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Problem 6.1 (15’) Plane strain and plain stress equivalence.
Let the elastic stiffness tensor of a homogeneous solid be Cijkl and its inverse (compliance
tensor) be Sijkl. In the plane strain problem, e13 = e23 = e33 = 0. Let the 2-dimensional
elastic stiffness tensor be cijkl, i.e.,

σij = cijklekl for i, j, k, l, = 1, 2 (plane strain) (1)

Obviously, cijkl = Cijkl for i, j, k, l = 1, 2.
For a plain stress problem, σ13 = σ23 = σ33 = 0. Let the 2-dimensional elastic compliance

tensor be s̃ijkl, i.e.,

eij = s̃ijklσkl for i, j, k, l, = 1, 2 (2)

Obviously, s̃ijkl = Sijkl for i, j, k, l = 1, 2. The inverse of s̃ijkl (in 2-dimension) is the effective
elastic stiffness tensor in plain stress, c̃ijkl.

(a) For isotropic elasticity, write down the explicit expression for cijkl and c̃ijkl.

(b) The Kolosov’s constant is defined as

κ =

{
3− 4ν for plane strain
3−ν
1+ν

for plane stress

Express cijkl and c̃ijkl in terms of µ and κ. (They should have the same expression now.)

Solution

(a)

cijkl = λδijδkl + µ(δikδjl + δilδjk)

=
2µν

1− 2ν
δijδkl + µ(δikδjl + δilδjk)

(3)
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For plane stress

σij = Cijklekl for i,j,k,l =1..3

(4)

Writing out the three normal components

σ11 = (λ + 2µ)e11 + λe22 + λe33

σ22 = (λ + 2µ)e22 + λe11 + λe33

σ33 = 0 = (λ + 2µ)e33 + λe22 + λe11

solving for e33 in terms of e11 and e22

e33 = − λ

λ + 2ν
(e11 + e22)

= − ν

1− ν
(e11 + e22)

Thus

σ11 = (λ + 2µ)e11 + λe22 +−λ
ν

1− ν
(e11 + e22)

=
2µ(1− ν)

1− 2ν
e11 +

2µν

1− 2ν
e22 −

ν

1− ν

2µν

1− 2ν
(e11 + e22)

=
2µ

1− ν
e11 +

2µν

1− ν
e22

Similarly

σ22 =
2µ

1− ν
e22 +

2µν

1− ν
e11

and there is no change to the shear relationship

σ12 = µe12 (5)

Thus

c̃ijkl =
2µν

1− ν
δijδkl + µ(δikδjl + δilδjk) (6)

(b) In plane strain, κ = 3− 4ν, ν = (3− κ)/4.

cijkl =
2µ(3− κ)/4

1− 2(3− κ)/4
δijδkl + µ(δikδjl + δilδjk)

=
µ(3− κ)

(κ− 1)
δijδkl + µ(δikδjl + δilδjk)

In plane stress, κ = (3− ν)/(1 + ν), ν = (3− κ)/(κ + 1).

c̃ijkl =
2µ(3− κ)/(κ + 1)

1− (3− κ)/(κ + 1)
δijδkl + µ(δikδjl + δilδjk)

=
µ(3− κ)

(κ− 1)
δijδkl + µ(δikδjl + δilδjk)
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Problem 6.2 (15’) Mode II crack
(a) Derive the eigenstrain of equivalent inclusion for a slit-like crack (width 2a) under uniform
shear σA

12 in plane strain.

(b) Derive the stress distribution in front of the crack tip. What is the stress intensity factor
KII = limr→0 σ12(r)

√
2πr, where r = x− a is the distance from the crack tip?

Solution

(a) Since this problem is in isotropic elasticity, we know that the shear terms will be com-
pletely decoupled, thus we only have to solve for e∗12. The stress inside the equivalent inclusion
is

σI
12 = σc

12 − σ∗12

= 2C1212S12122e
∗
12 − 2C1212e

∗
12

= 2
µ

1− ν

(
a2 + b2

2(a + b)2
+

1− 2ν

2

)
e∗12 − 2µe∗12

= 2
µ

1− ν

(
a2 + b2

2(a + b)2
− 1

2

)
e∗12

= − 2µ

1− ν

ab

(a + b)2

Now, for there to be no stress inside the crack σI
12 = −σA

12 and solving for e∗12

e∗12 =
(a + b)2

ab

1− ν

2µ
σA

12

Now, defining e∗ ≡ limb→0 e∗12b then

e∗ = a
1− ν

2µ
σA

12

(b) In class we derived the expression for the Eshelby tensor outside the ellispoid along the
x-axis. The S1212 term is

S1212 = − 1

1− ν

∆

2

where

∆ ≡ b

a

(
1− |x|√

x2 − a2

)
and from above

e∗12 =
a

b

1− ν

2µ
σA

12

3



The constrained stress field is

σc
12 = 4C1212S1212e

∗
12

= 4µ

(
− 1

1− ν

∆

2

)
e∗12

= − 2µ

1− ν

b

a

(
1− |x|√

x2 − a2

)
a

b

1− ν

2µ
σA

12

=

(
|x|√

x2 − a2
− 1

)
σA

12

The total stress is

σTOT
12 = σA

12 +

(
|x|√

x2 − a2
− 1

)
σA

12

=
|x|√

x2 − a2
σA

12

The total stress can be written as a function of r as r → 0

σTOT
12 =

√
a

2r
σA

12

and thus the stress intensity factor is

KII =
√

πaσA
12
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