ME340B - Elasticity of Microscopic Structures - Wei Cai - Stanford University - Winter 2004

Problem Set 4. Eshelby's Inclusion

Chris Weinberger and Wei Cai

© All rights reserved

Problem 4.1 (15') Spherical inclusion.

(a) Derive the expressions for the auxiliary tensor \mathcal{D}_{ijkl} for a spherical inclusion in an isotropic medium with shear modulus μ and Poisson's ratio ν .

[Hint: many components of \mathcal{D}_{ijkl} are zero, unless there are repeated indices.]

(b) Derive the corresponding expressions for Eshelby's tensor S_{ijkl} .

Solution

(a) The auxiliary tensor inside the inclusion can be expressed in terms of the following surface integral (see lecture notes),

$$\mathcal{D}_{ijkl} = -\frac{abc}{4\pi} \int_0^{\pi} \int_0^{2\pi} (zz)_{ij}^{-1} z_k z_l \frac{\sin \Phi}{\beta^3} d\Theta d\Phi$$
 (1)

where

$$\beta = \lambda/k = \sqrt{(a^2 \cos^2 \Theta + b^2 \sin^2 \Theta) \sin^2 \Phi + c^2 \cos \Phi}$$
 (2)

$$\mathbf{z} = \mathbf{k}/k = (\sin \Phi \cos \Theta, \sin \Phi \sin \Theta, \cos \Theta) \tag{3}$$

For a sphere a = b = c and $\beta = a$. Therefore,

$$\mathcal{D}_{ijkl} = -\frac{1}{4\pi} \int_0^{\pi} \int_0^{2\pi} (zz)_{ij}^{-1} z_k z_l \sin \Phi \, d\Theta \, d\Phi$$
 (4)

For isotropic material, $(zz)_{ij}^{-1}$ has an explicit form, so that,

$$\mathcal{D}_{ijkl} = -\frac{1}{4\pi} \int_0^{\pi} \int_0^{2\pi} \frac{1}{\mu} \left(\delta_{ij} - \frac{\lambda + \mu}{\lambda + 2\mu} z_i z_j \right) z_k z_l \sin \Phi \, d\Theta \, d\Phi$$
$$= -\frac{1}{4\pi\mu} \int_0^{\pi} \int_0^{2\pi} \left(\delta_{ij} z_k z_l - \frac{\lambda + \mu}{\lambda + 2\mu} z_i z_j z_k z_l \right) \sin \Phi \, d\Theta \, d\Phi$$

We can write the three components of z in terms of Φ and Θ

$$z_1 = \sin \Phi \cos \Theta$$
 $z_2 = \sin \Phi \sin \Theta$ $z_3 = \cos \Phi$ (5)

Let us consider the first integral

$$H_{kl} \equiv \int_0^{\pi} \int_0^{2\pi} z_k z_l \sin \Phi \, d\Theta \, d\Phi$$

This integral will be zero if $k \neq l$. By symmetry, $H_{11} = H_{22} = H_{33}$. H_{33} is the simplest to evaluate in the present form, i.e.,

$$H_{33} = \int_0^{\pi} \int_0^{2\pi} \cos^2 \Phi \sin \Phi d\Theta d\Phi$$

$$= 2\pi \int_{-1}^1 s^2 ds$$

$$= \frac{4\pi}{3}$$
(6)

Therefore,

$$H_{kl} = \frac{4\pi}{3} \delta_{kl} \tag{7}$$

Now let us consider the second integral,

$$J_{ijkl} \equiv \int_0^{\pi} \int_0^{2\pi} z_i z_j z_k z_l \sin \Phi \, d\Theta \, d\Phi$$

The J_{ijkl} is non-zero only if the indices are all the same, or come in pairs. There are two types of terms,

$$J_{1111} = J_{2222} = J_{3333} = \int_0^{\pi} \int_0^{2\pi} \cos^4 \Phi \sin \Phi \, d\Theta \, d\Phi = \frac{4\pi}{5}$$
 (8)

and $J_{1122} = J_{1133} = J_{2233} = J_{1212} = \dots$

$$J_{1133} = \int_0^{\pi} \int_0^{2\pi} \cos^4 \Phi \sin^3 \Phi \, d\Theta \, d\Phi = \frac{4\pi}{15}$$

