\sigma_{ee} = \nu (\sigma_{xx} + \sigma_{yy}) = \frac{1}{2} (\sigma_{xx} + \sigma_{yy}) \]

\(\text{non-zeros: } \begin{cases} \varepsilon_{xx} & \sigma_{xx} \\ \varepsilon_{yy} & \sigma_{yy} \\ 6 \varepsilon_{xy} & 6 \sigma_{xy} \\ 3 \varepsilon_{ee} = \frac{1}{2} (\sigma_{xx} + \sigma_{yy}) \end{cases} \)

\(\begin{cases} \varepsilon_{xx} = V_{x}, x \\ \varepsilon_{yy} = V_{y}, y \\ \varepsilon_{xy} = \frac{1}{2} (V_{x}, y + V_{y}, x) \end{cases} \)

(velocity field) (plastic strain rate)
In both elastic (rigid) and plastic regions, stress field satisfies equilibrium:

\[
\begin{align*}
\sigma_{xx}, x + \sigma_{yy}, y &= 0 \\
\sigma_{xy}, x + \sigma_{yx}, y &= 0
\end{align*}
\]
(assume zero body force)
(1)
(2)

In the plastic region, the yield condition must be satisfied.

\[
\text{note } \sigma_{zz} = \frac{1}{2} (\sigma_{xx} + \sigma_{yy}) = \frac{1}{2} (\sigma_1 + \sigma_3) = \bar{\sigma}
\]
\[
\sigma_1 > \sigma_2 > \sigma_3
\]
\[
\bar{\sigma} = \frac{1}{3} (\sigma_1 + \sigma_2 + \sigma_3) = \frac{1}{3} (\sigma_1 + \sigma_3) = \sigma_2
\]
\[
\begin{align*}
S_1 &= \sigma_1 - \bar{\sigma} = \frac{1}{2} (\sigma_1 - \sigma_3) \\
S_2 &= \sigma_2 - \bar{\sigma} = 0 \\
S_3 &= \sigma_3 - \bar{\sigma} = -\frac{1}{2} (\sigma_1 - \sigma_3)
\end{align*}
\]
\[
J_2 = \frac{1}{2} (S_1^2 + S_2^2 + S_3^2) = \left[\frac{1}{2} (\sigma_1 - \sigma_3) \right]^2 = k^2
\]

yield condition: \(\sigma_1 - \sigma_3 = 2k \)

Hence the von Mises yield condition coincides with the Tresca yield condition, due to incompressibility.

In terms of \(\sigma_{xx}, \sigma_{yy}, \sigma_{xy} \), the yield condition is:

\[
\left(\frac{\sigma_{xx} - \sigma_{yy}}{2} \right)^2 + \sigma_{xy}^2 = k^2
\]
(3)

Because the elastic region is rigid, all strain rates are plastic strain rates, which follow the flow rule:

\[
\begin{align*}
\dot{\varepsilon}_{xx} &= \dot{\lambda} s_{xx} \\
\dot{\varepsilon}_{yy} &= \dot{\lambda} s_{yy} \\
\dot{\varepsilon}_{xy} &= \dot{\lambda} s_{xy}
\end{align*}
\]
(notice we have changed \(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_0} \) to \(\dot{\lambda} \))
(since \(\mu \to \infty \) here)
\[\bar{\sigma} = \frac{1}{2}(\sigma_1 + \sigma_3) = \frac{1}{2}(\sigma_{xx} + \sigma_{yy}) \]

\[S_{xx} = \sigma_{xx} - \bar{\sigma} = \frac{1}{2}(\sigma_{xx} - \sigma_{yy}) \]

\[S_{yy} = \sigma_{yy} - \bar{\sigma} = \frac{1}{2}(\sigma_{yy} - \sigma_{xx}) \]

\[S_{xy} = \sigma_{xy} \]

Flow rule can be written as

\[\dot{\varepsilon}_{xx} = \dot{\lambda} \frac{\sigma_{xx} - \sigma_{yy}}{2} \]

\[\dot{\varepsilon}_{yy} = \dot{\lambda} \frac{\sigma_{yy} - \sigma_{xx}}{2} \]

\[\dot{\varepsilon}_{xy} = \dot{\lambda} \sigma_{xy} \]

Combined with the relation between \(\dot{\varepsilon}_{ij} \) and \(\mu_i \), we have

\[\mu_{xx,x} = \dot{\lambda} \frac{\sigma_{xx} - \sigma_{yy}}{2} \]

\[\mu_{yy,y} = \dot{\lambda} \frac{\sigma_{yy} - \sigma_{xx}}{2} \]

\[\frac{\mu_{xx,x} + \mu_{yy,y}}{2} = \dot{\lambda} \sigma_{xy} \]

Adding the first two equations above, we get

\[\mu_{xx,x} + \mu_{yy,y} = 0 \quad \text{-------- (4) incompressibility condition} \]

Subtracting the first two equations, we get

\[\mu_{xx,x} - \mu_{yy,y} = \dot{\lambda} (\sigma_{xx} - \sigma_{yy}) \]

Dividing by the third equation, we eliminate \(\dot{\lambda} \)

\[\frac{\mu_{xx,x} - \mu_{yy,y}}{\mu_{xx,x} + \mu_{yy,y}} = \frac{\sigma_{xx} - \sigma_{yy}}{2 \sigma_{xy}} \quad \text{-------- (5)} \]

Consider 5 unknowns: \(\sigma_{xx}, \sigma_{yy}, \sigma_{xy}, \mu_{xx}, \mu_{yy} \)

There are 5 equations:

(1), (2) equilibrium

(3) yield condition

(4) incompressibility

(5) flow rule
8.2 Slip line fields

For the 5 unknowns, if the boundary conditions are sufficient to determine the stress field, the problem is called **statically determinate** (and easier to solve), and the velocity fields can be obtained after the stress fields have been obtained.

Otherwise, the problem is called **statically indeterminate** and stress fields and velocity fields must be solved together.

We will focus on **statically determinate** problems here.

In the plastic region, the stress state must lie on the Mohr's circle with center $\bar{\sigma}$ and radius k (maximum shear).

Let ϕ be the angle of rotation to the orientation of maximum shear, where all normal stresses equal to $\bar{\sigma}$

$$
\begin{align*}
\sigma_{xx} &= \bar{\sigma} - k \sin 2\phi \\
\sigma_{yy} &= \bar{\sigma} + k \sin 2\phi \\
\sigma_{xy} &= k \cos 2\phi
\end{align*}
$$

$\bar{\sigma}$ and ϕ are functions of (x,y)

The yield condition, Eq. (3), is automatically satisfied.

The **equilibrium condition** can be written in terms of $\bar{\sigma}$ and ϕ

$$
\begin{align*}
\frac{\partial \bar{\sigma}}{\partial x} + k \left(\frac{\partial}{\partial x} \sin 2\phi + \frac{\partial}{\partial y} \cos 2\phi \right) &= 0 \\
\frac{\partial \bar{\sigma}}{\partial y} + k \left(\frac{\partial}{\partial x} \cos 2\phi + \frac{\partial}{\partial y} \sin 2\phi \right) &= 0
\end{align*}
$$

The equations are **hyperbolic** with characteristics coinciding with slip lines (introduced below).
Consider a curvilinear, locally orthogonal family of curves s_x, s_y covering the plastic region (s_x, s_y) can be considered as a curvilinear coordinate system.

The tangent of α-curves always have the orientation $\phi(x,y)$

Hence both α-curves and β-curves are along the direction of maximum shear.

In terms of the curvilinear coordinates, the equilibrium conditions look particularly simple:

\[
\begin{align*}
\frac{\partial}{\partial s_x} (\bar{\sigma} - 2k\phi) &= 0 \\
\frac{\partial}{\partial s_y} (\bar{\sigma} + 2k\phi) &= 0
\end{align*}
\]

In other words,

\[
\begin{align*}
\bar{\sigma} - 2k\phi &= \text{constant along } \alpha\text{-line} \\
\bar{\sigma} + 2k\phi &= \text{constant along } \beta\text{-line}
\end{align*}
\]

(These are typical properties of characteristic curves of PDEs.)

If we know the shapes of the α and β-curves, and the $(\bar{\sigma}, \phi)$ value at some point, it is easy to find $(\bar{\sigma}, \phi)$ values at the entire region covered by these curves.

The challenge is to construct these curves in the plastic region.
§3: Geometrical Properties of Slip Lines

If we know the stress state \((\sigma_{xx}, \sigma_{yy}, \sigma_{xy}) \) at a point \((x, y) \), we know the local orientation of the slip lines, because the \(\alpha \)-line must make angle \(\phi \) with the \(x \)-axis.

This means that the \(\alpha \)-line satisfy the condition

\[
\frac{dy}{dx} = \tan \phi, \quad \frac{\sigma}{2k} - \phi = \frac{\pi}{4} \quad \text{(constant)}
\]

and the \(\beta \)-line satisfy the condition

\[
\frac{dy}{dx} = -\cot \phi, \quad \frac{\sigma}{2k} + \phi = \frac{\pi}{4} \quad \text{(constant)}
\]

So that

\[
\sigma = k (\frac{\pi}{4} + \phi)
\]

\[
\theta = \frac{1}{2} (\pi - \phi)
\]

Property 1: The change of orientation of two \(\alpha \)-lines at intersections with another \(\beta \) line is independent of the choice of the \(\beta \)-line.

\[
\phi_1 = \phi_2
\]
Property 2: If a segment of slip line (e.g. \(\alpha \)-line) is straight, then \(\sigma, \theta, \xi, \eta, \sigma_{xx}, \sigma_{yy}, \sigma_{xy} \) are constant along it, and all \(\alpha \)-lines cut off by the same \(\beta \)-lines are straight, and all have the same length.

Property 3: Travelling along an \(\alpha \)-line, the radius of curvature of the \(\beta \)-line at the intersection changes by the distance travelled.

\[
\frac{\partial R_p}{\partial \xi} = -1, \quad \frac{\partial R_x}{\partial \beta} = -1
\]

An example that illustrates both Property 2 and Property 3.

This region corresponds to a "simple stress state" (see below).
§4. Velocity Field

For statically determinate problems, the velocity fields \(v_x(x,y), \ v_y(x,y) \) are found after the slip line fields and stress fields have been obtained.

\[
\frac{v_x, x - v_y, y}{v_x, y + v_y, x} = \frac{\sigma_{xx} - \sigma_{yy}}{2\sigma_{xy}} = -\frac{2K\sin 2\varphi}{2K\cos 2\varphi} = -\tan 2\varphi \quad \cdots \text{from (4)}
\]

Hence

\[
\begin{align*}
& (v_x, y + v_y, x) \tan[2\varphi(x,y)] + (v_x, x - v_y, y) = 0 \\
& v_x, x + v_y, y = 0 \quad \cdots \text{(5) incompressibility}
\end{align*}
\]

This system of equations is (again) of hyperbolic type, and its characteristics coincide with the slip lines.

Let \(v_\alpha, v_\beta \) be the component of \(v \) along \(\alpha \)-line and \(\beta \)-line respectively.

\[
\begin{align*}
v_x &= v_\alpha \cos \varphi - v_\beta \sin \varphi \\
v_y &= v_\alpha \sin \varphi + v_\beta \cos \varphi
\end{align*}
\]

Note the stress state along slip lines is pure shear (\(k \)) plus hydrostatic stress (\(\sigma \)).

So the normal strain rate along slip line is zero (ignore elastic strain).

The rate of relative elongation along slip lines are zero.
The condition of zero elongation along slip lines can be expressed as

\[
\begin{align*}
\frac{dV_\alpha - V_\beta}{dx} & = 0 \quad \text{along } \alpha\text{-line} \\
\frac{dV_\beta + V_\alpha}{dy} & = 0 \quad \text{along } \beta\text{-line}
\end{align*}
\]

These are compatibility conditions for the velocities, Geiringer (1930).

