ME340B - Elasticity of Microscopic Structures - Wei Cai - Stanford University - Winter 2004

Problem Set 2 Solution Elasticity in one and two dimensions

Chris Weinberger and Wei Cai

(C) All rights reserved

Problem 2.1 (10') Elastic constants.
The elastic stiffness tensor for the isotropic medium is $C_{i j k l}=\lambda \delta_{i j} \delta_{k l}+\mu\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)$. Determine the compliance tensor, $S_{i j k l}$, which is the inverse of $C_{i j k l}$, i.e.,

$$
\begin{equation*}
C_{i j k l} S_{k l m n}=\frac{1}{2}\left(\delta_{i m} \delta_{j n}+\delta_{i n} \delta_{j m}\right) \tag{1}
\end{equation*}
$$

Solution:

$$
\begin{aligned}
C_{i j k l} S_{k l m n} & =\left[\lambda \delta_{i j} \delta_{k l}+\mu\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)\right]\left[\alpha \delta_{i j} \delta_{k l}+\beta\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)\right] \\
& =(3 \lambda \alpha+2 \mu \alpha+2 \beta \lambda) \delta_{i j} \delta_{m n}+2 \beta \mu\left(\delta_{i m} \delta_{j n}+\delta_{i n} \delta_{j m}\right) \\
& =\frac{1}{2}\left(\delta_{i m} \delta_{j n}+\delta_{i n} \delta_{j m}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
2 \beta \mu & =\frac{1}{2} \\
\beta & =\frac{1}{4 \mu}
\end{aligned}
$$

and

$$
\begin{aligned}
& 3 \lambda \alpha+2 \mu \alpha+2 \beta \lambda=0 \\
& 3 \lambda \alpha+2 \mu \alpha+\frac{\lambda}{2 \mu}=0 \\
& (3 \lambda+2 \mu) \alpha=-\frac{1}{2} \frac{\lambda}{\mu} \\
& \alpha=-\frac{1}{2} \frac{\lambda}{\mu(3 \lambda+2 \mu)} \\
& S_{i j k l}=-\frac{1}{2} \frac{\lambda}{\mu(3 \lambda+2 \mu)} \delta_{i j} \delta_{k l}+\frac{1}{4 \mu}\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)
\end{aligned}
$$

Explicit expressions of $C_{i j k l}$ and $S_{i j k l}$

Let us write out the various terms of $C_{i j k l}$ and $S_{i j k l}$ explicitly in isotropic elasticity. There are only three different terms in $C_{i j k l}: C_{1111}, C_{1122}$ and C_{1212}. Other terms can be obtained by symmetry, e.g. $C_{2233}=C_{1122}$. In contracted notation, these three terms are written as C_{11}, C_{12}, C_{44}.

$$
\begin{align*}
& C_{1111}=C_{11}=\lambda+2 \mu \tag{2}\\
& C_{1122}=C_{12}=\lambda \tag{3}\\
& C_{1212}=C_{44}=\mu \tag{4}
\end{align*}
$$

Therefore, an isotropic elastic medium has the property that

$$
\begin{equation*}
C_{11}=C_{12}+2 C_{44} \tag{5}
\end{equation*}
$$

Hence the anisotropic factor,

$$
\begin{equation*}
A \equiv \frac{2 C_{44}}{C_{11}-C_{12}} \tag{6}
\end{equation*}
$$

equals to one for an isotropic medium. This is of course not the case for an anisotropic medium. For crystals with cubic symmetry, the elastic constants, C_{11}, C_{12} and C_{44} are independent of each other.

$$
\begin{align*}
& S_{1111}=-\frac{\lambda}{2 \mu(3 \lambda+2 \mu)}+\frac{1}{2 \mu}=\frac{\lambda+\mu}{\mu(3 \lambda+2 \mu)} \equiv \frac{1}{E} \tag{7}\\
& S_{1122}=-\frac{\lambda}{2 \mu(3 \lambda+2 \mu)} \tag{8}\\
& S_{1212}=\frac{1}{4 \mu} \tag{9}
\end{align*}
$$

where E is called the Young's modulus. Notice that $\lambda=2 \mu \nu /(1-2 \nu)$, thus

$$
\begin{align*}
S_{1111} & =\frac{1}{E}=\frac{1}{2 \mu(1+\nu)} \tag{10}\\
S_{1122} & =-\frac{\nu}{E} \tag{11}\\
S_{1212} & =\frac{1+\nu}{2 E} \tag{12}
\end{align*}
$$

These results are the bases of Problem 2.3(b).

