ME340B - Elasticity of Microscopic Structures - Wei Cai - Stanford University - Winter 2004 Problem Set 5. Eshelby's Inclusion

Chris Weinberger and Wei Cai

(c) All rights reserved

Problem 5.1 (15') Use work method to derive the energy inside the inclusion E^{I} and inside the matrix E^{M} for an ellipsoidal inclusion in an infinite matrix. Follow the Eshelby's 4 steps to construct the inclusion.
(a) What are the forces applied to the inclusion and to the matrix in all 4 steps?
(b) What are the work done to the inclusion and to the matrix in all 4 steps?
(c) What is the elastic energy inside the inclusion E^{I}, and what is the elastic energy inside the matrix E^{M} at the end of step 4?

Solution

(a) The forces on the inclusion and matrix at the end of each step is

step	matrix	inclusion
1	0	0
2	0	$-\sigma_{i j}^{*} n_{i}$
3	0	$-\sigma_{i j}^{*} n_{i}$
4	$-\left(\sigma_{i j}^{c}-\sigma_{i j}^{*}\right) n_{i}$	$\left(\sigma_{i j}^{c}-\sigma_{i j}^{*}\right) n_{i}$

(b) For the Inclusion:

$$
\begin{align*}
E_{1} & =0 \\
\Delta W_{12}^{I} & =\frac{1}{2} \int_{S_{0}}\left(-\sigma_{i j}^{*} n_{i}\right)\left(-e_{j k}^{*} x_{k}\right) \mathrm{d} S \\
& =\frac{1}{2} \sigma_{i j}^{*} e_{i j}^{*} V_{0} \\
\Delta W_{23}^{I} & =0 \quad\left(\text { because } u_{j}=0\right) \\
\Delta W_{34}^{I} & =\frac{1}{2} \int_{S_{0}}\left(\sigma_{i j}^{c}-2 \sigma_{i j}^{*}\right) n_{i} e_{j k}^{c} x_{k} \mathrm{~d} V \\
& =\frac{1}{2}\left(\sigma_{i j}^{c}-2 \sigma_{i j}^{*}\right) e_{i j}^{c} V_{0} \tag{1}
\end{align*}
$$

For the matrix:

$$
\begin{aligned}
E_{1} & =0 \\
\Delta W_{12}^{I} & =0 \\
\Delta W_{23}^{I} & =0 \\
\Delta W_{34}^{I} & =-\frac{1}{2} \int_{S_{0}}\left(\sigma_{i j}^{c}-\sigma_{i j}^{*}\right) n_{i} e_{j k}^{c} x_{k} \mathrm{~d} V \\
& =-\frac{1}{2}\left(\sigma_{i j}^{c}-\sigma_{i j}^{*}\right) e_{i j}^{c} V_{0}
\end{aligned}
$$

(c) For the inclusion

$$
\begin{aligned}
E^{I} & =\frac{1}{2} \sigma_{i j}^{*} e_{i j}^{*} V_{0}+\frac{1}{2}\left(\sigma_{i j}^{c}-2 \sigma_{i j}^{*}\right) e_{i j}^{c} V_{0} \\
& =\frac{1}{2}\left(\sigma_{i j}^{*} e_{i j}^{*}+\sigma_{i j}^{c} e_{i j}^{c}-2 \sigma_{i j}^{*} e_{i j}^{c}\right) V_{0} \\
& =\frac{1}{2} \sigma_{i j}^{I} e_{i j}^{I} V_{0}
\end{aligned}
$$

where $\sigma_{i j}^{I}=\sigma_{i j}^{c}-\sigma_{i j}^{*}$, and $e_{i j}^{I}=e_{i j}^{c}-e_{i j}^{*}$.
For the matrix

$$
\begin{aligned}
E^{M} & =-\frac{1}{2}\left(\sigma_{i j}^{c}-\sigma_{i j}^{*}\right) e_{i j}^{c} V_{0} \\
& =-\frac{1}{2} \sigma_{i j}^{I} e_{i j}^{c} V_{0}
\end{aligned}
$$

The total energy is

$$
\begin{align*}
E & =E^{I}+E^{M} \\
& =\frac{1}{2} \sigma_{i j}^{I}\left(e_{i j}^{I}-e_{i j}^{c}\right) V_{0} \\
& =-\frac{1}{2} \sigma_{i j}^{I} e_{i j}^{*} V_{0} \tag{2}
\end{align*}
$$

Problem 5.2 (15') Spherical inclusion. The Eshelby's tensor of a spherical inclusion inside an infinite medium is (see Lecture Note 2),

$$
\begin{equation*}
\mathcal{S}_{i j k l}=\frac{5 \nu-1}{15(1-\nu)} \delta_{i j} \delta_{k l}+\frac{4-5 \nu}{15(1-\nu)}\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) \tag{3}
\end{equation*}
$$