To prove Geiringer's relations, we choose a local coordinate system \(x'-y'\) so that the \(x'\)-axis is tangent to the \(\alpha\)-line at point \(0\).

In the neighborhood of point \(0\),

\[
\begin{align*}
V_{x'} &= U_\alpha \cos \phi' - U_\beta \sin \phi' \\
V_{y'} &= U_\alpha \sin \phi' + U_\beta \cos \phi'
\end{align*}
\]

Right at point \(0\), \(\phi' = 0\), so that \(V_{x'} = U_\alpha\), \(V_{y'} = U_\beta\).

The condition of zero elongation along \(\alpha\)-line can be written as

\[
\dot{E}_{xx'} = \frac{\partial V_{x'}}{\partial x} = 0
\]

\[
\frac{\partial V_{x'}}{\partial x} \cos \phi' + \frac{\partial}{\partial x} \left(U_\alpha \sin \phi' \right) \frac{\partial \phi'}{\partial x} - \frac{\partial V_{y'}}{\partial x} \sin \phi' - U_\beta \cos \phi' \frac{\partial \phi'}{\partial x} = 0
\]

At point \(0\), \(\phi' = 0\), \(\cos \phi' = 1\), \(\sin \phi' = 0\)

\[
\frac{\partial V_{x'}}{\partial x} - U_\beta \frac{\partial \phi'}{\partial x} = 0
\]

\[
\frac{dV_\alpha - V_\beta}{dx} = 0 \quad \text{along } x'
\]

Rotate to \(x-y\) coordinate system \(\phi = \phi' + \phi_0\)

\[
\frac{dV_\alpha - V_\beta}{dx} = 0 \quad \text{along } \alpha\text{-line}
\]
§4. Simple stress states

Uniform stress state

- Both \(\alpha \)-lines and \(\beta \)-lines are straight lines.
- Both \(\xi \) and \(\eta \) are constants \((\xi_0, \eta_0)\).
- All stress components are uniform in this region.

\[
\bar{\sigma} = k(\xi_0 + \eta_0), \quad \phi = \frac{1}{2}(\eta_0 - \xi_0)
\]

Simple stress state

- One family (\(\alpha \)-line here) is straight.
- The other family (\(\beta \)-line here) are generated by orthogonal curves.
- Here \(\alpha \)-lines are straight, so \(\eta = \eta_0 \) is a constant.

How to prove?

First, \(\eta = \text{const} \) along each \(\alpha \)-line if it is straight.

Second, \(\eta = \text{const} \) along \(\beta \)-line by definition.

Therefore, \(\eta = \text{const} \) in the entire region of simple stress.

A region adjoining a region of uniform stress

Is always in a state of simple stress.

Simple stress state

\[
\frac{\bar{\sigma}}{2k} + \phi = \eta_0
\]

\[
\bar{\sigma} = 2k(\eta_0 - \phi)
\]
§5. Axisymmetric field

We return to the pressurized cylindrical tube problem \((p_0 > p_0^r)\), and try to construct a slip line field solution in the plastic region \((a \leq r \leq b)\).

By axisymmetry, \(\sigma_{\theta \theta} = 0\).

Hence \(\sigma_{rr}\) and \(\sigma_{\theta \theta}\) are principal stresses, i.e.

\(\hat{\sigma}_r\) and \(\hat{\sigma}_\theta\) are principal stress directions.

The maximum shear stress direction must be at 45° with \(\hat{\sigma}_r\) and \(\hat{\sigma}_\theta\).

This means that both \(\alpha\)-lines and \(\beta\)-lines must always be at 45° with \(\hat{\sigma}_r\) and \(\hat{\sigma}_\theta\).

A curve that always makes the same angle \(\gamma\) with the radial direction is the logarithmic-spiral.

\[
r = a e^{b \theta}
\]

or

\[
\theta = \frac{1}{b} \ln \frac{r}{a}
\]

\[
\arctan \frac{1}{b} = \gamma = 45^\circ. \quad \frac{1}{b} = \tan 45^\circ = 1 \rightarrow b = 1
\]
Logarithmic Spiral

http://en.wikipedia.org/wiki/Logarithmic_spiral

\[r = ae^{b\theta} \]
\[\theta = \frac{1}{b} \ln\left(\frac{r}{a}\right), \]
Plane Strain

\[
\alpha - \text{lines: } r = a e^{\theta - \theta_0}, \quad \theta = \theta_0 + \ln \frac{r}{a} \\
\beta - \text{lines: } r = a e^{-(\theta - \theta_0)}, \quad \theta = \theta_0 - \ln \frac{r}{a}
\]

Consider an \(\alpha \)-line, \(\theta = \ln \frac{r}{a} \)

Note \(\phi = \frac{\pi}{4} + \theta \)

\[\Delta \phi = \Delta \theta \quad \text{as we travel along the} \alpha \text{-line} \]

Recall \(\frac{\sigma}{2k} - \phi = \text{const. along} \alpha \text{-line} \)

\[\Delta \bar{\sigma} = 2k \Delta \theta \quad \text{along the} \alpha \text{-line} \]

\[\bar{\sigma} = \bar{\sigma} \bigg|_{r=a} + 2k \ln \frac{r}{a} \]

Since \(\sigma_{\theta\theta} - \sigma_{\theta r} = 2k \quad \text{(yield condition)} \)

\[\sigma_{rr} \bigg|_{r=a} = -p_0 \]

\[\sigma_{\theta\theta} \bigg|_{r=a} = -p_0 + 2k \]

\[\bar{\sigma} \bigg|_{r=a} = \frac{1}{2} (\sigma_{rr} + \sigma_{\theta\theta}) \bigg|_{r=a} = -p_0 + k \]

\[\bar{\sigma} = -p_0 + k + 2k \ln \frac{r}{a} \]

\[\sigma_{rr} = \bar{\sigma} - k = -p_0 + 2k \ln \frac{r}{a} \]

\[\sigma_{\theta\theta} = \bar{\sigma} + k = -p_0 + 2k + 2k \ln \frac{r}{a} \]

Applying to full plastic state \((p_0 = p_0^{\text{max}})\)

\[0 = \sigma_{rr} \bigg|_{r=b} = -p_0^{\text{max}} + 2k \ln \frac{b}{a} \]

\[p_0^{\text{max}} = 2k \ln \frac{b}{a} \]

(compare with numerical solution)

This is the solution in the rigid-plastic limit \(v \to \frac{1}{2}, \mu \to 0 \)
A lot of solutions can be constructed by combining a few slip line fields obtained before.

1. **Elementary Solutions**

 1. **Uniform stress state**

 Especially useful near flat free surfaces where the only non-zero stress is normal stress parallel to surface.

 2. **Simple stress state**

 Especially with one family as concentric arcs.

 Here β-lines are straight, so

 \[
 \frac{\sigma}{2k} - \phi = \xi = \xi_0 \quad \text{(const)}
 \]

 \[
 \sigma = 2k(\phi + \xi_0)
 \]

 3. **Logarithmic spiral**

 Especially useful near cylindrical free surfaces.
§2. Flat indentor (rigid)

Uniform stress state: BDE, GFA, ACB
Simple stress state: AFC, BCD

Prandtl's solution
(Kachanov, P 218)

Region BDE
\[\sigma_{yy} = 0 \]
\[\sigma_{xx} = 2k \]
\[\sigma_{zz} = -k \]

Region GFA
\[\sigma_{yy} = 0 \]
\[\sigma_{xx} = 2k \]
\[\sigma_{zz} = -k \]

Region BCD
Along BD, \(\phi = \frac{\pi}{4}, \sigma = -k \)
Along \(\alpha \)-line, \(\sigma = 2k \phi = \text{const} \)
Hence along BC \(\bar{\sigma} = -k + 2k \cdot (-\frac{\pi}{2}) = -k (\pi + 1) \)

Region ABC
\[\bar{\sigma} = -k (\pi + 1) \]
\[\sigma_{yy} = \bar{\sigma} - k = -k (\pi + 2) \]
(assume lubricated contact, no shear stress on AB)
\[\sigma_{xx} = \bar{\sigma} + k = -k \pi \]

So the limit load is \(P = 2a \cdot \sigma_{yy} \)
\[P = 2ak (\pi + 2) \]
We now determine the velocity field using the compatibility condition:
\[d\alpha - V_B d\phi = 0 \text{ along } \alpha\text{-line} \]
\[d\beta + V_A d\phi = 0 \text{ along } \beta\text{-line} \]
and boundary condition.

Region BDE

- **DE** is elastic-plastic boundary.
 - Because we assume elastic region is rigid.
 - \(V_B = 0 \) on DE.
 - Because \(d\phi = 0 \) on all \(\beta \)-lines (straight).
 - \(V_B = 0 \) on entire BDE region.
 - So the velocity is in the DE direction.
 - (Still need to find magnitude distribution.)

Region BCD

- **CD** is elastic-plastic boundary.
 - \(V_B = 0 \) on CD.
 - Because \(\beta \)-lines are straight,
 - \(V_B = 0 \) on the entire BCD region.
 - So the velocity direction follows circular arcs.

Region ABC

- Because both \(\alpha \)-lines and \(\beta \)-lines are straight,
 - \(V_A \) remain constant on \(\alpha \)-lines.
 - \(V_B \) remain constant on \(\beta \)-lines.

Arrows indicate velocity stream lines.

Velocities are discontinuous at AC and CB.

However, the magnitude of the velocity must be conserved along each stream line, but not necessarily the same everywhere.

All that is required is \(V_y = \text{const (negative)} \) on \(AB \).

That means \(\frac{V_A}{\sqrt{2}} + \frac{V_B}{\sqrt{2}} = V_y \) on \(AB \).
Prandtl proposed \(\nu_a = -\frac{\nu_y}{12}, \quad \nu_p = \frac{\nu_y}{12} \) everywhere. This means all triangular blocks move as rigid bodies. But this solution is not unique.

Hill proposed an alternative solution, which essentially corresponds to letting
\[
\nu_a = -\frac{\nu_y}{2} \quad \text{on } OB \\
\nu_p = \frac{\nu_y}{2} \quad \text{on } AO
\]

Hill's solution leads to similar stress fields:

- \(B'D'E', G'_F'A' : \quad \sigma_{yy} = 0 \)
 \(\sigma_{xx} = -2k \)
 \(\bar{\sigma} = -k \)

- \(BC''D' : \quad \bar{\sigma} = -k \) on \(BD' \)
 \(\bar{\sigma} = -k(\pi+1) \) on \(BC'' \)

- \(CC''B', AC'O : \quad \bar{\sigma} = -k(\pi+1) \)
 \(\sigma_{yy} = -k(\pi+2) \)
 \(\sigma_{xx} = -k\pi \)

So Hill's solution leads to the same limit load \(\bar{P} = 2ak(\pi+2) \).

But the plastic zone is smaller, and the rigid blocks are moving at twice the speed of Prandtl's solution.

Hill argued that plasticity should start to develop near points \(A, B \) (singular stress field points in elasticity), so the Hill's solution is reached first and Prandtl's solution may never be reached. We shall make further use of Hill's solution in the following.
§3. Double Cracks

Turning the flat indenter in tension (with glue applied) and then replace the indenter by the mirror reflection of the sample itself, we get the double crack configuration.

