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Chapter 1

Introduction to Elasticity Equations

1.1 Index notation

In order to communicate properly the ideas and equations of elasticity, we need to establish
a standard convention for writing them. The most common one used is the Einstein conven-
tion. This set of rules states that every index that is repeated once in a product implies a
summation over that index from 1 to n for an n-dimensional problem. Any free index (i.e.
not repeated in a product) implies a set of formulas, one formula for each of the degrees of
freedom. Generally, an index does not appear three or more times in a product (otherwise
something is wrong). If there is a need to deviate from this convention, then the meaning
should be explicitly written. This enables us to write a vector, v as

V = v;€; = V1€ + U2€2 + U3es (11)

where e, e; and ez are unit (basis) vectors specifying the coordinate system.

Often we do not want to write out the basis of the vectors explicitly. Thus, we can denote
the vector v by just its components v;. For example, suppose that the v; is the square of n;,
then we can write v; as

v; = nf = v =n? Vg = ng vg = n§ (1.2)

Also, if we want to write a scalar a as the sum of the square of the components of v, we can
write

2, .2, .2
a = vv; = V101 + VoV + V33 = vy + V5 + U3 (1.3)

Two special tensors worthy of introduction are the Kronecker delta ¢;; and the permuta-
tion tensor €.

B 1 ifi=jy
% = { 0 ifi#j (1.4)
1 for even permutations of ijk
€ijk = —1 for odd permutations of ijk (1.5)

0  for repeated indices
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Figure 1.1: (a) Leopold Kronecker (1823-1891 Prussia, now Poland). (b) Johann Carl
Friedrich Gauss (1777-1855, Brunswick, now Germany). (c) George Gabriel Stokes (1819-
1903, Ireland).

The Kronecker delta and the permutation tensor are related by

€ijk€imn — 5Jm5kn - 5]n§km (16)
The Kronecker delta is useful for expressing vector dot products without using vector no-
tation. For example, the dot product of a - b can be written as a;b;0;; = a;b;. In the same
manner the permutation tensor allows us to to write the cross product as

axb= eijkaibjek (17)
Since most derivatives will be with respect to an implied cartesian coordinate system, the
differentiation symbols need not be explicitly written. Instead, the notation a,; will denote
da;/O0x;. A useful identity that combines this notation and the Kronecker delta is z; ; = d;;.
Gauss’s Theorem

If A and its first derivatives, A ;, are continuous and single valued on a given volume V' with
surface S and outward normal n;, then

\%4 S

Stoke’s Theorem
If A and its first derivatives, A ;, are continuous and single valued on a given surface S with
boundary line L, then

/EjikA,j N dS_/A’UZ dL (19)
S L

where n; is the normal vector of surface S and v; is the line direction unit vector of line L.
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Current Configuration
(deformed)

Reference Configuration

(undeformed)

Figure 1.2: Configuration of a undeformed and deformed body

1.2 Deformation of an elastic body

Consider the body shown in Fig.1.2. In the reference configuration the body is undeformed
and a point in the body can be denoted X. After deformation, the point previously at X is
now at a point x. The displacement of a point X, denoted u(X), is the difference between
the point in the reference configuration and the current configuration. This is written as

ux)=x—-X (1.10)
Thus, any point in the current configuration can be written as

x=u+X (1.11)
or in component form,

T =u; + X; (1.12)

Consider a small vector dX in the undeformed body. The length of this vector is dS =
VdX,;dX;. After deformation, this vector becomes dx. Its length now becomes ds = v/dx;dz;.

Later on we will use the relationship between ds and dS to define strain.

1.3 Stress and equilibrium

The stress tensor, o0;;, is defined as the force per unit area on the i-face in the j-direction.
From the stress tensor we can define a traction, 7}, as the force per unit area in the j-
direction, on a surface with normal vector n = n;e;. The traction is related to the stress
tensor by o;;n; = Tj.

At equilibrium, every point in the elastic body is stationary. To derive the condition
for o;; when the elastic body is at equilibrium, consider a body with a volume V', enclosed
by a surface S with an outward normal n as shown in Fig.1.3. This body has two types
of forces acting on it, tractions and body forces. The tractions act over the surface area,
and are related to the stresses as described above. The body forces act per unit volume and
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Figure 1.3: An elastic body V under applied loads. T is the traction force on the surface S,
with normal vector n and b is body force.

represent external force fields such as gravity. Force equilibrium in the j-direction can be
written as

/bjdVJr/Tde:O (1.13)
\% S

where b; is the body force and Tj are the tractions in the j-direction. Substituting in the
definition of tractions,

/b]dV—i—/awnzdS:O
\% S

and using Gauss’s theorem we have,

/ (bj + O'Z'jﬂ') dV =0
\%

The equilibrium equation above is valid for any arbitrary volume and thus must hold in the
limit that the volume is vanishingly small. Thus, the above formula must hold point-wise,
and the equation for equilibrium is

Uij,i+bj =0 (114)

