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Problem 2.1 (10’) Elastic constants.
The elastic stiffness tensor for the isotropic medium is Cijkl = λδijδkl + µ(δikδjl + δilδjk).
Determine the compliance tensor, Sijkl, which is the inverse of Cijkl, i.e.,

CijklSklmn =
1

2
(δimδjn + δinδjm) (1)

Solution:

CijklSklmn = [λδijδkl + µ(δikδjl + δilδjk)] [αδijδkl + β (δikδjl + δilδjk)]

= (3λα + 2µα + 2βλ)δijδmn + 2βµ(δimδjn + δinδjm)

=
1

2
(δimδjn + δinδjm)

Thus

2βµ =
1

2

β =
1

4µ

and

3λα + 2µα + 2βλ = 0

3λα + 2µα +
λ

2µ
= 0

(3λ + 2µ)α = −1

2

λ

µ

α = −1

2

λ

µ(3λ + 2µ)

Sijkl = −1

2

λ

µ(3λ + 2µ)
δijδkl +

1

4µ
(δikδjl + δilδjk)
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Explicit expressions of Cijkl and Sijkl

Let us write out the various terms of Cijkl and Sijkl explicitly in isotropic
elasticity. There are only three different terms in Cijkl: C1111, C1122 and
C1212. Other terms can be obtained by symmetry, e.g. C2233 = C1122. In
contracted notation, these three terms are written as C11, C12, C44.

C1111 = C11 = λ + 2µ (2)

C1122 = C12 = λ (3)

C1212 = C44 = µ (4)

Therefore, an isotropic elastic medium has the property that

C11 = C12 + 2C44 (5)

Hence the anisotropic factor,

A ≡ 2C44

C11 − C12

(6)

equals to one for an isotropic medium. This is of course not the case
for an anisotropic medium. For crystals with cubic symmetry, the elastic
constants, C11, C12 and C44 are independent of each other.

S1111 = − λ

2µ(3λ + 2µ)
+

1

2µ
=

λ + µ

µ(3λ + 2µ)
≡ 1

E
(7)

S1122 = − λ

2µ(3λ + 2µ)
(8)

S1212 =
1

4µ
(9)

where E is called the Young’s modulus. Notice that λ = 2µν/(1 − 2ν),
thus

S1111 =
1

E
=

1

2µ(1 + ν)
(10)

S1122 = − ν

E
(11)

S1212 =
1 + ν

2E
(12)

These results are the bases of Problem 2.3(b).
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Problem 2.2 (10’) 1D elasticity.
Determine the displacement, strain and stress field of a long rod of length L standing ver-
tically in a gravitational field g. Assume the rod is an isotropic elastic medium with shear
modulus µ and Poisson’s ratio ν.

L
g

x

y
z

Figure 1: A rod of length L standing vertically in a gravitational field g.

Solution:
Choose the coordinate system such that x-axis goes along the axis of the rod pointing

up with the origin at the bottom of the rod. The equation of equilibrium is,

σxx,x + bx = 0 (13)

while all the other stress components are zero, i.e.,

σyy = σzz = σxy = σyz = σzx = 0 (14)

The boundary condition for Eq. (13) is such that σxx = 0 at x = L. Because bx = −ρg (ρ is
the density of the rod), the solution is

σxx = ρg(x− L) (15)

From Problem 2.1, noting that for Hooke’s Law we have

exx = S1111σxx =
σxx

E
=

ρg

E
(x− L) (16)

where E = 2µ(1 + ν) is the Young’s modulus. Similarly,

eyy = S1122σxx = −νρg

E
(x− L) (17)

ezz = S1122σxx = −νρg

E
(x− L) (18)

exy = eyz = ezx = 0 (19)
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Therefore,

ux,x =
ρg

E
(x− L) (20)

uy,y = −νρg

E
(x− L) (21)

uz,z = −νρg

E
(x− L) (22)

ux,y = −uy,x (23)

ux,z = −uz,x (24)

uy,z = −uz,y (25)

We wish to apply the boundary condition of ux = 0 at x = 0. The following solution satisfies
the boundary condition of ux = 0 at x = y = z = 0 (i.e. boundary condition only imposed
at a single point at the bottom of the rod),

ux =
ρg

E

[
1

2
x2 − Lx +

ν

2
(y2 + z2)

]
(26)

uy = −νρg

E
(x− L)y (27)

uz = −νρg

E
(x− L)z (28)

The above solution does not satisfy the boundary condition at the entire plane of x = 0.
Therefore solution is not valid near the end of the rod. (The rod is now standing on a
quadratic surface.) To fully account for the end effect of a flat surface, the stress will no
longer be a simple one-dimensional function as given by Eq. (15).

Problem 2.3 (10’) 2D elaticity.
Lets look at equilibrium in 2-D elasticity using x-y cartesian coordinates under zero body
force. Assume the 2-d body is in a state of plane stress, i.e.,

σzx = σzy = σzz = 0

which corresponds to a free standing thin film. The equilibrium equations reduce to

σxx,x + σyx,y = 0 (29)

σyy,y + σxy,x = 0 (30)

And the compatability equations reduce to

exx,yy − 2exy,xy + eyy,xx = 0 (31)

One popular method to solve such problems is to introduce the Airy’s stress function φ such
that,

σxx = φ,yy (32)

σyy = φ,xx (33)

σxy = −φ,xy (34)
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(a) Show that this particular choice of stress function automatically satisfies equilibrium.

Solution:

σxx,x + σyx,y = φ,yyx + (−φ,xyy) = 0

σyy,y + σxy,x = φ,xxy + (−φ,yxy) = 0

(b) Assuming that Hooke’s Law is of the form

exx =
σxx

E
− νσyy

E
(35)

eyy =
σyy

E
− νσxx

E
(36)

exy =
σxy(1 + ν)

E
(37)

show that the compatability equation reduces to

φ,xxxx + 2φ,xxyy + φ,yyyy = 0 (38)

Solution:

Starting from the compatibility equation,

exx,yy − 2exy,xy + eyy,xx = 0

plug in the Hooke’s law,

1

E
(σxx,yy − νσyy,yy + σyy,xx − νσxx,xx)− 2

(1 + ν)

E
σxy,xy = 0

φ,yyyy − νφ,xxyy + φ,xxxx − νφ,yyxx + 2(1 + ν)φ,xyxy = 0

φ,xxxx + 2φ,xyxy + φ,yyyy = 0

This is the biharmonic equation, which is often written as ∇4φ = 0.

(c) What is the relation between E and the shear modulus µ and Poisson’s ration ν?

Solution:

E = 2µ(1 + ν)

see box in Problem 2.1.

(d) Note that the solution of Eq.(38) does not depend on elastic constants. Let’s use this
solution to solve a very simple stress problem. Consider a square of length a under hydrostatic
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pressure P . What are the stress components inside the box? (guess!) What is the stress
function φ?

Solution:

The box is under uniform stress,

σxx = −P

σyy = −P

σxy = 0

φ = −1

2
Py2 − 1

2
Px2

The strain tensor is,

exx = eyy = −P
1− ν

E
exy = 0

P

a

Figure 2: A square of length a under hydrostatic pressure P .
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