Not surprisingly, the solution look a lot like Hill's solution (plus mirror reflection)

\[\sigma_{xx} = 2k \]
\[\sigma_{yy} = 0 \]
\[\sigma = k \]

Region ABO

\[\sigma = (\pi+1)k \]
\[\sigma_{yy} = (\pi+2)k \]
\[\sigma_{xx} = \pi k \]

Region OBC

\[\bar{\sigma} = k \text{ on } OB \]
\[\bar{\sigma} + 2k\phi = \text{const on } \beta\text{-line} \]
\[\bar{\sigma} = (\pi+1)k \text{ on } OC \]

The limit load is

\[P^* = 2(\pi+2)hk \]

compared with uniform strip with width \(2h\) whose limit load is

\[P^*_c = 2h \cdot 2k \]

\[\frac{P^*}{P^*_c} = 1 + \frac{\pi}{2} \]

(This solution is only valid for sufficiently deep notches.)
Other Slip Line Field Solutions for Notches

L. M. Kachanov, Fundamentals of the Theory of Plasticity, Dover 2004
84. Wedge Indentation

(proof of $\angle OCA = \gamma - \theta$

$\angle OBA = \gamma \rightarrow \angle OFB = 90^\circ - \gamma$

$\angle AFC = 90^\circ - \gamma$

$\angle BDA = 45^\circ$

$\angle DAE = \theta \rightarrow \angle CAF = 90^\circ + \theta$

$\angle EAC = 95^\circ$

$\angle OCA = 180^\circ - \angle CAF - \angle AFC$

$= 180^\circ - (90^\circ + \theta) - (90^\circ - \gamma)$

$= \gamma - \theta$
Region AEC

$\sigma_{xx} = -2k$
$\sigma_{yy} = 0$
$\sigma_{xy} = 0$
$\overline{\sigma} = -k$

Region DAE

Beta lines are straight, so

$$\frac{\overline{\sigma}}{2k} - \phi = \frac{s}{s_0} = (\text{const})$$

Along AE, $\overline{\sigma} = -k$
Along AD, $\overline{\sigma} = -k + 2k(-\theta) = -k(2\theta + 1)$

$\overline{\sigma} = -k(2\theta + 1)$

$\sigma_{xx} = \overline{\sigma} - k = -2k(\theta + 1)$
$\sigma_{yy} = \overline{\sigma} + k = -2k\theta$

Let length of $AB = l$, pressure on $AB = p$

$$p = 2k(\theta + 1)$$

Total indentor force

$$F = 2pl\sin\gamma = 4kl(\theta + 1)\sin\gamma$$

We still need to determine θ given γ.

Volume conservation: $\text{area(OFB)} = \text{area(AFC)}$

$$\text{area}(OFB) = \frac{1}{2}(OB)(OF)$$
$$\text{area}(AFC) = \frac{1}{2}(AG)(FC)$$

$$\frac{FC}{\sin(90+\theta)} = \frac{AF}{\sin(\gamma-\theta)} = \frac{l}{\sin(90-\gamma)}$$

$$\frac{FC}{\cos\theta} = \frac{AF}{\sin\theta} = \frac{l}{\cos\gamma}$$
ME342 Plane Strain II Car

\[FC = \frac{\ell \cos \theta}{\cos \gamma} \]

\[AG = \ell \sin (\gamma-\theta) \]

\[\text{area}(AFC) = \frac{1}{2} \ell \sin (\gamma-\theta) \frac{\ell \cos \theta}{\cos \gamma} = \frac{\ell^2 \sin (\gamma-\theta) \cos \theta}{2 \cos \gamma} \]

\[AF = \frac{\ell \sin (\gamma-\theta)}{\cos \gamma} \]

\[FB = AB - AF = \ell - \frac{\ell \sin (\gamma-\theta)}{\cos \gamma} \]

\[OF = FB \cdot \sin \gamma = \ell \left(1 - \frac{\sin (\gamma-\theta)}{\cos \gamma} \right) \sin \gamma \]

\[k = OB = FB \cdot \cos \gamma = \ell \left(\cos \gamma - \sin (\gamma-\theta) \right) \]

\[\text{area}(OFB) = \frac{1}{2} \ell \left(1 - \frac{\sin (\gamma-\theta)}{\cos \gamma} \right) \sin \gamma \cdot \ell \left(\cos \gamma - \sin (\gamma-\theta) \right) \]

\[= \frac{\ell^2}{2} \frac{(\cos \gamma - \sin (\gamma-\theta))^2 \sin \gamma}{\cos \gamma} \]

\[\frac{\ell^2 \sin (\gamma-\theta) \cos \theta}{2 \cos \gamma} = \frac{\ell^2 \left(\cos \gamma - \sin (\gamma-\theta) \right)^2 \sin \gamma}{2 \cos \gamma} \]

\[\sin (\gamma-\theta) \cos \theta = \left(\cos \gamma - \sin (\gamma-\theta) \right)^2 \sin \gamma \]

\[\left(2\gamma = \theta + \arctan \left(\frac{\pi - \theta}{2} \right) \right) \]

Kachanov, p. 287

Matlab:

\[f = \text{inline} \left(\sin(g-t) \cdot \cos(t) - (\cos(g) - \sin(g-t))^2 \cdot \sin(g) \right); \]

\[g = [0:0.02:1.5]; \]

\[t = \text{fsolve} \left(\theta(x) \ f(x, g), g \right); \]

Pressure at indenter face: \(P \)

\[\frac{p}{2k} = \theta + 1 \]

Total indenting force: \(F \)

\[\frac{F}{k \ell} = 4(\theta + 1)^2 \sin \gamma \]
deformation pattern:

<table>
<thead>
<tr>
<th>Original Domain</th>
<th>Final Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBD</td>
<td>A'BD</td>
</tr>
<tr>
<td>O'EC</td>
<td>AEC</td>
</tr>
<tr>
<td>ODEO'</td>
<td>A'DE'A</td>
</tr>
</tbody>
</table>

simple shear O→A'
simple shear O'→A
complex deformation
§5 Truncated Wedge in compression

(Poole & Hodge, p. 161)

all regions 0, 2, 3, 4 are in uniform stress.
lines OA, OB, OC, OD are lines of discontinuity

Geometrical relations:
\[y = \frac{\theta}{4} - \frac{\pi}{2} \] (to be proved)
\[y' = \frac{\theta}{4} + \frac{\pi}{2} \] (below)
\[y + y' = \frac{\pi}{2} \]

\[\angle AOD = \angle BOC = \frac{\pi}{2} \]

Across line of discontinuity, e.g. OB
\[\sigma_{xy}, \sigma_{yx} \] still have to be continuous
only \(\sigma_{xx} \) can be discontinuous, so \(\sigma \) may also be discontinuous

At the same time, \(\theta \) have to be on Mohr's circle
of radius \(k \). so \(\sigma \) is \(\sigma^0 \)

The angle of rotation to maximum shear orientation \(\theta^0, \theta^3 \) must be equal in magnitude and opposite in sign.

Hence the line of discontinuity must bisect slip lines of the same kind.
Proof of Geometrical relations:

\[
\left(\frac{\pi}{4} + \delta\right) + (\gamma + 6) + \frac{\pi}{4} = \pi
\]

\[2\gamma + 6 = \frac{\pi}{2}\]

\[\therefore \gamma = \frac{\pi}{4} - \frac{6}{2}\]

\[
\left(\frac{\pi}{2} - \gamma\right) + (\frac{\pi}{2} - \gamma) + 6 = \frac{\pi}{2}
\]

\[-2\gamma + 6 + \frac{\pi}{2} = 0\]

\[\therefore \gamma' = \frac{\pi}{4} + \frac{6}{2}\]

\[
\frac{OB}{25\sin\gamma} = \frac{OC}{25\sin\gamma'}
\]

\[
\frac{OB = \tan(\frac{\pi}{2} - \gamma') = \frac{\cos \gamma'}{\sin \gamma'} = \frac{\sin \gamma}{\sin \gamma'}}
\]

\[
\frac{AB = \frac{\sin \gamma}{\sin \gamma'} \frac{OC = \frac{\sin \gamma}{\sin \gamma}}{\sin \gamma}}{\sin \gamma'}
\]

\[
AB = \frac{\sin \gamma}{\sin \gamma'} OC = \frac{\sin \gamma}{\sin \gamma'} \frac{1 - \sin \delta}{1 - \sin \delta}
\]

(2: What if \(\frac{AB}{\sin \gamma'} > \frac{1 + \sin \delta}{1 - \sin \delta}\)?)

Rotation angle from \(y\) to \(x''\) on Mohr's circle: \(2(\delta + \gamma) = \frac{\pi}{2} + \delta\)

\[
\sigma_{yy} = -k - k\sin \delta
\]

\[
\sigma_{xx} = k\cos \delta
\]

Region 1:

\[
\sigma_{yy} = -k - k\sin \delta
\]

\[
\sigma_{xx} = k\cos \delta
\]

\[
\sigma = -k - 2k\sin \delta
\]

\[
\sigma_{xx} = \sigma + k = -2k\sin \delta
\]

\[
\sigma_{yy} = \sigma - k = -2k(1 + \sin \delta) = -p
\]

\[
p = 2k(1 + \sin \delta)
\]

\[
\sigma_{xx} = \sigma + k = 2k\sin \delta
\]

\[
\sigma_{yy} = \sigma - k = -2k(1 - \sin \delta) = -\varrho
\]

\[
\varrho = 2k(1 - \sin \delta)
\]

Region 2: BOC

\[
\sigma_{yy} = -2k
\]

\[
\sigma_{xx} = 0
\]

\[
\sigma_{xy} = 0
\]

\[
\sigma = -k
\]

Region 3:

\[
\sigma_{yy} = -k - k\sin \delta
\]

\[
\sigma_{xx} = k\cos \delta
\]

\[
\sigma = -k + 2k\sin \delta
\]

\[
\sigma_{xx} = \sigma + k = -2k\sin \delta
\]

\[
\sigma_{yy} = \sigma - k = -2k(1 + \sin \delta) = -p
\]

\[
p = 2k(1 + \sin \delta)
\]

\[
\sigma_{xx} = \sigma + k = 2k\sin \delta
\]

\[
\sigma_{yy} = \sigma - k = -2k(1 - \sin \delta) = -\varrho
\]

\[
\varrho = 2k(1 - \sin \delta)
\]
The solution to the rigid-plastic model can be used to construct upper and lower bounds for the load on a elastic-perfectly plastic material reaching a critical state.

§1. Theorems of Limit Analysis (Prager-Hodge, §33, p.213)

Assume surface traction $T_j(x)$ increases monotonically with time by an overall multiplicative constant. A state of impending plastic flow will eventually be reached, where plastic strain increases without increasing $T_j(x)$ (i.e. unrestricted plastic flow).

Vanishing of stress rate at impending plastic flow: $\dot{\sigma}_{ij} = 0$ everywhere

This can be proved using Druker's inequality postulate

$\dot{\sigma}_{ij} \dot{e}_{ij} \geq 0$ (to be discussed later)

which is valid for both work-hardening and perfectly plastic (here) materials.

The statement $\dot{\sigma}_{ij} = 0$ is needed to prove the two theorems below.

Lower Bound Theorem

Any statically admissible (stress field) solution provides a lower bound of the load at incipient plasticity.

A statically admissible stress field σ^0_{ij} satisfies the following conditions:

1. equilibrium condition everywhere: $\sigma^0_{ij} + F_j = 0$

2. boundary condition: $\sigma^0_{ij} n_i = T_j$

(assume only two types of B.C. S_T where T_j is specified and S_u where $u_i = 0$)

3. yield inequality everywhere: $(\sigma_{xx} - \sigma_{yy})^2 + 4\sigma_{xy} - 4k^2 \leq 0$

Since $T_j(x)$ on S_T is specified up to an overall constant, the largest constant for which a statically admissible stress field σ^0_{ij} can still be found is still a lower bound to this constant at impending plastic flow.
Upper Bound Theorem

Any kinematically admissible (velocity field) solution provides an upper bound of the load at incipient plasticity.