At equilibrium, the net moment around an arbitrary point should also be zero. Otherwise,
the body will rotate around this point. For convenience, let this point be the origin. The
moments caused by the tractions and the body forces can be written as the position crossed
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into the force. Using our expression for cross products, the moments in the k-direction can
be written as

v S
Substituting in the definition of tractions, and noting that M} must be zero for equilibrium,
/ ijxibj dV + / €ijkLiOmjiTm dS =0 (116>
1% S

Using Gauss’s theorem,
/V leijnibs + (€ijpiOm;) m) AV =0 (1.17)
Distributing the differentiation and noting that the permutation tensor is a constant
/ €ijk [:Eibj + ZTimOmj + xiamxm} dVv
v
= /vﬁijk [2:(b; + Tmjm) + OimOm;] AV =0

From force equilibrium b; + 0,,,;,m = 0, so that

/ eijkaij dV = 0
1%
As before, this must hold for a vanishingly small volume resulting in
€ijk0ij = 0 (].].8)
Writing out one term of this formula gives
€123012 + €213021 = 0

012 = 021

Carrying this through for the other two equations, it is clear that
Uij = Uji (]‘]‘9)

which says the stress tensor must be symmetric. We can also show that the stress tensor is
also symmetric even if the body is not in equilibrium (see box below). Thus the symmetry
of the stress tensor is independent of equilibrium conditions.

In summary, the equations of equilibrium are

O'ijﬂ' + bj = O

and



10 CHAPTER 1. INTRODUCTION TO ELASTICITY EQUATIONS

Noting that there are 9 components of the stress tensor and equilibrium specifies 6 equations
(or 3 equations for the 6 unknowns of the symmetric stress tensor), at this moment we are
unable to solve this set of partial differential equations.

Also, the reader should be aware that it is possible to define the stress tensor opposite to
the definition used above. o;; could be defined as the force in the i-direction on the j-face.
This would result in the force equation of equilibrium

UijJ‘ —+ bz = O

and the result from zero moment would be the same. However, since the stress tensor is
symmetric, both equations are the same and it does not matter which definition of stress is

used.
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Symmetry of Stress Tensor in Dynamics

To derive the symmetry of the stress tensor in dynamics, we must first
write the balance of forces using Newton’s law. It is similar to the force
equilibrium, except that the forces are now equal to the time rate of change
of linear momentum. This conservation of linear momentum can be writ-
ten as

\% S %

where p is the point-wise density of the body. Following the equilibrium
case, we can easily show that

pUj = 045, + bj (1.21)

Conservation of rotational momentum about the origin says

/pEijkinj dV:/eijkxiamjnmdS—i—/ eijka:ibj dV (122)
\%4 S \%4

Using Guass’s theorem, and rearranging terms we can write
/ €ijk [xl(—pvj == Omgj,m i b]) T (SijO'mj} dV =0 (123)
1%

Then, using the balance of linear momentum,

/ €ijk0ij dV =0

1%

The rest of the argument follows the static case, thus
Oi5 = 0ji

and the stress tensor is symmetric, regardless of whether or not it is in
equilibrium.

The physical interpretation of this result is the following. If o;; # 0;;, say
012 # 091, then for a small cubic volume V = [3, there will be a net torque
around the z3-axis, which is on the order of M = O(l3). Yet the moment
of inertia for the cube is on the order of I = O(I°). Thus the rotational
acceleration of the cube is w = M/I = O(I72). For | — 0, w diverges
unless 0;; = 03j;.

11
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1.4 Strain and compatibility
The strain tensor, which is a measure of the body’s stretching, can be defined as
d82 - dS2 = 2€ij dxl dxj (124)

where ds, dS, and dx; are defined in Fig.1.2 of section 1.2. Why should strain be defined
in this way? In fact, there are many different definitions of strain. Eq.(1.24) is a reasonable
one because it describes how does the change of length of a differential segment in the elastic
body depend on its orientation. If we re-write the left hand side of Eq.(1.24)

ds* — dS? = (ds + dS)(ds — dS)
and dividing by ds?
ds? — dS?  (ds+ dS)(ds — dS)

ds? ds?

For small strains, ds + dS =~ 2ds and

ds* — dS*  2ds(ds — dS)
ds? - ds?

This simplifies to
ds* — dS*  2(ds — dS)

~

ds? ds

This shows that in the small strain approximation, the above strain tensor is indeed a
measure of a change in length per unit length, which is traditionally how engineering strain
is defined. This simple example also shows the motivation for the factor of 2 in the definition
for strain.

