ME340B – Elasticity of Microscopic Structures – Wei Cai – Stanford University – Winter 2004 Problem Set 1. Index Notation and Gauss's Theorem

Due date: Jan 12, 2005

Problem 1.1 (10') Index notation.

(a) Show that $\epsilon_{mkq}\epsilon_{nkq} = 2\delta_{mn}$.

(b) Consider a rank-two tensor $p_{ij} = a\delta_{ij} + bz_i z_j$, where **z** is a unit vector $(z_i z_i = 1)$. Find the inverse q_{ij} of p_{ij} , which is defined through $q_{ij}p_{jk} = \delta_{ik}$. [Hint: suppose q_{ij} also has the form of $q_{ij} = c\delta_{ij} + dz_i z_j$.]

Problem 1.2 (10') Tensor symmetry.

Any second rank tensor A_{ij} can be decomposed into its symmetric and antisymmetric parts

$$A_{ij} = A_{(ij)} + A_{[ij]}$$

where

$$A_{(ij)} = \frac{1}{2} \left(A_{ij} + A_{ji} \right)$$

is the symmetric part and

$$A_{[ij]} = \frac{1}{2} \left(A_{ij} - A_{ji} \right)$$

is the antisymmetric part.

(a) Show that if A_{ij} is a symmetric tensor, and B_{ij} is an arbitrary tensor, then,

$$A_{ij}B_{ij} = A_{ij}B_{(ij)} \tag{1}$$

(b) Show that if A_{ij} is an antisymmetric tensor, then

 $A_{ij}a_ia_j = 0$

Problem 1.3 (10') Gauss's Theorem.

(a) For a elastic body V with surface S in equilibrium under surface traction T_i and zero body force $(b_i = 0)$, show that

$$\int_{S} T_{i} u_{i} \mathrm{d}S = \int_{V} \sigma_{ij} e_{ij} \mathrm{d}V$$

where u_i , σ_{ij} , e_{ij} are displacement, stress and strain fields. [Hint: Use the result in Problem 1.2.]

(b) Show that the average stress in the elastic body under zero body force is,

$$\overline{\sigma}_{ij} = \frac{1}{2V} \int_{S} (T_i x_j + T_j x_i) \mathrm{d}S$$