A kinematically admissible velocity field v_i^* satisfies the following conditions:

1. Incompressibility $v_i^* x + v_j^* y = 0$ everywhere, or throughout each finite subregion separated by lines of discontinuity (where only tangential velocity can be discontinuous)

2. Boundary condition: $v_i^* = 0$ at S_u where $u = 0$

3. Positive work rate: $\int_{S_f} T_j (x) u_j^* (x) dS > 0$

The overall multiplicative constant in $T_j (x)$ is obtained from the condition (to give an upper bound)

$$\dot{W} = \int_{S_f} T_j (x) u_j^* (x) dS = k \left[\int V \varepsilon_j^* \varepsilon_j^* dV + \int_{S_f} |\Delta v_t| dS \right] = D$$

where $\varepsilon_j^* = \frac{1}{2} (u_{ij}^* + v_{ij}^*)$

V_i^* provides a possible scenario of failure (incipient plastic flow).

The above equation states that the work done by the external load must be sufficient to balance the internal dissipation of the failure scenario.

Note that a true solution to the elastic-plastic material at incipient plasticity must have a stress field that is statically-admissible and a velocity field that is kinematically-admissible, simultaneously.
§2 Principle of virtual work (Prager-Hodge, §32 p. 209)

The derivation of the lower and upper bound theorems requires the principle of virtual work, which is stated here (in 2D plane strain), even though we are not going to derive the lower and upper bound theorems.

Consider a stress field \(\sigma_{xx}, \sigma_{yy}, \sigma_{xy} \) and a velocity field \(v_x, v_y \) in region \(R \) that are continuous and have continuous first derivatives.

The stress field and the velocity field can be chosen independently of each other.

Define traction force at boundary: \(T_j = \sigma_{ij} n_i \)

Strain rate: \(\varepsilon_{ij} = \frac{1}{2} (v_i, v_j) \)

Principle of virtual work:

\[
\int_R \left(\sigma_{xx} \varepsilon_{xx} + \sigma_{yy} \varepsilon_{yy} + 2 \sigma_{xy} \varepsilon_{xy} \right) \, dA = \int_B (T_x v_x + T_y v_y) \, dS
\]

as long as \(\sigma_{ij} \) satisfies equilibrium condition in \(R \).

Now consider \(R \) containing lines of discontinuity that divide \(R \) into a finite number of sub-regions: \(R_1, R_2, \ldots, R_n \) such that \(\sigma_{xx}, \sigma_{yy}, \sigma_{xy} \) are continuous and have continuous first derivatives in each sub-region.

We also allow tangential velocity to be discontinuous at line of discontinuity.

Principle of virtual work:

\[
\int_R \left(\sigma_{xx} \varepsilon_{xx} + \sigma_{yy} \varepsilon_{yy} + 2 \sigma_{xy} \varepsilon_{xy} \right) \, dA = \int_B (T_x v_x + T_y v_y) \, dS + \sum_{L_{hh}} T_{(hh)} (v^h - v^k) \, dL_{hh}
\]

as long as \(\sigma_{ij} \) satisfies equilibrium condition in \(R \).

\(T_{(hk)} \) is shear stress transmitted across \(L_{hh} \) from \(R_k \) to \(R_h \)

\((v^h - v^k) \) is the discontinuity in tangential velocity across \(L_{hk} \).
§3. Notched Bar in Bending

Find M at impending plasticity

Lower bound estimate

Construct a statically admissible stress field

\[\sigma_{xx} = -2k \quad \frac{a}{2} < x < a \]
\[\sigma_{xx} = 2k \quad 0 < x < \frac{a}{2} \]
\[\sigma_{xx} = 0 \quad -a < x < 0 \]

All other stress components zero

\[(\sigma_{xx} - \sigma_{yy})^2 + 4\sigma_{xy}^2 - qk^2 \leq 0 \]

\[M = 2 \cdot 2k \cdot \frac{a}{2} \cdot \frac{a}{4} \cdot 2b = k a^2 b \]

Upper bound estimate

Construct a kinematically admissible velocity field

Assume a "mechanism" in which two rigid segments rotate around a hinge

Rate of external work: \[W = 2M \omega \]

Tangential velocity jump at interface

\[|\alpha| = R \omega = \frac{a/2}{\sin \alpha} \omega \quad (R \sin \alpha = a/2) \]

Length of discontinuity line: \[2 \cdot 2 \alpha \cdot R = \frac{2a}{\sin \alpha} \]

Total internal dissipation:

\[D = k \left(\frac{a/2}{\sin \alpha} \right) \omega \frac{2a}{\sin \alpha} \cdot 2b = 2ka^2 b \omega \frac{a}{\sin \alpha} \]
To obtain the tightest upper bound, we choose α^* that minimizes $\frac{\alpha}{\sin^2 \alpha}$

$$\min_{0 < \alpha < \pi} \frac{\alpha}{\sin^2 \alpha} = 1.3801 \quad \text{at} \quad \alpha^* = 1.1655$$

Matlab:
$$f = \text{inline('x./sin(x).^2', 'x');}$$
$$x_0 = \text{fminsearch}(f, 1)$$
$$f(x_0)$$

$$W = 2M\omega = 2ka^2b \omega \frac{\alpha^*}{\sin^3 \alpha^*}$$

$$M = \frac{\alpha^*}{\sin^3 \alpha^*} ka^2b = 1.38 \, ka^2b$$

Therefore, the moment M at impending plastic flow:

$$1.0ka^2b \leq M \leq 1.38 \, ka^2b$$
§4. Grooved Rectangular Block

Find F at impending plasticity

Lower bound estimate

Construct a statically admissible stress field

Recall the geometric condition

$$\frac{AB}{CD} = \frac{1-\sin \delta}{1+\sin \delta}$$

$$AB = 2(2a - \frac{a}{\cos \delta})$$

$$CD = 4a$$

$$1 - \frac{1}{2 \cos \delta} = \frac{1-\sin \delta}{1+\sin \delta} \rightarrow 2 \sin 2\delta - \sin \delta - 1 = 0$$

$\delta = 0.3765$, $\frac{AB}{CD} = \frac{1-\sin \delta}{1+\sin \delta} = 0.4623$

$g = 2k (1-\sin \delta)$

$$F = 4a \cdot g = 8 (1-\sin \delta) \cdot k a$$

$F = 5.06 \cdot k a$

Upper bound estimate

Construct a kinematically admissible velocity field

Assume a rigid block sliding off

Rate of external work: $W = F \cdot v \cdot \frac{\sqrt{2}}{2}$

Tangential velocity jump: $|\Delta v| = v$

Length of discontinuity line: $3a \cdot \sqrt{2}$

Total internal dissipation:

$\dot{D} = k \cdot v \cdot 3a \sqrt{2}$

$$W = F \cdot v \cdot \frac{\sqrt{2}}{2} = k \cdot v \cdot 3a \sqrt{2} = \dot{D}$$

$$F = 6 \cdot k a$$

Therefore, the force at impending plastic flow: $5.06 ka \leq F \leq 6 ka$
a tighter upper bound can be obtained using the slip line solution

Logarithmic spirals

Stress field:
\[\sigma_{rr} = 2k \ln \frac{r}{a} \quad a \leq r \leq 2a \]
\[\sigma_{\theta\theta} = 2k + 2k \ln \frac{r}{a} \]

Velocity field:

The constant velocity \(v \) of the rigid regions specifies boundary conditions for

\(v_a \) along spiral \(AB \)

and for
\(v_b \) along spiral \(A'B' \)

(tangential velocity can be discontinuous at the rigid-plastic boundary)

using:
\[dv_\alpha - v_\beta d\phi = 0 \quad \text{along } \alpha \text{-line} \]
\[dv_\beta - v_\alpha d\phi = 0 \quad \text{along } \beta \text{-line} \]

The entire velocity field \(v_x, v_y \) can be constructed for region \(ABA' \) (left as exercise)

\(AB \) and \(A'B' \) are lines of discontinuity

The slip line velocity field is kinematically admissible because:

1. incompressibility \(v_x, x + v_y, y = 0 \)
2. there are no boundary where \(y = 0 \)
3. \(\int_B T_j y_j \, ds > 0 \)
To compute the dissipation rate ψ for this velocity field, we use the principle of virtual work, with the slip line stress field σ_{ij} (any stress field satisfying equilibrium and is OK) in region $R = ABA' + CBC$.

$$F \cdot V = \mathbf{d} \equiv k \left[\int_{R} \sqrt{C_{ij} \dot{e}_{ij}} \, dA + \int_{S_{j}} \left| \Delta V_{r} \right| \, ds \right]$$

dashed line in figure above

$$= 2V \int_{AB} T_{x} V_{x} + T_{y} V_{y} \, ds$$

$$= 2V \int_{AB} T_{y} \, ds$$

$$= 2V \int_{DE} T_{y} \, ds$$

$$= 2V \int_{DE} \sigma_{yy} \, ds$$

$$= 4V \int_{DB} \sigma_{yy} \, ds$$

$$= 4V \int_{a}^{2a} 2k \left(R \ln \frac{r}{a} \right) \, dr$$

$$= 4k \cdot V \cdot \left[R \ln \frac{r}{a} \right]_{a}^{2a}$$

$$= 4k \cdot V \cdot (2a \ln 2)$$

$$F = 8 \ln 2 \cdot k a = 5.55 \, k a \quad \text{(upper bound)}$$

$$5.06 \, k a \leq F \leq 5.55 \, k a$$

\[\uparrow \]

a tighter upper bound than before (6ka)
So far we have considered elastic-perfect plastic models in which the yield surface remains unchanged, i.e. no strain hardening.

We now consider various ways to include strain hardening into the constitutive equation.

§1. Plastic Instability in Tension (R. Hill, p.111)

We will show that a perfect plastic material (no hardening) is unstable in tension, i.e. necking will immediately develop after yielding.

In fact, strain hardening \(\frac{d\sigma}{d\varepsilon} \) need to be sufficiently strong for stability, i.e. to prevent necking.

Most ductile materials loaded in tension eventually fail by necking, due to violation of stability criterion (i.e. insufficient hardening).

Let \(A_0, l_0 \) be the cross sectional area and length of the bar prior to deformation (i.e. reference state).

Let \(A, l \) be the values at current state (before necking).

Neglect elastic strain, because plastic strain conserves volume, we have

\[
\begin{align*}
A \cdot l &= A_0 \cdot l_0 \\
0 &= A \, dl + l \, dA
\end{align*}
\]

\[
\frac{dA}{A} = -\frac{dl}{l}
\]
Define: \(\varepsilon: \text{engineering strain} \quad d\varepsilon = \frac{dl}{l_0}, \quad \varepsilon = \frac{l-l_0}{l_0}, \quad l = l_0(1+\varepsilon) \)

\(\varepsilon^t: \text{true strain} \quad d\varepsilon^t = \frac{dl}{l}, \quad \varepsilon^t = \ln \frac{l}{l_0} = \ln(1+\varepsilon) \)

\((\text{note: if } l_0 = 0, \quad \varepsilon = -1, \quad \varepsilon^t = -\infty \)

\(\text{if } l = 2l_0, \quad \varepsilon = 1, \quad \varepsilon^t = \ln 2 \)

Stability requires that the total force \(F \) on the cross section increases with positive \(dl \), i.e. \(\frac{df}{dl} > 0 \)

If this is not the case, the system can spontaneously lower the free energy by strain localization.

Imagine two sections of the rod.

Imagine a virtual deformation where point \(A \) moves left, i.e. \(dl^0 < 0 \). \(dl^0 = -dl^0 > 0 \)

Suppose \(\frac{df}{dl} < 0 \), then \(F_1 > F \), \(F_2 < F \)

then point \(A \) will move further to the left.