Problem 2.2 (10') 1D elasticity.
Determine the displacement, strain and stress field of a long rod of length L standing vertically in a gravitational field g. Assume the rod is an isotropic elastic medium with shear modulus μ and Poisson's ratio ν.

Figure 1: A rod of length L standing vertically in a gravitational field g.

Solution:

Choose the coordinate system such that x-axis goes along the axis of the rod pointing up with the origin at the bottom of the rod. The equation of equilibrium is,

$$
\begin{equation*}
\sigma_{x x, x}+b_{x}=0 \tag{13}
\end{equation*}
$$

while all the other stress components are zero, i.e.,

$$
\begin{equation*}
\sigma_{y y}=\sigma_{z z}=\sigma_{x y}=\sigma_{y z}=\sigma_{z x}=0 \tag{14}
\end{equation*}
$$

The boundary condition for Eq. (13) is such that $\sigma_{x x}=0$ at $x=L$. Because $b_{x}=-\rho g$ (ρ is the density of the rod), the solution is

$$
\begin{equation*}
\sigma_{x x}=\rho g(x-L) \tag{15}
\end{equation*}
$$

From Problem 2.1, noting that for Hooke's Law we have

$$
\begin{equation*}
e_{x x}=S_{1111} \sigma_{x x}=\frac{\sigma_{x x}}{E}=\frac{\rho g}{E}(x-L) \tag{16}
\end{equation*}
$$

where $E=2 \mu(1+\nu)$ is the Young's modulus. Similarly,

$$
\begin{align*}
& e_{y y}=S_{1122} \sigma_{x x}=-\frac{\nu \rho g}{E}(x-L) \tag{17}\\
& e_{z z}=S_{1122} \sigma_{x x}=-\frac{\nu \rho g}{E}(x-L) \tag{18}\\
& e_{x y}=e_{y z}=e_{z x}=0 \tag{19}
\end{align*}
$$

Therefore,

$$
\begin{align*}
u_{x, x} & =\frac{\rho g}{E}(x-L) \tag{20}\\
u_{y, y} & =-\frac{\nu \rho g}{E}(x-L) \tag{21}\\
u_{z, z} & =-\frac{\nu \rho g}{E}(x-L) \tag{22}\\
u_{x, y} & =-u_{y, x} \tag{23}\\
u_{x, z} & =-u_{z, x} \tag{24}\\
u_{y, z} & =-u_{z, y} \tag{25}
\end{align*}
$$

We wish to apply the boundary condition of $u_{x}=0$ at $x=0$. The following solution satisfies the boundary condition of $u_{x}=0$ at $x=y=z=0$ (i.e. boundary condition only imposed at a single point at the bottom of the rod),

$$
\begin{align*}
& u_{x}=\frac{\rho g}{E}\left[\frac{1}{2} x^{2}-L x+\frac{\nu}{2}\left(y^{2}+z^{2}\right)\right] \tag{26}\\
& u_{y}=-\frac{\nu \rho g}{E}(x-L) y \tag{27}\\
& u_{z}=-\frac{\nu \rho g}{E}(x-L) z \tag{28}
\end{align*}
$$

The above solution does not satisfy the boundary condition at the entire plane of $x=0$. Therefore solution is not valid near the end of the rod. (The rod is now standing on a quadratic surface.) To fully account for the end effect of a flat surface, the stress will no longer be a simple one-dimensional function as given by Eq. (15).