Thus we can write J_{ijkl} as

$$J_{ijkl} = \frac{4\pi}{15} (\delta_{ij}\delta_{kl} + \delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) \tag{9}$$

The auxiliary tensor \mathcal{D}_{ijkl} is

$$\mathcal{D}_{ijkl} = -\frac{1}{4\pi\mu} \left(\delta_{ij} H_{kl} - \frac{\lambda + \mu}{\lambda + 2\mu} J_{ijkl} \right) \tag{10}$$

Substituting the solutions for H_{kl} and J_{ijkl} , we have

$$\mathcal{D}_{ijkl} = -\frac{1}{15\mu} \left(5\delta_{ij}\delta_{kl} - \frac{\lambda + \mu}{\lambda + 2\mu} \left(\delta_{ij}\delta_{kl} + \delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk} \right) \right)$$

$$= -\frac{1}{30\mu} \left(10\delta_{ij}\delta_{kl} - \frac{1}{1 - \nu} \left(\delta_{ij}\delta_{kl} + \delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk} \right) \right)$$

$$= -\frac{1}{30\mu(1 - \nu)} \left[(9 - 10\nu)\delta_{ij}\delta_{kl} - \left(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk} \right) \right]$$
(11)

using the fact that $\frac{\lambda+\mu}{\lambda+2\mu} = \frac{1}{2(1-\nu)}$.

(b) The Eshelby's tensor \mathcal{S}_{ijkl} is related to the auxiliary tensor \mathcal{D}_{ijkl} through,

$$S_{ijmn} = -\frac{1}{2}C_{lkmn}(\mathcal{D}_{iklj} + \mathcal{D}_{jkli})$$

For isotropic medium,

$$C_{lkmn} = \lambda \delta_{lk} \delta_{mn} + \mu (\delta_{lm} \delta_{kn} + \delta_{ln} \delta_{km}) \tag{12}$$

thus,

$$S_{ijmn} = -\frac{\lambda}{2} (\mathcal{D}_{ikkj} + D_{jkki}) \delta_{mn} - \frac{\mu}{2} (\mathcal{D}_{inmj} + \mathcal{D}_{jnmi} + \mathcal{D}_{imnj} + \mathcal{D}_{jmni})$$

When \mathcal{D}_{ijkl} is given in Eq. (11), it satisfies both major and minor symmetries, i.e. $\mathcal{D}_{ijkl} = \mathcal{D}_{klij} = \mathcal{D}_{jikl} = \mathcal{D}_{ijlk}$. Thus,

$$S_{ijmn} = -\lambda \mathcal{D}_{ikkj} \delta_{mn} - \mu (\mathcal{D}_{inmj} + \mathcal{D}_{imnj})$$
(13)

Noticing that

$$\mathcal{D}_{ikkj} = -\frac{5 - 10\nu}{30\mu(1 - \nu)} \delta_{ij} \tag{14}$$

$$\lambda = \frac{2\mu\nu}{1 - 2\nu} \tag{15}$$

$$\lambda \mathcal{D}_{ikkj} = -\frac{\nu}{3(1-\nu)} \delta_{ij} \tag{16}$$

Thus

$$S_{ijmn} = \frac{\nu}{3(1-\nu)} \delta_{ij} \delta_{mn} + \frac{1}{30(1-\nu)} \left[(9-10\nu) \delta_{ij} \delta_{kl} - (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) \right]$$

$$= \frac{\nu}{3(1-\nu)} \delta_{ij} \delta_{mn} + \frac{1}{30(1-\nu)} \left[(9-10\nu) (\delta_{in} \delta_{jm} + \delta_{im} \delta_{jn}) - (\delta_{im} \delta_{jn} + \delta_{ij} \delta_{mn} + \delta_{in} \delta_{jm} + \delta_{ij} \delta_{mn}) \right]$$

$$= \frac{1}{30(1-\nu)} \left[(10\nu - 2) \delta_{ij} \delta_{mn} + (9-10\nu - 1) (\delta_{in} \delta_{jm} + \delta_{im} \delta_{jn}) \right]$$

$$= \frac{5\nu - 1}{15(1-\nu)} \delta_{ij} \delta_{mn} + \frac{4-5\nu}{15(1-\nu)} (\delta_{in} \delta_{jm} + \delta_{im} \delta_{jn})$$
(17)

Problem 4.2 (15') Dilation field.