The relationship between strain and displacements is important to establish because it
provides more equations that are needed to close the set of equations for the elastic fields of
a deformed body. (More equations will be provided by Hooke’s law in section 1.5.) Thus,
we wish to write ds and dS in terms of displacements wu;.

j
Ou; Ou; 0 ou;

ui Oui _ Ouy _ Ouj 5jk>
Oxj0x,  Ox;  Oxy,
= (Wjk + ury — wiuin) d; dzy

= d!)ﬁ'l dxjdij — (

Thus, the strain tensor is [2]

1
€ij = E(Ui’j + Uji — ukﬂ-uk,j) (126)
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Notice that strain tensor is symmetric, i.e. e;; = e;;. For strains much less than unity, higher
order terms are negligible and the strain tensor becomes

€ij = %(Uz‘,j + uj) (1.27)
Often times this tensor is referred to the small strain tensor, or the linearized strain tensor.
This form of the strain tensor is particularly useful since it allows for a linear relationship
between strain and displacements. Because of this simplicity, the linearized strain tensor
will be used in all further discussions.

The above definition of strain relates six components of the strain tensor to the three
components of the displacement field. This implies that the six components of the strain
tensor cannot be independent, and the equations that relate this interdependency are termed
compatability. The equations of compatability can be obtained directly from the definition
of the strain tensor, Eq.(1.27), which can be written out explicitly using x-y-z coordinates

Crz = Ugyg
Cyy = Uyy
€ZZ - uZ z
1
Cxy = §(uxy + Uy )
1
€y = 5(“90,2: + uz,x)
1
Cyz = §(uyz + Uz,y)
Now, the first equation of compatibility can be obtained by calculating e, ,y, €yy 2. and
Cxy,ay
Cazyy — Uzayy
Cyyaz = Uyyzx
Cayay = §(ux,zyy + Uy yaa)

Thus €gq 4y, €yy e and egy ., must satisfy the condition that
Caayy T Cyy e — 2€ayay = 0

Two more equations of compatibility are obtained by simply permuting the indices, giving
a total of three equations. The fourth equation of compatibility can be found in a similar
way to the first. Writing different second derivatives of the strain tensor

Crryz = Ugayz

Cryxz = 5 (ux,:vyz + uy,a:xz)

Crzay — § (u:p,xyz + uz,zmy)
1

Cyzax 9 (uy,mcz + uz,x:cy)
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Therefore these strain components must satisfy the condition

Crayz = Cxyxz + €rzay — Cyzax

Two more equations can be obtained by permuting indices in the above equation, giving a
total of six equations of compatibility. These six equations can be written in index notations
as

Epmk€qnjCiknm = 0 (128)

The equations of compatibility are not very useful in solving three dimensional problems.
However, in two dimensions only one of the equations is non-trivial and is often used to solve
such problems [4]. To solve 3-dimensional problems, we usually use Eq.(1.27) to express the
strain in terms of displacements and write the partial differential equations in terms of w;,
hence bypassing the need to invoke the compatibility Eq. (1.28) explicitly.

1.5 Hooke’s law

In section 1.3 the equilibrium condition gave three equations for the six unknowns of the
symmetric stress tensor. In section 1.4 strain was defined under the pretense that it would
provide additional equations that would allow the equations of equilibrium to be solved. In
order to get those additional equations, there must some way to relate stresses to strains. The
most common way to relate stresses to strains is with a constant tensor (linear relationship)
which is often termed Hooke’s Law. Since stress and strain are both second order tensors,
the most general relationship between stress and strain would involve a fourth order tensor.
The tensor that relates strains to the stresses is called the elastic stiffness tensor (or elastic
constant tensor) and is usually written as

045 = Uijkl€rl (1-29)

Thus, in the most general sense, the stiffness tensor C has 3 x 3 x 3 x 3 = 81 constants.
However, both the stress and the strain tensor are symmetric so that the stiffness tensor
must also have some symmetries, which are called minor symmetries, i.e.,

Cijkt = Cit = Cijik (1.30)

In elasticity, it is assumed that there exists a strain energy density function W (e;;) which is
related to the stress by

oW
n 8627

Using the definition of the elasticity tensor in Eq.(1.29), the stiffness tensor can be re-written
as

O*W

Oi ikl — 5 o
J aeijaekl

(1.32)
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Since the order of differentiation is irrelevant, the stiffness tensor must have the property
that

Cijkr = Chii (1.33)

which is often called the major symmetry of the stiffness tensor. This reduces the number of
independent elastic constants to 21, the most for a completely anisotropic solid. Similarly,
the strains can be related to the stresses by a fourth rank tensor S, called the compliance
tensor.

€ij = Oijkl Okl (1-34)

The compliance tensor is the inverse of the stiffness tensor and the two are related by
1

In isotropic elasticity, there are only two independent elastic constants, in terms of which
the stiffness tensor can be expressed as,

Cijrt = Nijor + p(0irdji + 0adjk) (1.36)

where A and p together are known as Lamé’s constants. p is commonly referred to as the
shear modulus, and A is related to Poisson’s ratio, v, by A = f_”;’y. Substituting Eq.(1.36)
into Eq.(1.29) gives

Oij = Aéijekk + 2,ueij (137)

Now there are enough equations to solve for all of the unknowns in the equilibrium
equations. Substituting Eq.(1.29) into Eq.(1.14)

Cijrierii +b; =0 (1.38)

Substituting in the definition of the strain tensor

1

3 ikt (ki + W) + 05, =10 (1.39)
using the minor symmetry of C allows the formula to be re-written as