\(\rightarrow \text{unstable.} \)

\[F = A \cdot \sigma \]

\[dF = d(A \cdot \sigma) = Ad\sigma + \sigma dA \]

\[= A (d\sigma + \frac{dA}{A} \sigma) = A (d\sigma - \frac{d\varepsilon}{\varepsilon} \sigma) \]

\[dF = A (d\sigma - \sigma \frac{d\varepsilon}{1+\varepsilon}) = Ad\varepsilon \left(\frac{d\sigma}{d\varepsilon} - \frac{\sigma}{1+\varepsilon} \right) \] in terms of engineering strain

\[df = A (d\sigma - \sigma d\varepsilon^t) = A d\varepsilon^t \left(\frac{d\sigma}{d\varepsilon^t} - \sigma \right) \] in terms of true strain
Stability criterion \(\frac{dF}{dl} > 0 \), i.e. \(\frac{dF}{d\varepsilon} > 0 \), i.e. \(\frac{dF}{d\varepsilon^t} > 0 \)

requires \(\frac{d\sigma}{d\varepsilon} > \frac{\sigma}{1+\varepsilon} \) or equivalently \(\frac{d\sigma}{d\varepsilon^t} > \sigma \)

This condition has a graphical representation:

Draw a family of curves (dashed line) for \(\sigma = \alpha(1+\varepsilon) \)

\(\varepsilon \) straight lines passing \((\varepsilon = -1, \sigma = 0) \)

Regardless of \(\alpha \), all these curves satisfy the condition

\[\frac{d\sigma}{d\varepsilon} = \alpha = \frac{\sigma}{1+\varepsilon} \]

At the intersection point between the stress strain curve \(\sigma(\varepsilon) \) and any dashed line, if \(\frac{d\sigma}{d\varepsilon} \) of the stress strain curve is larger than that of the dashed line, then the point is stable.

\(\Theta \equiv \frac{d\sigma}{d\varepsilon} \) is called strain hardening rate

(Note the point \(\varepsilon = -1 \) is equivalent to \(\varepsilon^t = -\infty \))
How much hardening is required for stability in tension?

\[\sigma \] (MPa) \hspace{1cm} [Graph showing \(\sigma_0 \), stable strain curve, \(k/\sigma_0 \), perfectly plastic strain, \(\sigma \approx \sigma_y \)]

\[\sigma = 100 \text{ MPa} \]
\[E = 2 \times 10^6 \text{ GPa} \]

Strain at \(\sigma = \sigma_y \):
\[\varepsilon_y = \frac{\sigma_y}{E} = 0.5 \times 10^{-3} = 0.05\% \]
\[\varepsilon_y \approx 0 \text{ on this scale} \]

The required hardening rate is \(\dot{\varepsilon}_c \approx \dot{\varepsilon}_y = 100 \text{ MPa} \).

This means at \(\varepsilon = 10\% \), \(\sigma > k/\sigma_0 \)

i.e. only 10% increase in flow stress for 10% plastic strain

This explains why material may satisfy the tensile stability criterion and yet can still be well approximated by the elastic-perfectly plastic model.
§2 Isotropic Hardening Model

The tensile stress-strain curve is not sufficient to fully describe the plastic behavior. We need to know how the entire yield surface change with plastic deformation.

The isotropic hardening model and the kinematic hardening model are two commonly used approximations to the complex behaviors of real materials.

In isotropic hardening model, we write the yield condition as

\[f(S_{ij}) = q(\sigma) \quad \text{(Kachanov P.80)} \]

where \(S_{ij} \) is the deviatoric part of the stress \(\sigma_{ij} \) (\(S_{ij} = \sigma_{ij} - \overline{\sigma} \delta_{ij} \)). (Since yield should not depend on average stress \(\overline{\sigma} \)).

\(q \geq 0 \) is some measure of isotropic hardening.

A common measure of \(q \) is the work of plastic deformation

\[q = \int \sigma_{ij} \, d\varepsilon_{ij}^{pl} \]

Another, less frequent, measure is characteristic of accumulated plastic strain

\[q = \int \frac{1}{2} \varepsilon_{ij}^{pl} \, d\varepsilon_{ij}^{pl} \]

We can still use the von Mises criterion for function \(f \)

\[f(S_{ij}) = \frac{1}{2} S_{ij} \, S_{ij} \]

(The special case of perfect-plasticity (no hardening) corresponds to)

\[q(\sigma) = k^2 \] (constant)

For hardening model, we can choose \(q(\sigma) \) to reproduce the tensile stress-strain curve.
As an example, let \(f(S_{ij}) = \frac{1}{2} S_{ij} S_{ij} \),
\(q = \int S_{ij} dS_{ij} \)
and \(q(q) = k^2 + \beta q \)
and let's find out how the tensile stress-strain curve looks like.

In uniaxial tension \(\sigma_{xx} > 0, \sigma_{yy} = \sigma_{zz} = 0, \)
\(\sigma = \frac{1}{3} \sigma_{xx} \)
\(S_{xx} = \sigma_{xx} - \sigma = \frac{2}{3} \sigma_{xx}, \quad S_{yy} = -\frac{1}{3} \sigma_{xx}, \quad S_{zz} = -\frac{1}{3} \sigma_{yy} \)
\(f(S_{ij}) = \frac{1}{2} S_{ij} S_{ij} = \frac{1}{2} \left(\frac{2}{3} \sigma_{xx}^2 + \frac{2}{3} \sigma_{xx}^2 + \frac{2}{3} \sigma_{xx}^2 \right) = \frac{1}{2} \sigma_{xx}^2 \)

Plastic flow rule:
\[
\frac{d\varepsilon_{ij}^{\text{pl}}}{dt} = \frac{\tilde{\lambda}}{2\mu} S_{ij} dt \quad \frac{d\varepsilon_{xx}^{\text{pl}}}{dt} = \frac{\tilde{\lambda}}{2\mu} \frac{2}{3} \sigma_{xx} dt
\]
\(q = \int S_{ij} dS_{ij}^{\text{pl}} = \int S_{ij} \frac{\tilde{\lambda}}{2\mu} S_{ij} dt \)
\(dq = \frac{\tilde{\lambda}}{2\mu} S_{ij} S_{ij} dt = \frac{\tilde{\lambda}}{2\mu} \frac{1}{3} \sigma_{xx} dt \)

Hardening law:
\(f(S_{ij}) = \frac{1}{2} S_{ij} S_{ij} = q(q) = k^2 + \beta q \)
\(\frac{1}{3} \sigma_{xx}^{\text{pl}} = k^2 + \beta q \)
\(\frac{2}{3} \sigma_{xx} d\sigma_{xx} = \beta dq = \beta \frac{\tilde{\lambda}}{2\mu} \frac{1}{3} \sigma_{xx} dt \)
\(d\sigma_{xx} = \frac{\tilde{\lambda}}{2\mu} \frac{1}{2} \sigma_{xx} dt \)

\[
\frac{d\sigma_{xx}}{d\varepsilon_{xx}^{\text{pl}}} = \frac{3}{4} \beta, \quad \frac{d\varepsilon_{xx}^{\text{pl}}}{d\sigma_{xx}} = \frac{d\sigma_{xx}}{d\varepsilon_{xx}} + \frac{d\sigma_{xx}^{\text{pl}}}{d\sigma_{xx}} = \frac{1}{E} + \frac{q}{3\beta}, \quad \theta = \frac{d\sigma_{xx}}{d\varepsilon_{xx}^{\text{pl}}} = \left(\frac{1}{E} + \frac{q}{3\beta} \right)^{-1}
\]

Note that when hardening is present, \(\tilde{\lambda} \) can be determined from \(d\sigma_{xx}/dt \), which was not possible in perfectly plastic material.

Q. Find the hardening rate in uniaxial tension if \(q = \int S_{ij} dS_{ij} \)
is used instead.

8.3 Kinematic Hardening Model

(Translational hardening in Kachanov)

\[f(S_1 - \alpha_1) = k^2 \]

\[\alpha_1 = c \varepsilon_{pl} \]

Let's find out its consequence in uniaxial tension:

\[S_{xx} = \frac{2}{3} \sigma_{xx}, \quad S_{yy} = -\frac{1}{3} \sigma_{xx}, \quad S_{zz} = -\frac{1}{3} \sigma_{xx}. \]

\[d\varepsilon_{pl} = \frac{\sigma_{xx}}{2\mu} S_1 \, dt \]

\[d\varepsilon_{pl} = -\frac{1}{3} d\varepsilon_{xx} \]

\[\varepsilon_{pl} = \varepsilon_{xx} = -\frac{1}{3} \varepsilon_{xx} \]

\[\sigma_{xx} = c \varepsilon_{xx}, \quad \alpha_{yy} = -\frac{1}{3} c \varepsilon_{xx}, \quad \alpha_{zt} = -\frac{1}{3} c \varepsilon_{xx} \]

\[f(S_1 - \alpha_1) = \frac{1}{2} \left[\left(\frac{2}{3} \sigma_{xx} - c \varepsilon_{pl} \right)^2 + \left(-\frac{1}{3} \sigma_{xx} + \frac{1}{2} c \varepsilon_{pl} \right)^2 + \left(-\frac{1}{3} \sigma_{xx} + \frac{1}{2} c \varepsilon_{pl} \right)^2 \right] \]

\[= \frac{1}{3} \left(\sigma_{xx} - \frac{3}{2} c \varepsilon_{pl} \right)^2 = k^2 \]

\[\sigma_{xx} = \sqrt{3} k + \frac{2}{3} c \varepsilon_{pl} \]

\[\frac{d\sigma_{xx}}{d\varepsilon_{pl}} = \frac{2}{3} c \quad \text{Hardening rate} \quad \Theta = \frac{d\sigma_{xx}}{d\varepsilon_{xx}} = \left(\frac{1}{k} + \frac{3}{2c} \right)^{-1} \]
of course, a combination of isotropic and kinematic hardening model can be derived. E.g.

\[f(s_{ij} - \alpha_{ij}) = k^2 + \beta q \]

\[\alpha_{ij} = c E_{ij} \]

\[q = \int_0^l \sigma_{ij} \, d\varepsilon_{ij} \]

work out its consequence in uniaxial tension test.
§4 Associated Flow Law

The flow rule we have been using:
\[\dot{\varepsilon}_{ij} = \frac{\dot{\sigma}}{2\mu} S_{ij} \]

is an associated flow law with the von Mises yield condition:
\[f(S_{ij}) = \frac{1}{2} S_{ij} S_{ij} = \Phi(\sigma) \]

On the other hand, it is not associative with the Tresca yield condition:
\[|\sigma_1 - \sigma_2| = \Phi(\sigma), \quad \sigma_1 \geq \sigma_2 \geq \sigma_3 \]

To understand what it means, we shall introduce a function \(g(S_{ij}) \) such that the flow rule can be written as (plastic potential)
\[\dot{\varepsilon}_{ij}^p = h \frac{\partial g}{\partial S_{ij}} \]
where \(h \) is a scalar function.

If \(g = f \), then the flow rule is associative
for flow (with the yield condition) for yield surface — plastic flow is always normal to yield surface

For example, for the von Mises yield condition, \(f = \frac{1}{2} S_{ij} S_{ij} \).
the associated flow rule is
\[\dot{\varepsilon}_{ij}^p = h \cdot \frac{\partial f}{\partial S_{ij}} = h \frac{2}{3} S_{ij} (\frac{1}{2} S_{ij} S_{ij}) = h \cdot S_{ij} \]
This is the same as \(\dot{\varepsilon}_{ij}^p = \frac{\dot{\sigma}}{2\mu} S_{ij} \) if we identify \(h = \frac{\dot{\sigma}}{2\mu} \).