The "constrained" dilation of a transformed inclusion (not necessarily ellipsoidal) is,

$$u_{i,i}^{c} = \int_{S_0} \sigma_{kj}^* n_k(\mathbf{x}') G_{ij,i}(\mathbf{x} - \mathbf{x}') dS(\mathbf{x}')$$

$$= -\int_{V_0} \sigma_{kj}^* G_{ij,ik}(\mathbf{x} - \mathbf{x}') dV(\mathbf{x}')$$
(18)

- (a) Show that if $e_{ij}^* = \varepsilon \delta_{ij}$ (pure dilational eigenstrain), then in isotropic elasticity the constrained dilation is constant inside the inclusion and independent of inclusion shape.
- (b) What is $u_{i,i}^{c}$ inside the inclusion in terms of ε ?

Hint: The Green's function $G_{ij}(\mathbf{x})$ can be expressed in terms of second derivatives of $R = |\mathbf{x}|$.

$$G_{ij}(\mathbf{x}) = \frac{1}{8\pi\mu} \left[\delta_{ij} \nabla^2 R - \frac{1}{2(1-\nu)} \partial_i \partial_j R \right]$$
 (19)

Notice that

$$\nabla^2 R = \frac{2}{R} \tag{20}$$

$$\nabla^2 \frac{1}{R} = -4\pi \delta(\mathbf{x}) \tag{21}$$

Solution

In the case of

$$e_{ij}^* = \varepsilon \delta_{ij} \tag{22}$$

the eigenstress is

$$\sigma_{kj}^* = C_{kjmn} e_{mn}^* = \varepsilon C_{kjmm} \tag{23}$$

where

$$C_{kjmm} = \lambda \delta_{kj} \delta_{mm} + 2\mu \delta_{km} \delta_{jm} = (3\lambda + 2\mu) \delta_{kj}$$
(24)

Hence,

$$\sigma_{kj}^* = \varepsilon (3\lambda + 2\mu)\delta_{kj} \tag{25}$$

Substituting this into the equation for constrained dilatation

$$u_{i,i}^{c} = -\int_{V_0} \sigma_{kj}^* G_{ij,ik}(\mathbf{x} - \mathbf{x}') \, dV(\mathbf{x}')$$
$$= -\int_{V_0} \varepsilon (3\lambda + 2\mu) G_{ij,ij}(\mathbf{x} - \mathbf{x}') \, dV(\mathbf{x}')$$

Notice that

$$G_{ij}(\mathbf{x}) = \frac{1}{8\pi\mu} \left[\delta_{ij} R_{,kk} - \frac{1}{2(1-\nu)} R_{,ij} \right]$$
 (26)

Therefore,

$$G_{ij,ij}(\mathbf{x}) = \frac{1}{8\pi\mu} \left[\delta_{ij} R_{,kkij} - \frac{1}{2(1-\nu)} R_{,ijij} \right]$$

$$= \frac{1}{8\pi\mu} \left[R_{,kkii} - \frac{1}{2(1-\nu)} R_{,ijij} \right]$$

$$= \frac{1-2\nu}{16\pi\mu(1-\nu)} R_{,iijj}$$

$$= \frac{1-2\nu}{16\pi\mu(1-\nu)} \nabla^2 \frac{2}{R}$$

$$= \frac{1-2\nu}{16\pi\mu(1-\nu)} [-8\pi\delta(\mathbf{x})]$$

$$= -\frac{1-2\nu}{2\mu(1-\nu)} \delta(\mathbf{x})$$
(27)

In other words,

$$G_{ij,ij}(\mathbf{x} - \mathbf{x}') = -\frac{1 - 2\nu}{2\mu(1 - \nu)}\delta(\mathbf{x} - \mathbf{x}')$$
(28)

Hence when \mathbf{x} is inside V_0 ,

$$u_{i,i}^{c} = \int_{V_{0}} \varepsilon(3\lambda + 2\mu) \frac{1 - 2\nu}{2\mu(1 - \nu)} \delta(\mathbf{x} - \mathbf{x}') \, dV(\mathbf{x}')$$

$$= \varepsilon(3\lambda + 2\mu) \frac{1 - 2\nu}{2\mu(1 - \nu)}$$

$$= \varepsilon \frac{1 + \nu}{1 - \nu}$$
(29)

When \mathbf{x} is outside V_0 , the constrained dilation field must be zero.