1

§<Cijkl ki + Cijik Wigi) +b; =0 (1.40)

Since repeated indices are dummy indices, the above expression can be combined into
Cijrt uii +b; =0 (1.41)

This is the final equilibrium equation written in terms of displacements. This set of linear
partial differential equations has three equations for the three unknowns (displacements).
Once the displacements are solved for, the strains can be determined from the definition of
the strain tensor and the stresses can be determined from Hooke’s law.
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1.6 Green’s Function

The elastic Green’s function, G;;(x, x’), is defined as the displacement in the i—direction at
x due to a point force in the j—direction at x’. It is the solution u;(x) of Eq.(1.41) when
the body force b; is a delta function, i.e. by(x) = d(x — x')d;5. In the following, we give an
alternative derivation of the equation satisfied by the Green’s function G,;(x,x’). (For an
astonishing story on the life of George Green, see [5].)

Figure 1.4: A point force is applied to point x’ inside an infinite elastic body. V is a finite
volume within the elastic body and S is its surface.

1.6.1 Equilibrium equation for an infinite body

In an infinite homogenous body the Green’s function only depends on the relative displace-
ment between the points and thus can be written as

Gz‘j (X, X/) = Gz‘j (X — X/) (].42)

We wish to construct the equations for the displacement field in response to a point force
applied to an infinite body. Consider a constant point force F acting at x’ as shown in
Fig.1.4 within an infinite body. The volume V' is any arbitrary volume enclosed by a surface
S with an outward normal n. The displacement field caused by this applied force is

ui(x) = Gii(x — x')F} (1.43)
The displacement gradient is thus

Ui (X) = Gijm(x — X') F} (1.44)
and the stress field can then be determined by Hooke’s law

Okp(X) = ChpimGijom(x — X') F;j (1.45)

If the volume V encloses the point X', then the force F must be balanced by the tractions
acting over the surface S. This can be written as

Fk—l—/sakp(x)np(x)dS(x) =0

Fk—i—/CkpimGijm(x—x’)np(x)Fj dS(x) = 0
S
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Using Gauss’s theorem on the surface integral

F + /‘/CkpimGij,mp(x —x')F;dV(x) =0 (1.46)
The definition of the three dimensional Dirac delta function is

/Va(x _X)dV(x) = { o X ; v (1.47)
This allows us to move the Fj term into the volume integral

/V [CrpimGlijamp(x = X ) Fj + Fid(x — x)] dV (x)
Replacing Fj, with F0;; and factoring F} gives

] (GGl =) + iyl =X Fy AV (x) =0

This must hold for any arbitrary volume V' containing the point x’ and any arbitrary constant
force F, thus it must hold pointwise resulting in the equilibrium condition

Ck‘pimGij,mp(X — X/) + 5jk(s(X — X/) =0 (148)

This is the equilibrium equation satisfied by the Green’s function in an infinite elastic body,
which could be arbitrarily anisotropic. Eq.(1.48) is equivalent to Eq.(1.41) when the body
force is a delta function, i.e., by = §;,0(x — x').

1.6.2 Green’s function in Fourier space

Eq.(1.48) can be solved using Fourier transforms. Defining the Fourier transform of the
elastic Green’s function as gg,(k), it is related to the Green’s function as

i (k) :/ exp(ik - x)G;;(x) dx (1.49)
1 ©° ,
The three dimensional Dirac delta function is
1 o0
I(x) = )7 /oo exp(—ik - x)dk (1.51)

The equilibrium equation for the elastic Green’s function can be solved in the Fourier
space using the above definitions. Substituting in the definitions of G;;(x) and §(x) (setting
x' = 0, which fixes the origin)

! /OO [C’ > (k) + 0| exp(—ik -x)dk =0 (1.52)

kpim 5o Jij
2m)3 J_oo | P Oy 0,7
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Defining the vector z as

z = % (1.53)
Thus we can simplify Eq.(1.52) to

(2i)3 /_ Z [—Chpimzmzpk”® + gij(K) 4 0;] exp(—ik - x) dk = 0 (1.54)
This leads to

Chipim 2m 2p 9ij (K) k* = 654 (1.55)
Defining tensor (22)y; as

(22) ki = CpkimZpZm (1.56)
Substituting this definition into Eq.(1.55)

(22)ki gij k* = O, (1.57)
The inverse of the (zz);; tensor can be defined such that

(22), 0 (22)ki = O (1.58)
Thus the Green’s function in Fourier space is

—1
gyt = 20 (159

1.6.3 Green’s function in real space

The Green’s function in real space can be obtained by inverse Fourier transform of Eq.(1.59).
However the analytical solution can only be obtained for isotropic and hexagonal medium.
For general anisotropic materials, the Green’s function only has a integral representation in
real space. Substituting the solution for g;;(k) into Eq.(1.50)

Giy(x) = (%)3 /_ " exp(—ik-x) (ZZZZ'_J‘I dk (1.60)

o0

Using the spherical coordinate system as shown in Fig.1.5 the integral can be written as

(zz);l

1 3 poo pm 27w
Gij(x):<%)/o /0/0 exp(—ikxcos@TkQsin¢d9d¢dk (1.61)

Because G;;(x) must be real, the integral over k can be written from —oo to co with a factor
of 1/2 as

00 ™ 21
Gij(x) = ﬁ /oo/o /o exp(—ikx cos gb)(zz);l sin ¢ df do dk (1.62)
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m 0

Figure 1.5: Spherical coordinate system. ¢ is the angle between k and x. z is a unit vector
along k.