What is the associative flow rule for Tresca's yield condition?
§5. Drucker's Postulate

Consider a hardening medium with original stress \(\sigma_{ij}^0 \), on which we apply additional stress \(\delta \sigma_{ij} \) and then remove it. The loading is slow enough to be considered isothermal.

Drucker's Postulate:
1. In the loading process, additional stress \(\delta \sigma_{ij} \) does positive work.
2. For a complete cycle of loading and unloading, additional stress does positive work if plastic deformation takes place.
 (For a hardening material, the work will be zero only for purely elastic deformation.)

Consider loading path \(A \to B \to C \)
Unloading path \(C \to A \)

Drucker's Postulate (2):
\[
\int (\sigma_{ij} - \sigma_{ij}^0) \, d\epsilon_{ij} > 0
\]

Given that work done on elastic strain over the complete cycle is zero:
\[
\int (\sigma_{ij} - \sigma_{ij}^0) \, d\epsilon_{ij} = 0
\]

We have
\[
\int (\sigma_{ij} - \sigma_{ij}^0) \, d\epsilon_{ij}^{pl} = 0
\]

But plastic strain only occurs during \(B \to C \)

\[
(\sigma_{ij} - \sigma_{ij}^0) \, d\epsilon_{ij}^{pl} > 0 \quad \text{(local maximum principle)}
\]

This is true for any \(\sigma_{ij}^0 \) inside the yield surface \(\Sigma \).

Hence it is a pretty strong requirement.
If we let the point \(A \) coincide with point \(B \), we have

\[
\text{during } B \rightarrow C: \quad d\sigma_{ij} d\varepsilon_{ij} > 0 \quad \text{Drucker's postulate (1)}
\]

considering the cycle \(B \rightarrow C \rightarrow B \):

\[
\text{during } B \rightarrow C \rightarrow B: \quad d\sigma_{ij} d\varepsilon_{ij}^{pl} > 0 \quad \text{Drucker's postulate (2)}
\]

Associative Flow as a consequence

Assume yield surface is convex

consider point \(B (\sigma_{ij}) \) on the yield surface.

Note the requirement

\[
(\sigma_{ij} - \sigma_{ij}^*) d\varepsilon_{ij}^{pl} > 0
\]

for all \(\sigma_{ij} \) inside \(\Sigma \), i.e. for all points \(A, A', A'', A''' \).

This is only possible if \(d\varepsilon_{ij}^{pl} \) is normal to the yield surface \(\Sigma \) at point \(B \).

\[\Rightarrow \text{Associative flow}!\]

Hence we see that Drucker's postulate implies associative flow rule \((g = f)\).
Convexity of Yield Surface

If the yield surface \(\Sigma \) is not convex, then we can always find a point \(A (\sigma_{ij}) \) such that

\[(\sigma_{ij} - \sigma_{ij}^0) \, d\varepsilon_{ij}^p < 0 \]

violating Drucker's postulate (physically, it means that work is extracted in a complete cycle \(A \rightarrow B \rightarrow C \rightarrow A \) that produces plastic deformation, which is possible if there is internal stress in the material.)

For perfect plasticity (no hardening), Drucker's postulate is modified to

\[d\sigma_{ij} \, d\varepsilon_{ij}^p = 0 \]

(valid for every loading process \(B \rightarrow C \) and for every cycle \(B \rightarrow C \rightarrow B \).)
8.1. Poly Crystal

A bulk metal is a polycrystal consisting of many single crystal grains (on the order of 1-10μm size) separated by grain boundaries.

Each single crystal grain is elastically and plasticity anisotropic.

But the aggregate of many grains appears to behave isotropically at longer length scale.

If we want to "derive" (or understand) polycrystal plasticity, a "standard" (or reasonable) approach is to first understand single crystal plasticity and then perform the process of "homogenization".

This is assuming that the grain boundaries (GB) do not play an active role in plastic deformation, other than providing a constraint on plastic strain of neighboring grains. (G.I. Taylor 1938)

This assumption is confirmed by experiments at ambient conditions.

At very high temperatures, GB sliding and GB diffusion contributes significantly to plastic deformation (creep).
§2. Single Crystal Slip Systems

Most engineering materials (metals, semiconductors) have cubic crystal structure, with either a face-centered cubic (FCC) lattice or a body-centered cubic (BCC) lattice.

![FCC lattice](image1)

FCC lattice
Cu, Al, Au

![BCC lattice](image2)

BCC lattice
Fe, W, Mo

If we put one (and the same type) atom on each lattice site, we get an FCC or BCC crystal.

But we can also put multiple atoms at each lattice site to get different crystal structures. For example, the diamond cubic structure (of diamond!) has 2 carbon atoms for each FCC lattice site.

Here we will focus on simple crystal structures with only one (and the same type) atom at each lattice site.
Crystal Plasticity

When a single crystal is stretched, it is known to slip on crystallographic planes along specific directions.

(Micro tensile SEM movie by M. Uchic)

The slip directions are the shortest lattice repeat vectors.
The slip planes are the planes with highest in-plane density (largest inter-plane distance).

In FCC metal, the dominant slip system is \{111\} planes along \(\frac{1}{2}[110]\) direction.
\{111\}\(\frac{1}{2}[110]\) slip for short.

In BCC metal, the dominant slip system is \{110\} planes along \(\frac{1}{2}[111]\) direction.
\{110\}\(\frac{1}{2}[111]\) for short.
(Slip on \{112\}, \{112\} planes have also be observed in BCC metals.)

Q: How many slip systems in FCC and BCC lattices?
§3. Schmid factor

Consider a uniaxial tensile test of a single crystal:

\[\mathbf{I} : \text{unit vector along tensile axis} \]
\[\mathbf{n} : \text{unit vector of slip plane normal} \]
\[\mathbf{b} : \text{unit vector along slip direction} \]
\[\sigma : \text{tensile stress} \]
\[\chi : \text{angle between } \mathbf{I} \text{ and } \mathbf{n} \]
\[\cos \chi = (\mathbf{I} \cdot \mathbf{n}) \]
\[\phi : \text{angle between } \mathbf{I} \text{ and } \mathbf{b} \]
\[\cos \phi = (\mathbf{I} \cdot \mathbf{b}) \]

Let \(\mathbf{T} \) be the resolved shear stress on plane \(\mathbf{n} \) along \(\mathbf{b} \)
\(\gamma \) be the shear strain on plane \(\mathbf{n} \) along \(\mathbf{b} \)

\[\mathbf{T} = S \cdot \sigma \]
\[S = \cos \chi \cos \phi \cdot \text{Schmid factor} \]
\[(S < 1) \]

\[\sigma_y = \frac{T_y}{S} \]

\(S \) depends on the relative orientation of the loading axis w.r.t. slip system.

Hence we expect \(\sigma_y \) of single crystal to be orientation dependent (but not depend on tension v.s. compression).

This is well obeyed by FCC (HCP) metals. BCC metals do show tension/compression asymmetry.
There are multiple slip systems in a single crystal. It is reasonable to expect that for single crystals under uniaxial stress, the slip system with the highest Schmid factor is activated first and remain the most active — Schmid Law. However, for certain (high symmetry) orientations, two or more slip systems have identical Schmid factor, so they will be simultaneously activated. Hence the tensile axis can be categorized as single-slip or multi-slip.

In a polycrystal, G.J. Taylor show that in general a crystal grain must activate 5 slip systems to be able to accommodate the strain constraints imposed by its neighbors.

§5. Stereographic Projection

Stereographic Projection is a tool to map all directions (on a unit sphere) on to a flat plane to facilitate discussions. The mapping preserves angles but do not preserve area or length.

First, project all directions of the crystal onto the unit sphere.

Second, project every point on the top hemisphere on the plane tangent at N (north-pole).

Third, look down at the projection plane.

<table>
<thead>
<tr>
<th>On the sphere</th>
<th>on the plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>circles</td>
<td>circles</td>
</tr>
<tr>
<td>equator</td>
<td>bounding circle</td>
</tr>
<tr>
<td>Northern sphere</td>
<td>points inside bounding circle</td>
</tr>
<tr>
<td>great circles</td>
<td>circles intersecting bounding circle at opposite end of diameter</td>
</tr>
</tbody>
</table>
Points on unit sphere \((x, y, z)\), \(x^2 + y^2 + z^2 = 1\),

Northern hemisphere \(z \geq 0\), \(z = \sqrt{1 - x^2 - y^2}\).

Points on projection plane \((X, Y)\) = \(\left(\frac{2x}{1 + z}, \frac{2y}{1 + z}\right)\).

\[x^2 + y^2 = \frac{4(x^2 + y^2)}{(1 + z)} = \frac{4(-z^2)}{(1 + z)^2} = \frac{4(1 - z)}{1 + z}\]

\[1 + \frac{x^2}{\frac{1}{4}} + \frac{y^2}{\frac{1}{4}} = \frac{2}{1 + z}\]

Reverse mapping:
\[x = \frac{X}{\frac{1}{4} + \frac{y^2}{\frac{1}{4}}}, \quad y = \frac{Y}{\frac{1}{4} + \frac{y^2}{\frac{1}{4}}}, \quad z = \frac{2}{1 + \frac{X^2}{\frac{1}{4}} + \frac{Y^2}{\frac{1}{4}}} - 1\]

- Bounding circle is the smallest great circle on the projection plane.
- Each great circle represents a plane (passing through \(O\)) the normal of this plane can be obtained by taking cross product of any two vectors in this plane.

Q: Where is \((111)\) plane?
§6. Stereographic Triangle

Notice that the area inside the bounding circle is divided into 24 triangles (with curved sides).

Every triangle has a \(\langle 001\rangle\) node, a \(\langle 011\rangle\) node, and a \(\langle 111\rangle\) node.

Every triangle covers the same area on the unit sphere (they don't have the same area on the projection plane).

Every triangle is equivalent to each other by symmetry (cubic symmetry of the lattice).

Hence, to examine the orientation dependence of tensile tests, we only need to examine tensile axis within a triangle.

Note: \(\langle 001\rangle\) has 4-fold symmetry \(\Box\)
\(\langle 101\rangle\) has 2-fold symmetry \(\circ\)
\(\langle 111\rangle\) has 3-fold symmetry \(\triangle\)

In general, if the tensile axis lie close to the center of the standard triangle, then single slip is preferred.

Multi-slip occurs if the tensile axis moves close to the edges of the triangle.

The standard Triangle

\[\text{[001]} \rightarrow \text{[101]} \rightarrow \text{[111]} \rightarrow \text{[111]} \rightarrow \text{[001]}\]

\(\text{Q: find it in the bounding circle on the previous page}\)
§7 Active slip system in FCC Crystal

Q: Which slip system (out of 12) is activated when the tensile axis is inside the standard triangle?

Q: How close is the second highest Schmid factor to the highest?