Consider a spherical inclusion of radius R with a pure shear eigenstrain $e_{12}^{*}=\varepsilon$ (other components of $e_{i j}^{*}=0$).
(a) What is the total elastic energy of the system E as a function of R ?
(b) Now apply a uniform stress field $\sigma_{12}^{A}=\tau$ to the solid (other stress components are zero). What is the total elastic energy $E(R)$?
(c) What is the enthalpy of the system $H(R)$? What is the driving force for inclusion growth, i.e. $f(R)=-d H(R) / d R$?
[Hint: Consider the solid has a finite but very large volume V. The external stress is applied at the external surface. Volume V is so large that the Eshelby's solution in infinite solid remains valid.]

Solution

(a) When $e_{12}^{*}=e_{21}^{*}=\varepsilon$, the total energy is

$$
\begin{aligned}
E & =-\frac{1}{2} \sigma_{i j}^{I} e_{i j}^{*} V_{0} \\
& =-\frac{1}{2}\left(\sigma_{i j}^{c}-\sigma_{i j}^{*}\right) e_{i j}^{*} V_{0} \\
& =-\left(\sigma_{12}^{c}-\sigma_{12}^{*}\right) \varepsilon V_{0}
\end{aligned}
$$

The relevant component of Eshelby's tensor is,

$$
\begin{equation*}
\mathcal{S}_{1212}=\mathcal{S}_{1221}=\frac{4-5 \nu}{15(1-\nu)} \tag{4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
e_{12}^{c}=\frac{4-5 \nu}{15(1-\nu)}\left(e_{12}^{*}+e_{21}^{*}\right)=\frac{4-5 \nu}{15(1-\nu)} 2 \varepsilon \tag{5}
\end{equation*}
$$

For isotropic material

$$
\sigma_{12}=2 \mu e_{12}
$$

Thus,

$$
\begin{align*}
\sigma_{12}^{c} & =\frac{4-5 \nu}{15(1-\nu)} 4 \mu \varepsilon \tag{6}\\
\sigma_{12}^{*} & =2 \mu e_{12}^{*}=2 \mu \varepsilon \tag{7}\\
E(R) & =-\frac{1}{2} \sigma_{i j}^{I} e_{i j}^{*} V_{0} \\
& =-\frac{1}{2}\left(\sigma_{i j}^{c}-\sigma_{i j}^{*}\right) e_{i j}^{*} V_{0} \\
& =-\left(\sigma_{12}^{c}-\sigma_{12}^{*}\right) e_{12}^{*} V_{0} \\
& =-\left[\frac{4-5 \nu}{15(1-\nu)} 4 \mu \varepsilon-2 \mu \varepsilon\right] \varepsilon \frac{4}{3} \pi R^{3} \\
& =\frac{8}{3} \mu \varepsilon^{2} \pi R^{3} \frac{7-5 \nu}{15(1-\nu)}
\end{align*}
$$

(b) From Colonetti's theorem, let E^{∞} be the energy of the solid under zero applied stress,

$$
\begin{aligned}
E(R) & =E^{\infty}+E^{A} \\
E^{A} & =\frac{1}{2} \sigma_{12}^{A} e_{12}^{A} V+\frac{1}{2} \sigma_{21}^{A} e_{21}^{A} V=\sigma_{12}^{A} e_{12}^{A} V \\
\sigma_{12}^{A} & =\tau=2 \mu e_{12}^{A} \\
e_{12}^{A} & =\frac{\tau}{2 \mu} \\
E^{A} & =\frac{\tau^{2}}{2 \mu} V \\
E(R) & =\frac{8}{3} \mu \varepsilon^{2} \pi R^{3} \frac{7-5 \nu}{15(1-\nu)}+\frac{\tau^{2}}{2 \mu} V
\end{aligned}
$$

(c)

$$
\begin{aligned}
H & =E^{\infty}-E^{A}-\sigma_{i j}^{A} e_{i j}^{*} V_{0} \\
& =\frac{8}{3} \mu \varepsilon^{2} \pi R^{3} \frac{7-5 \nu}{15(1-\nu)}-\frac{\tau^{2}}{2 \mu} V-\frac{8}{3} \tau \varepsilon \pi R^{3}
\end{aligned}
$$

Now, we can caculate the force for inclusion growth

$$
\begin{aligned}
f(R)=-\frac{\partial H}{\partial R} & =-8 \mu \varepsilon^{2} \pi R^{3} \frac{7-5 \nu}{15(1-\nu)}+8 \tau \varepsilon \pi R^{3} \\
& =8 \pi R^{2}\left[\tau \epsilon-\frac{7-5 \nu}{15(1-\nu)} \mu \varepsilon^{2}\right]
\end{aligned}
$$