The k-integral is the one-dimensional inverse Fourier transform of the delta function

Gij(x) = 8_71r? /OW /027r §(x cos ¢)(z2);;' sinpdfdg (1.63)

Using the property of delta functions that says 6(ax) = %”) and using a transformation of

variables such that s = cos ¢

Gy(x) = — /1 B /02W—5(s)(zz)i_j1d6’ds (1.64)

8wy

_ ! /_11 /0%5(3)(22)”%9(13 (1.65)

8wy

Using the definition of the delta function this reduces to

1 27 B
Gij(x) = S /0 (22);;' df . (1.66)
Gi(x) = — /%(zz)ulde (1.67)
“ 8n2x Jo 7 Ixz=0 '

Eq.(1.67) represents the infinite medium Green’s function for general anisotropic materials.
This integral can be evaluated by integrating (zz);jl over a unit circle normal to the point
direction x as shown in Fig.1.6. The circle is normal to x and represents all possible values
of the unit vector z. Let a and 3 be two unit vectors perpendicular to each other and both
in the plane normal to x, so that z = accosf + Bsin 6.

1.6.4 Green’s function in isotropic medium

As previously mentioned, the integral in Eq.(1.67) can be evaluated analytically for isotropic
materials. Substituting in the elastic constants for isotropic materials into the definition of



20 CHAPTER 1. INTRODUCTION TO ELASTICITY EQUATIONS

A

p

Figure 1.6: Coordinate system for evaluating the integral in Green’s function expression.

(22)i; gives

(22)ij = ZmZnCimin
= Zmzn[)‘(;z‘m(sjn + M((Sijémn + 5in5jm)]
= Azizj + p(ziz; + 0ijznzn)
= (A )2z + pdy; (1.68)

Thus (zz);; can be written as

A+
(22)ij = ((52-]- + . uzizj) (1.69)
and the inverse can be written as
_ 1 A+
(22)5' = L (5z‘j TN+ ou Qquizj) (1.70)

This can be verified by showing (ZZ);]l(ZZ)J]{; = 0;. Substituting this into Eq.(1.67)

1 [ A+ p
G 87293/0 o < ’ A+2uzzj)

In Fig.1.6 the unit vector z can be written as a function of two fixed perpendicular vectors
a and

(1.71)

x-z=0

z; = a;cos B + (;sin @ (1.72)

22 = 040y cos? 6 + (0, 8; + o B;) cos O sin 6 + (3,3, sin? @ (1.73)
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Substituting into Eq.(1.71)

1 27 /\+M )
Gij = SWQIM /0 |:5,Lj — m (OéiOéj cos” 0 —+

+ (i 3; + a;B3;) cos Osin § + 3;3; sin® 0)} do

1 {25 AU

8mlxp 4 TN+ 2u
1 A

B 87rua:[ ij_)\+2,u

(OéiOéjﬂ' + ﬁ,ﬁjﬂ'):|

(viarj + ﬁiﬁj)} (1.74)

By now we have evaluated the integral, but the Green’s function is expressed by two (arbi-
trary) vectors in the plane perpendicular to x. It would be much more convenient to express
the Green’s function in terms of the field point itself (x) which can be done with a simple
trick. The vectors a and 3 form a basis with the vector t as shown in Fig.1.6 where t = ﬁ
Thus any vector v can be written in terms of a, 3 and t.

v=(v-a)a+ (v-B)B+ (v-t)t (1.75)
and in component form

v; = v, + 0350 + vt (1.76)
This means that

0ij = quay + BBy + tit; (1.77)
Substituting 1.77 into 1.74

1 A
-

- AR (5t
STy )\+2u( J)]

Simplifying results in

Gy = 87?1,ua: [i 1 ;)Z g /\)\—:2[; x;?} (1.78)
or, in terms of u and v
Gy = m [(3 — )b, + %] (1.79)
or in terms of R = |x|
Gy= {%RM - ;RW} (1.80)
8T 2(1—-v)
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1.7 Betti’s Theorem and reciprocity

Betti’s Theorem

Consider a linear elastic body with two sets of equilibrating tractions and body forces
applied to it. Let u(¥ be the displacement field in response to traction force t™) and body
force bW, Let u® be the displacement field in response to traction force 2 and body force
b®). Under the assumptions of linear elasticity theory, the Betti’s Theorem states,