Using Matlab code to analyze all 12 slip systems for each tensile axis in the standard triangle. (fcc_slip_system.mop.m)

<table>
<thead>
<tr>
<th>ID</th>
<th>slip system</th>
<th>[1 0 1]</th>
<th>[0 1 0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[1 1 1]</td>
<td>[0 1 1]</td>
<td>[1 0 1]</td>
</tr>
<tr>
<td>2</td>
<td>[1 1 1]</td>
<td>[1 0 1]</td>
<td>[0 1 1]</td>
</tr>
<tr>
<td>3</td>
<td>[1 1 1]</td>
<td>[1 0 1]</td>
<td>[0 1 1]</td>
</tr>
<tr>
<td>4</td>
<td>[1 1 1]</td>
<td>[1 0 1]</td>
<td>[0 1 1]</td>
</tr>
<tr>
<td>5</td>
<td>[1 1 1]</td>
<td>[1 0 1]</td>
<td>[0 1 1]</td>
</tr>
<tr>
<td>6</td>
<td>[1 1 1]</td>
<td>[1 0 1]</td>
<td>[0 1 1]</td>
</tr>
<tr>
<td>7</td>
<td>[1 1 1]</td>
<td>[1 0 1]</td>
<td>[0 1 1]</td>
</tr>
<tr>
<td>8</td>
<td>[1 1 1]</td>
<td>[1 0 1]</td>
<td>[0 1 1]</td>
</tr>
<tr>
<td>9</td>
<td>[1 1 1]</td>
<td>[1 0 1]</td>
<td>[0 1 1]</td>
</tr>
<tr>
<td>10</td>
<td>[1 1 1]</td>
<td>[1 0 1]</td>
<td>[0 1 1]</td>
</tr>
<tr>
<td>11</td>
<td>[1 1 1]</td>
<td>[1 0 1]</td>
<td>[0 1 1]</td>
</tr>
<tr>
<td>12</td>
<td>[1 1 1]</td>
<td>[1 0 1]</td>
<td>[0 1 1]</td>
</tr>
</tbody>
</table>

Define:

- S_1: highest Schmid factor
- S_2: second highest Schmid factor

Contour Plot of S_1:

- $S_1 = 0.4666$

Contour Plot of $\frac{S_1}{S_2} - 1$:

- $S_2 = 0.3479$
- $\frac{S_1}{S_2} - 1 = 0.3333$

Q: Is the slip system of the second highest Schmid factor always the same in the standard triangle?

A:

§8. Rotation of Crystal Axes for Single Crystal

Tensile axis rotate along a great circle toward the direction of slip b

Q: Will the tensile axis leave the standard triangle?

A:
Schmid Factor in Single Crystal

highest Schmid factor S_1

$S_1 / S_2 - 1$
Consider slip system α with
slip plane normal vector $\mathbf{n}^{(\alpha)}$,
slip direction $\mathbf{b}^{(\alpha)}$,
both $\mathbf{n}^{(\alpha)}$ and $\mathbf{b}^{(\alpha)}$ are unit vectors

Suppose the slip system experience shear $\dot{\gamma}_\alpha$

$$\dot{\gamma}_\alpha = \text{slip distance} \times \text{slipped area}$$

$$\text{volume of crystal}$$

Then the (shear) strain produced by slip system α is

$$\varepsilon^{(\alpha)} = \frac{\dot{\gamma}_\alpha}{2} \left(\mathbf{n}^{(\alpha)} \otimes \mathbf{b}^{(\alpha)} + \mathbf{b}^{(\alpha)} \otimes \mathbf{n}^{(\alpha)} \right)$$

in component form,

$$\varepsilon_{ij}^{(\alpha)} = \frac{\dot{\gamma}_\alpha}{2} \left(n_i^{(\alpha)} b_j^{(\alpha)} + b_i^{(\alpha)} n_j^{(\alpha)} \right)$$

The slip also produces a rotation of the tensile axis \mathbf{T}

$$\omega^{(\alpha)} = \frac{\dot{\gamma}_\alpha}{2} \left(\mathbf{n}^{(\alpha)} \times \mathbf{b}^{(\alpha)} \right)$$

$\omega^{(\alpha)}$ points in the axis of rotation

$|\omega^{(\alpha)}|$ is the rotation angle (rad)

Taylor assumes that every grain experience tensile strain ε^t

along \mathbf{T} and compressive strain ε^c in perpendicular directions.

$$\varepsilon = \left(\mathbf{T} \otimes \mathbf{T} \right) \varepsilon^t - \frac{1}{2} \left(\mathbf{M} \otimes \mathbf{M} + \mathbf{N} \otimes \mathbf{N} \right) \varepsilon^c$$

note $\mathbf{T} \otimes \mathbf{T} + \mathbf{M} \otimes \mathbf{M} + \mathbf{N} \otimes \mathbf{N} = \mathbf{I} \otimes \mathbf{I}$, identity

$$\varepsilon = \left(\mathbf{T} \otimes \mathbf{T} \right) \varepsilon^t - \left(\mathbf{I} - \mathbf{T} \otimes \mathbf{T} \right) \frac{\varepsilon^c}{2}$$

$$= \frac{3}{2} \left(\mathbf{T} \otimes \mathbf{T} \right) \varepsilon^t - \frac{1}{2} \mathbf{I} \varepsilon^c$$

in component form

$$\varepsilon_{ij} = \frac{\varepsilon^t}{2} \left(3 T_i T_j - \delta_{ij} \right)$$
For a randomly chosen grain, ε is arbitrarily oriented relative to the crystallographic axis. Hence the imposed strain ε is also quite arbitrary.

ε must be accommodated by a number of slip systems.

For FCC crystal, there are 12 slip systems.

$$
\varepsilon_{ij} = \sum_{\alpha=1}^{12} \varepsilon_{ij}^{(\alpha)} = \sum_{\alpha=1}^{12} \gamma_{\alpha} \cdot \frac{1}{2}(n_{\alpha}^{i} b_{\alpha}^{i} + n_{\alpha}^{j} b_{\alpha}^{j})
$$

Taylor showed that in general 5 non-zero γ_{α}'s are necessary (and sufficient) to satisfy the imposed ε_{ij}.

But the solution to the above equation is not unique.

Taylor argued we should choose γ_{α}'s such that

$$
\sum_{\alpha} |\gamma_{\alpha}| \text{ is minimized.}
$$

$$
M = \min_{\{\gamma_{\alpha}\}} \frac{\sum_{\alpha} |\gamma_{\alpha}|}{\varepsilon^2}
$$

The averaged M overall ε is now called the Taylor factor.

Taylor factor relates the critical resolved shear stress τ_c on each slip system with the flow stress σ_f of polycrystals (with random grain orientation):

$$
\sigma_f = M \cdot \tau_c
$$

For FCC crystal with $\{111\}<110>$ slip systems, $M = 3.067$ (see below).

For BCC crystal with $\{110\}<111>$ slip systems, the result for Taylor factor is identical. Why?
810 Solving Taylor's Problem by Linear Programming

Chin and Mammel, Trans. Metall. Soc. AIME
239, 1400-1405 (1967)

Taylor's problem is a standard problem in Linear Programming (LP).
The Matlab function *linprog* is able to solve the following LP problem

\[
\min \quad f^T \cdot x \quad \text{such that} \quad \begin{cases}
A \cdot x \leq b \\
A_{eq} \cdot x = b_{eq} \\
\text{lb} \leq x \leq \text{ub} \quad \text{(lower bound)} \quad \text{(upper bound)}
\end{cases}
\]

The absolute value (\(|x|\)) in Taylor's problem can be easily accounted for in LP by introducing more variables.

Here, we will not use infeasibility constraints (\(A \cdot x \leq b\))
so we will set \(A = [\]; \quad b = [\]; \quad \text{(empty array)}\)

Define \(x = (x_1, \ldots, x_{12}, x_{13}, \ldots, x_{24})^T\) such that

\[
x_\alpha = \max \{ \frac{x_\alpha}{\varepsilon^+}, \quad 0 \} \quad \alpha = 1, 2, \ldots, 12
\]

\[
x_{\alpha+12} = \max \{ -\frac{x_\alpha}{\varepsilon^+}, \quad 0 \} \quad \alpha = 1, 2, \ldots, 12
\]

So that \(x_\alpha \geq 0\) for all \(\alpha = 1, 2, \ldots, 24\)

Hence \(lb = \{0, 0, \ldots\}\) \quad \text{ub} = [\]; \quad \text{24 elements}
Define \(\hat{\varepsilon}^{(\alpha)}_{ij} = \frac{1}{2} \left(n^{(\alpha)}_i b^{(\alpha)}_j + n^{(\alpha)}_j b^{(\alpha)}_i \right) \)
\(\hat{\varepsilon}^{(\alpha)}_i = \frac{1}{2} (3 T_i - \delta^{(\alpha)}_i) \)

\(\gamma_\alpha \) satisfy the constraint
\(\hat{\varepsilon}^{(\alpha)}_{ij} = \sum_{\alpha=1}^{12} \gamma_\alpha \hat{\varepsilon}^{(\alpha)}_{ij} \)

Use Voigt notation to convert strain tensors into vectors.
\(\hat{\varepsilon}_I = (\hat{\varepsilon}_1, \hat{\varepsilon}_2, \hat{\varepsilon}_3, \hat{\varepsilon}_4, \hat{\varepsilon}_5, \hat{\varepsilon}_6)^T \)
\(\hat{\varepsilon}_I = \hat{\varepsilon}_1, \hat{\varepsilon}_I = \hat{\varepsilon}_1, \hat{\varepsilon}_3 = \hat{\varepsilon}_3 \)
\(\hat{\varepsilon}_I = \hat{\varepsilon}_3, \hat{\varepsilon}_5 = \hat{\varepsilon}_3, \hat{\varepsilon}_6 = \hat{\varepsilon}_6 \)
\(\hat{\varepsilon}_I = \sum_{\alpha=1}^{12} \gamma_\alpha \hat{\varepsilon}^{(\alpha)}_I = \sum_{\alpha=1}^{12} \gamma_\alpha \hat{\varepsilon}_I^{(\alpha)} - \sum_{\alpha=1}^{12} \gamma_\alpha \hat{\varepsilon}_I^{(\alpha)} \)

This can be written in the form of \(A_{eq} \cdot \gamma = b_{eq} \)

where

\[A_{eq} = \begin{pmatrix} \varepsilon_1^{(1)} & \varepsilon_1^{(2)} & \cdots & \varepsilon_1^{(12)} \\ \varepsilon_2^{(1)} & \varepsilon_2^{(2)} & \cdots & \varepsilon_2^{(12)} \\ \varepsilon_3^{(1)} & \varepsilon_3^{(2)} & \cdots & \varepsilon_3^{(12)} \\ \varepsilon_4^{(1)} & \varepsilon_4^{(2)} & \cdots & \varepsilon_4^{(12)} \\ \varepsilon_5^{(1)} & \varepsilon_5^{(2)} & \cdots & \varepsilon_5^{(12)} \\ \varepsilon_6^{(1)} & \varepsilon_6^{(2)} & \cdots & \varepsilon_6^{(12)} \end{pmatrix} \]

12 slip systems

12 slip systems

negative of the

See fcc-slip-system polycrystal.m

\(M \) is computed for each tensile axis (1) in the standard triangle.
(see contour plot on next page) \(M \) is largest (~3.6) near [101] and [111] (hard grains) and smallest (~2.5) near [001] (soft grains). The average \(M \) is 3.067 (Taylor factor).
Slip Resistance in Polycrystal

mean dissip = 3.0665 (Taylor Factor)

mean dissip = 3.0665 (Taylor Factor)
8.10. Grain Rotation in Polycrystal.

After $x\alpha$ is solved by LP (linprog in Matlab)

we find $y\alpha = (x\alpha - x_{\alpha+12})e^\alpha \quad \alpha = 1, 2, \ldots 12$

Total rotation of Tensile axis is

$$\omega = \sum_{\alpha=1}^{12} \frac{y\alpha}{e^\alpha} \left(\eta^{(x)} \times \eta^{(x)} \right)$$

which is different for each I in the standard triangle.

The direction of I rotation can be visualized as arrows in the standard triangle.

In tension, grains rotate so that their $\{111\}$ or $\{100\}$ orientations become aligned with the tensile axis.

Their $\{110\}$ orientations move away from the tensile axis.

The opposite is true for compression.

Hence, polycrystal with initial random grain orientations will develop preferred grain orientation (i.e. texture formation) after severe plastic deformation (extrusion or rolling).