Problem 2.3 (10') 2D elaticity.
Lets look at equilibrium in 2-D elasticity using $x-y$ cartesian coordinates under zero body force. Assume the 2-d body is in a state of plane stress, i.e.,

$$
\sigma_{z x}=\sigma_{z y}=\sigma_{z z}=0
$$

which corresponds to a free standing thin film. The equilibrium equations reduce to

$$
\begin{align*}
\sigma_{x x, x}+\sigma_{y x, y} & =0 \tag{29}\\
\sigma_{y y, y}+\sigma_{x y, x} & =0 \tag{30}
\end{align*}
$$

And the compatability equations reduce to

$$
\begin{equation*}
e_{x x, y y}-2 e_{x y, x y}+e_{y y, x x}=0 \tag{31}
\end{equation*}
$$

One popular method to solve such problems is to introduce the Airy's stress function ϕ such that,

$$
\begin{align*}
\sigma_{x x} & =\phi_{, y y} \tag{32}\\
\sigma_{y y} & =\phi_{, x x} \tag{33}\\
\sigma_{x y} & =-\phi_{, x y} \tag{34}
\end{align*}
$$

(a) Show that this particular choice of stress function automatically satisfies equilibrium.

Solution:

$$
\begin{aligned}
& \sigma_{x x, x}+\sigma_{y x, y}=\phi_{, y y x}+\left(-\phi_{, x y y}\right)=0 \\
& \sigma_{y y, y}+\sigma_{x y, x}=\phi_{, x x y}+\left(-\phi_{, y x y}\right)=0
\end{aligned}
$$

(b) Assuming that Hooke's Law is of the form

$$
\begin{align*}
e_{x x} & =\frac{\sigma_{x x}}{E}-\frac{\nu \sigma_{y y}}{E} \tag{35}\\
e_{y y} & =\frac{\sigma_{y y}}{E}-\frac{\nu \sigma_{x x}}{E} \tag{36}\\
e_{x y} & =\frac{\sigma_{x y}(1+\nu)}{E} \tag{37}
\end{align*}
$$

show that the compatability equation reduces to

$$
\begin{equation*}
\phi_{, x x x x}+2 \phi_{, x x y y}+\phi_{, y y y y}=0 \tag{38}
\end{equation*}
$$

Solution:

Starting from the compatibility equation,

$$
e_{x x, y y}-2 e_{x y, x y}+e_{y y, x x}=0
$$

plug in the Hooke's law,

$$
\begin{aligned}
\frac{1}{E}\left(\sigma_{x x, y y}-\nu \sigma_{y y, y y}+\sigma_{y y, x x}-\nu \sigma_{x x, x x}\right)-2 \frac{(1+\nu)}{E} \sigma_{x y, x y} & =0 \\
\phi_{, y y y y}-\nu \phi_{, x x y y}+\phi_{, x x x x}-\nu \phi_{, y y x x}+2(1+\nu) \phi_{, x y x y} & =0 \\
\phi_{, x x x x}+2 \phi_{, x y x y}+\phi_{, y y y y} & =0
\end{aligned}
$$

This is the biharmonic equation, which is often written as $\nabla^{4} \phi=0$.
(c) What is the relation between E and the shear modulus μ and Poisson's ration ν ?

Solution:

$$
E=2 \mu(1+\nu)
$$

see box in Problem 2.1.
(d) Note that the solution of Eq.(38) does not depend on elastic constants. Let's use this solution to solve a very simple stress problem. Consider a square of length a under hydrostatic
pressure P. What are the stress components inside the box? (guess!) What is the stress function ϕ ?

Solution:

The box is under uniform stress,

$$
\begin{aligned}
\sigma_{x x} & =-P \\
\sigma_{y y} & =-P \\
\sigma_{x y} & =0 \\
\phi & =-\frac{1}{2} P y^{2}-\frac{1}{2} P x^{2}
\end{aligned}
$$

The strain tensor is,

$$
\begin{aligned}
e_{x x} & =e_{y y}=-P \frac{1-\nu}{E} \\
e_{x y} & =0
\end{aligned}
$$

Figure 2: A square of length a under hydrostatic pressure P.