/ t . u@ds + / bW . u@dv = / t® . u®ds + / b®@ . u dv (1.81)
S \% S \%

and in component form

/ tMul? ds + / bV v = / tPuM ds + / pPulM) dv (1.82)
S 1% S 1%
Proof
First, lets establish the fact that ag )eg) = ag)eg). This is because,
oyle; = Cuneyer;
oel) = Ciel) el

Cijit = Chuj

Integrating this identity over the volume of the solid, we have

/Vaz(;)eg) dV:/Vai(f)ez(jl.) dv (1.83)

The left hand side can be re-written as,

1) (2 _ 1,,(2)
/VUU €, dV = /Vaij (OF dV

From equilibrium condition,

o0 0 (189
we have,
(1) _(2) _ 1), (2) (1, (2)

Applying Gauss’s Theorem on the first term, we have,

/aﬁ)eg) dV:/ai(;)qu)ni d5+/ b§~1)u§2) dv
v S v
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Noticing the definition of traction force,
1 _ (@)

we obtain,

(1) m, (2) 1), (2
/ Dav = /tj ul ds+/b§)u§>dv
|4 S |4

Similarly, the right hand side of Eq. (1.83) can be written as,

/ Dt av = / Pl s + / 0P ulh av
\%4 S 14

Therefore,

/ tu ds + / bl dv = / tPull s + / bt av
S \4 S \4

which is Betti’s Theorem.

Reciprocity of Green’s function
Betti’s Theorem can be used to prove the reciprocity of Green’s function,

Gii(x,x") = Gji(x',x) (1.86)

Proof

Consider a specific situation onto which we will apply the Betti’s Theorem. Let b®) be
a concentrated body force F at point x(1). Let b®® be a concentrated body force H at
point x?. We would like to show that the contribution of the traction integral from Betti’s
theorem is zero, however they cannot be set to zero identically since the body must be in
equilibrium. Let’s consider a body that has a displacement restraints over part of the surface
such that u; = 0 on 5%, where S* is a subsection of the total surface S. Let’s also further
assume that there are no other tractions on S. In this case,

u(x) = Gyxx")F

b (x) = Folx—x®)

u?(x) = Gyl x®)H,

b (x) = Fié(x—x?)
tg-l) = t;Q):O on S —S*
ug-l) = u§-2):0 on S*

(1.87)

Applying Betti’s Theorem and noting that the surface integrals are zero, we get,

/ Fio(x — x)Gy (x, xO) H; dV (x / Hyo(x — )G (x, D) FdV (%) (1.88)
|4
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Using the property of 0 function, we have,

FH;Gi(x, x®) = FH;Gy(x@, xW) (1.89)
This condition must be true for arbitrary forces F and H. Therefore,

Gi;(xM, xP) = G (x? xM) (1.90)

which is the reciprocity of Green’s function.



Chapter 2

Eshelby’s Inclusion I: Stress and
Strain

2.1 Inclusion and eigenstrain

Consider a homogeneous linear elastic solid with volume V' and surface area S, with elastic
constant Cjjr, as shown in Fig. 2.1. Let a sub-volume Vj with surface area S, undergo
a uniform permanent (inelastic) deformation, such as a martensitic phase transformation.
The material inside V4 is called an inclusion and the material outside is called the matriz.
If we remove Vg from its surrounding matrix, it should assume a uniform strain e;; and
will experience zero stress. ej; is called the eigenstrain, meaning the strain under zero
stress. Notice that both the inclusion and the matrix have the same elastic constants. The
eigenstress is defined as o5; = Cijucyy-

In reality, the inclusion is surrounded by the matrix. Therefore, it is not able to reach the
state of eigenstrain and zero stress. Instead, both the inclusion and the matrix will deform
and experience an elastic stress field. The Eshelby’s transformed inclusion problem is to

solve the stress, strain and displacement fields both in the inclusion and in the matrix.

Figure 2.1: A linear elastic solid with volume V' and surface S. A subvolume Vj with
surface Sy undergoes a permanent (inelastic) deformation. The material inside Vj is called
an inclusion and the material outside is called the matriz.

25
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Figure 2.2: John Douglas Eshelby (1916-1981, United Kingdom).

2.2 Green’s function and Eshelby’s tensor S,

Eshelby showed that the problem stated above can be solved elegantly by the superposition
principle of linear elasticity and using the Green’s function [6]. Eshelby used the following 4
steps of a “virtual” experiment to construct the desired solution.

Step 1. Remove the inclusion from the matrix.

Apply no force to the inclusion, nor to the matrix. The strain, stress and displacement fields
in the matrix and the inclusion are,

matrix | inclusion
N _ *
€ij = 0 €ij = eij
045 = 0 045 = 0
u; =0 |uy; =e

%
ijLj

Step 2. Apply surface traction to Sy in order to make the inclusion return to its original
shape
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The elastic strain of the inclusion should exactly cancel the eigenstrain, i.e. efjl- = —ej;. The
strain, stress and displacement fields in the matrix and the inclusion are,

matrix | inclusion

_ _ el *
eij—() el-j—eij—i—elij—o

J— J— el __ * *
0i5 = 0| 0y = Cynes; = —Ciyjnes; = —o3;

. . _ L
The traction force on Sy is Tj = o;;n; = — 0N

Step 3. Put the inclusion back to the matrix.