Results discussed here are consistent with Taylor, G.I.
Crystal Rotation

rotation of tensile axis
% FCC slip systems for single crystal under uniaxial tension
% plane slip vector
slip_system = [
 1 1 1 1 -1 0
 1 1 1 1 0 -1
 1 1 1 0 1 -1
 1 1 -1 1 -1 0
 1 1 -1 1 0 1
 1 1 -1 0 1 1
 1 -1 1 1 1 0
 1 -1 1 1 0 -1
 1 -1 1 0 -1 -1
 -1 1 1 -1 0 -1
 -1 1 1 0 1 -1
 -1 1 1 0 1 1
];
N_slip_system = length(slip_system(:,1));

%domain_type = 1; % a simple parameterization covering several triangles
domain_type = 2; % parameterization of the standard triangle
% G. Y. Chin and W. L. Mammel,
% Computer Solutions of the Taylor Analysis for Axisymmetric Flow
if domain_type == 1
 theta = linspace(1e-4,1-1e-4,50)*acos(1/sqrt(3));
 phi = linspace(-0.2+1e-4,1-1e-4,50)*(pi/2);
elseif domain_type == 2
 theta = linspace(1e-4,1-1e-4,50)*(pi/4);
 phi = linspace(1e-4,1-1e-4,50)*(pi/4);
else
 disp('unknown domain_type');
end
X = zeros(length(theta), length(phi));
Y = X; x = X; y = X; z = X;
maxS = X; maxSind = X;
secondS = X; secondSind = X;
T_select = [0 0 1
 1 0 1
 0 1 1
 1 1 2
 2 1 3];
for ai = 1:length(theta),
 for bi = 1:length(phi),
 if domain_type == 1
 x(ai,bi) = sin(theta(ai))*cos(phi(bi));
 y(ai,bi) = sin(theta(ai))*sin(phi(bi));
 z(ai,bi) = cos(theta(ai));
elseif domain_type == 2
 factor = atan(sin(theta(ai)))/(pi/4);
 x(ai,bi) = sin(theta(ai))*cos(phi(bi)*factor);
 y(ai,bi) = sin(phi(bi)*factor);
 z(ai,bi) = cos(theta(ai))*cos(phi(bi)*factor);
end

X(ai,bi) = 2*x(ai,bi)/(1+z(ai,bi));
Y(ai,bi) = 2*y(ai,bi)/(1+z(ai,bi));
T = [x(ai,bi) y(ai,bi) z(ai,bi)];

S = zeros(N_slip_system,1);
for i = 1:N_slip_system
 n = slip_system(i,1:3);
 b = slip_system(i,4:6);
 S(i) = abs(dot(T,n)/norm(T)/norm(n) * dot(T,b)/norm(T)/norm(b));
end

[sortedS ind] = sort(S,1,'descend');
maxS(ai,bi) = sortedS(1); maxSind(ai,bi) = ind(1);
secondS(ai,bi) = sortedS(2); secondSind(ai,bi) = ind(2);
end
end

X_select = zeros(length(T_select(:,1)),1);
Y_select = X_select;
maxS_select = X_select;
maxSind_select = X_select;
secondS_select = X_select;
secondSind_select = X_select;
for si=1:length(X_select),
 T = T_select(si,:); T = T / norm(T);
 X_select(si) = 2*T(1)/(1+T(3));
 Y_select(si) = 2*T(2)/(1+T(3));
 S = zeros(N_slip_system,1);
 for i = 1:N_slip_system,
 n = slip_system(i,1:3);
 b = slip_system(i,4:6);
 S(i) = abs(dot(T,n)/norm(T)/norm(n) * dot(T,b)/norm(T)/norm(b));
 end
 [sortedS ind] = sort(S,1,'descend');
 maxS_select(si) = sortedS(1); maxSind_select(si) = ind(1);
 secondS_select(si) = sortedS(2); secondSind_select(si) = ind(2);
end
end

%plot results
figure(1);
contourf(X,Y,maxS,20);
hold on
plot3(X_select,Y_select,ones(size(X_select)),'ko','LineWidth',2);
hold off
xlabel('x');
ylabel('y');
axis equal
title('highest Schmid factor');

figure(2);
mesh(X,Y,maxSind);
hold on
plot3(X_select,Y_select,13*ones(size(X_select)),'ko','LineWidth',2);
hold off
view([0 90]);
xlabel('x');
ylabel('y');
axis equal
title('slip system ID with highest S');

figure(3);
mesh(X,Y,secondSind);
hold on
plot3(X_select,Y_select,13*ones(size(X_select)),'ko','LineWidth',2);
hold off
view([0 90]);
xlabel('x');
ylabel('y');
axis equal
title('slip system ID with second highest S');

figure(4);
contourf(X,Y,maxS./secondS-1,20);
colorbar
hold on
plot3(X_select,Y_select,ones(size(X_select)),'ko','LineWidth',2);
hold off
xlabel('x');
ylabel('y');
axis equal
title('S_2/S_1 - 1');
% FCC slip systems for poly-crystal under uniaxial tension
% Find the 5 slip systems activated for each tensile axis
% following Taylor 1938
% G. Y. Chin and W. L. Mammel,
% Computer Solutions of the Taylor Analysis for Axisymmetric Flow

% plane slip vector
slip_system = [1 1 1 1 -1 0
 1 1 1 1 0 -1
 1 1 1 0 1 -1
 1 1 -1 1 -1 0
 1 1 -1 1 0 1
 1 1 -1 0 1 1
 1 -1 1 1 -1 0
 1 -1 1 1 0 -1
 1 -1 1 0 -1 -1
-1 1 1 -1 -1 0
-1 1 1 -1 0 -1
-1 1 1 0 1 -1];
N_slip_system = length(slip_system(:,1));

theta = [0:0.01:1]*(pi/4);
phi = [0:0.01:1]*(pi/4);
dtheta = theta(2)-theta(1);
dphi = phi(2)-phi(1);
Ntrial = 3;
dTfactor = 1e-4;
X = zeros(length(theta), length(phi));
Y = X; x = X; y = X; z = X;
activeS = zeros(length(theta), length(phi), N_slip_system);
dissip = zeros(length(theta), length(phi)); weight = dissip;
Taxis = zeros(length(theta), length(phi), 3); netrot = Taxis; dTaxis = Taxis;
Taxisnew = Taxis; Xnew = X; Ynew = Y; dX = X; dY = Y;

strain = zeros(N_slip_system,6);
rotation = zeros(N_slip_system,3);
for i = 1:length(slip_system(:,1))
 n = slip_system(i,1:3); n = n/norm(n);
 b = slip_system(i,4:6); b = b/norm(b);
 tmp = (n'*b + b'*n)/2;
 strain(i,:) = [tmp(1,1) tmp(2,2) tmp(3,3) tmp(2,3) tmp(3,1) tmp(1,2)];
 rotation(i,:) = cross(n,b)/2;
end

% compute participation ratio of each slip system
for ai = 1:length(theta),
 if mod(ai,10)==0
 disp(sprintf('ai = %d / %d ', ai, length(theta)));
 end
 for bi = 1:length(phi),
factor = atan(sin(theta(ai)))/(pi/4);
x(ai,bi) = sin(theta(ai))*cos(phi(bi)*factor);
y(ai,bi) = sin(phi(bi)*factor);
z(ai,bi) = cos(theta(ai))*cos(phi(bi)*factor);
X(ai,bi) = 2*x(ai,bi)/(1+z(ai,bi));
Y(ai,bi) = 2*y(ai,bi)/(1+z(ai,bi));
T = [x(ai,bi) y(ai,bi) z(ai,bi)];
Taxis(ai,bi,:) = T;
tmp = (T'*T - (T*T'/3)*eye(3))*(3/2);
tensile_strain = [tmp(1,1) tmp(2,2) tmp(3,3) tmp(2,3) tmp(3,1) tmp(1,2)];
%options = optimset('Display','iter','TolFun',le-8);
options = optimset('Display','off','TolFun',le-8);

% double # of slip systems so that coeff is non-negative
Aeq = [strain', -strain'];
beq = [tensile_strain'];
lb = zeros(length(slip_system(:,1))*2,1);
f= ones(length(slip_system(:,1))*2,1);
coeff = linprog(f, [], [], Aeq, beq, lb, [], [], options);
% half # of coeff to store as positive and negative values
compact_coeff = coeff(1:end/2)-coeff(end/2+1:end);
activeS(ai,bi,:) = compact_coeff;
dissip(ai,bi) = sum(abs(compact_coeff));
netrot(ai,bi,:) = rotation'*compact_coeff;
end

% compute change of Taxis
for ai = 1:length(theta),
 for bi = 1:length(phi),
 dTaxis(ai,bi,:) = cross(netrot(ai,bi,:),Taxis(ai,bi,:));
 Taxisnew(ai,bi,:) = Taxis(ai,bi,:) + dTaxis(ai,bi,:)*dTfactor;
 Xnew(ai,bi) = 2*Taxisnew(ai,bi,1)/(1+Taxisnew(ai,bi,3));
 Ynew(ai,bi) = 2*Taxisnew(ai,bi,2)/(1+Taxisnew(ai,bi,3));
 end
end
dX = Xnew - X; dY = Ynew - Y;

% compute area of mesh
area = zeros(size(weight));
for ai = 1:length(theta)-1,
 for bi = 1:length(phi)-1,
 dr1 = [x(ai+1,bi) y(ai+1,bi) z(ai+1,bi)] - [x(ai,bi) y(ai,bi) z(ai,bi)];
 dr2 = [x(ai,bi+1) y(ai,bi+1) z(ai,bi+1)] - [x(ai,bi) y(ai,bi) z(ai,bi)];
 dr3 = [x(ai+1,bi) y(ai+1,bi) z(ai+1,bi)] - [x(ai+1,bi+1) y(ai+1,bi+1) z(ai+1,bi+1)];
 dr4 = [x(ai,bi+1) y(ai,bi+1) z(ai,bi+1)] - [x(ai+1,bi+1) y(ai+1,bi+1) z(ai+1,bi+1)];
 area(ai,bi) = (norm(cross(dr1,dr2))+norm(cross(dr3,dr4)))/2;
 end
end
% compute integration (quadrature) weight
for ai = 1:length(theta),
 for bi = 1:length(phi),
 weight(ai,bi) = area(ai,bi)/4;
 if ai > 1
 weight(ai,bi) = weight(ai,bi) + area(ai-1,bi)/4;
 end
 if bi > 1
 weight(ai,bi) = weight(ai,bi) + area(ai,bi-1)/4;
 end
 if ai > 1 && bi > 1
 weight(ai,bi) = weight(ai,bi) + area(ai-1,bi-1)/4;
 end
 end
end
mean_dissip = sum(sum(dissip.*weight))/(4*pi/48);

% plot results
fs = 17;
figure(1);
contourf(X,Y,dissip,50);
colorbar
set(gca,'FontSize',fs);
xlabel('x'); ylabel('y');
axis equal
title(sprintf('mean dissip = %.4f (Taylor Factor)',mean_dissip));

figure(2);
mesh(X,Y,dissip);
set(gca,'FontSize',fs);
xlabel('x'); ylabel('y');
axis equal
view([30 80]);
title(sprintf('mean dissip = %.4f (Taylor Factor)',mean_dissip));

figure(3);
skip = 10;
contour(X,Y,dissip,50); hold on
quiver(X(1:skip:end,1:skip:end), Y(1:skip:end,1:skip:end), ...
 dX(1:skip:end,1:skip:end),dY(1:skip:end,1:skip:end));
hold off
set(gca,'FontSize',fs);
xlabel('x'); ylabel('y');
axis equal
title('rotation of tensile axis');
t001 = text(-0.01,0.02,'001');
t101 = text(0.80,0.02,'101');
t111 = text(0.70,0.70,'111');