The same force T is applied to the internal surface Sy. There is no change in the deformation
fields in either the inclusion or the matrix from step 2.

Step 4. Now remove the traction T. This returns us to the original inclusion problem as
shown in Fig. 2.1. The change from step 3 to step 4 is equivalent to applying a cancelling
body force F = —T to the internal surface Sy of the elastic body.
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Let u$(x) be the displacement field in response to body force F; on Sp. uf(x) is called the
constrained displacement field. It can be easily expressed in terms of the Green’s function
of the elastic body, (notice that F; = —T; = o7}, ny)

us (x) = / F;(x")Gij(x,x")dS(x") = / a;knk(x’)Gij(x, x")dS(x") (2.1)
So SO
The displacement gradient, strain, and stress of the constrained field are

W (%) = / o7 () Gl (x, ') dS () (2.2)
So
1 1

e?j(x) = 5(“5; + ugg) = 5/ o (x') [Gil,j<X7X/> + Gja(x, x')] dS(x') (2.3)

So
0i;(x) = Cijuecy(x) (2.4)

In terms of the constrained field, the strain, stress and displacement fields in the matrix and
the inclusion are,

matrix inclusion

__ _cC - __ ¢
€ij = €55 | €ij = €

— C L. = c _ ol— .. ¢ __ *
0ij =045 | Oij = 045 — 045 = Cijri(efy — k)
Uy = u; | W = Uy

To obtain explicit expressions for the stresses and strains everywhere, the constrained
field must be determined both inside and outside the inclusion. We can define a fourth order
tensor S;;i; that relates the constrained strain inside the inclusion to its eigenstrain,

€5; = Sijki€x (2.5)

Sijw is often referred to as Eshelby’s tensor. Because it relates two symmetric strain tensors,
the Eshelby’s tensor satisfies minor symmetries,

Siikt = Sjirr = Sijik (2.6)

However, in general it does not satisfy the major symmetry, i.e. Sjji # Spij- In the following
sections, we derive the explicit expressions of Eshelby’s tensor in an infinite elastic medium
(V' — 00). In principle, Eshelby’s tensor is a function of space, i.e. S;jp(x). However, an
amazing result obtained by Eshelby is that,

For an ellipsoidal inclusion in a homogeneous infinite matrix, the
Eshelby tensor S;j;; is a constant tensor. Hence the stress-strain
fields inside the inclusion are uniform.

2.3 Auxiliary tensor D;ji

For convenience, let us define another tensor D;jy; that relates the constrained displacement
gradients to the eigenstress inside the inclusion [7],

ug (%) = =03, Dijri (%) (2.7)



2.3. AUXILIARY TENSOR Dyjk1 29

Obviously, tensor D,y is related to Eshelby’s tensor,

Sijmne;knn = 6% (28)
1 C (&

= 5(%] + uj;) (2.9)

1
= —E(Uz*kpng’ + 031, Djkii) (2.10)

1
= _50';(]{(,Diklj + Djkli) (211)

1
= _§Clk:mne;knn(piklj + Djkii) (2.12)

Therefore,
1

Sijmn(X) = —§Cmmn(7)z'kzj (x) + Djni(x)) (2.13)

Rewrite Eq. (2.7) as ug ;(x) = —0j;Dix;(x) and compare it with From Eq. (2.2), we obtain,
D) = = [ ma(x!)Gaylx = x) dS(x) (2.14)
0
or equivalently,
Dijx) == [ Gusalx = x i) dS(x) (2.15)
0

Notice that we have used the fact that G;;(x,x’) = G;;(x — x’) for an infinite homogeneous
medium. Applying Gauss’s Theorem, we obtain

0
Diju(x) = —/ a_,Gij,l<X —x')dV(x))
Vo Oy
0 :
— — Gi(x —x)dV(x'
. 8kaJ’l<X x')dV(x")
Therefore,
Dijkl (X) = / Gij,kl (X — X/) dV(X/) (216)
Vo
Recall that the Green’s function for an anisotropic medium is,
1 . (22)5'
Gij(x—x) = ok /exp [—ik - (x — )] kQJ dk (2.17)
where z = k/k. Substituting this into Eq. (2.16), we get
d? 1 (22);;!
D;; = —ik - (x — X' Y_odk| dV (%'
Jkl(x) Yo x0T, [(271_)3 /exp[ L (X X)] L2 (X)
= W v ) (—iky)(—iky) exp [—1 '(X—X)}T (x')

- (271r)3 /v / exp [—ik - (x — x)] (22);; 2 2 dk AV (X') (2.18)
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Because the integration over the inclusion volume Vj only depends on x’; but not on x, it is
helpful to rearrange integrals as,

1 ] Lo 2 exp(ik - x/ x
Diju(x) = —W/dk exp(—ik - x)(22);; 2k l/vo p(ik - x")dV(x')
- _(271r)3 / dk exp(—ik-x)(zz)i—jlzk 2 Q(k) (2.19)
where
Qk) = /v exp(ik - x') dV (x) (2.20)

Therefore, for an infinite homogeneous medium, the auxiliary tensor D;;y,; also satisfies minor
symmetries,

Dijii = Djiri = Dijix (2.21)

But in general it does not satisfy the major symmetry, i.e. D;jp # Diyij (similar to Eshelby’s
tensor S;jp)-

2.4 Ellipsoidal inclusion
Now let us restrict our attention to inclusions that are ellipsoidal in shape. The goal is to

prove that D;jx(x) is a constant inside an ellipsoidal inclusion. The volume Vj occupied by
the inclusion can be expressed as,

Y€)=

where a, b, ¢ specify the size of the ellipsoid. Define new variables,

x/

x = Z 2.23
- (2.23)
/

Y = % (2.24)
/

7 = = (2.25)
C

R = X'e +Y'es+ Z'e; (2.26)

R = [R| (2.27)

Then the integration over Vj becomes an integration over a unit sphere in the space of R,

/VO dV(x) = abe / dR (2.28)

IR|<1



2.4. ELLIPSOIDAL INCLUSION

Also define new variables in Fourier space,

A, = ak,
A, = bk,
A, = ck,
A = )\xel -+ )\yeg + )\Zeg
A= A= \/a%g + 0242 4 k2
Therefore,
k-xX = AR

Q) = /V exp(ik - x') AV (x)
= abc exp(z\ - R)dR
/R|<1 p(iA-R)

In polar coordinates,

1 2m ™
Qk) = abc/o /o /0 R?sin ¢ exp(iAR cos ¢) d¢ df dR

1 1
= 27rabc/ dRR2/ ds exp(iARs)
0 _

1

! 2sin(AR)
— 97mab 2127 g
Ta C/D R [ VG ] R

abc

1
= 47?—/ Rsin \RdR
A Jo

b
= 4#% (sin A — Acos \)

Substituting this result into Eq. (2.19), we have

I , _ dm .
Diju(x) = o5 | dk exp(—ik - X)(zz)ijlzk 2 Fabc(sm A — Acos )
abc [~ _ , sin A — Acos A
= “52 - (zz)ijlzk 2z exp(—ik - x) — dk

Again we go to polar coordinates. Define new variables ®, ©, v through,

k, = ksin® cos©

k, = ksin®sin®

k, = kcos®

v = (k-x)/k=xsin®cosO + ysinPsin© + zcos P
g = MNk= \/(a2 cos? © + b2 sin? ©) sin® @ + 2 cos? @

31

(2.36)
(2.37)
(2.38)

(2.39)

(2.40)
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Then
abc [ o.sin A — Acos A .
Diju(x) = —53 / / / k*(22)5;" 21 2 exp(— iky) "5 sin ®dO d® dk
b
— ag// (zz Y2k 20 k() sin ® dO© d® (2.47)
2m* J,
where
o o.sin A — Acos A
k(y) = /0 dkk2exp(—zkv)T

* . .sinkfB — kB coskf
= / dk k? exp(—ik~) B
0

_ %/OOO dk exp(—ik7) {Smkﬂ

Notice that the dependence of D;jj; on x is through v = (k- x)/k in (7). To evaluate (),
notice that the term in the square bracket is an even function of k. Because D;jy,; is real,
k() must be real as well. Therefore, we can rewrite the integral as,

— [ cos kﬁ} (2.48)

k(y) = QLﬁg/OO dk exp(—ik~y) [sm kp — [ cos kﬁ} (2.49)

Notice that

/ dk exp(—iky)coskf = e kY (R0 om0

AL
. 2
1 [k ik(v+6)
= 2/ +e }
7r (5

= 7[0(p - 7) +0(6+7)] (2.50)
d [~ ink
e /_Oo dk exp(—ik~y) smk 5 _ dk exp(—ik~y) cos k3 (2.51)
| ket ™~ w3 —0) + b3+ ) (2.52)
where

-5 ifa<0
h(a) = 0 ifa=0 (2.53)

% ifta>0

Therefore, if 5 £+ > 0 then the k() reduces to
5(1) = g (8 = %)+ h(3 +7) = 55(5 =) = B0(3 + )]

m
= 25 (2.54)
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In other words, x(7y) becomes a constant if 5 4+~ > 0. In this case, D;;i(x) reduces to a
surface integral that is independent of x,

abce 2m
Dijr(x) = 52 (22); zk 2] —= ﬁ sin® dO d® (2.55)

We will now show that if x is within the ellipsoid, then 34~ > 0. This will then prove that
Dijr and S;ji; are constants within the ellipsoidal inclusion. To see why this is the case,
consider vector p such that,

T z
p=—e;+ gez + —es (2.56)
a b c

If x lies within the ellipsoid, then

p=lpl = V(x/a) + (y/b)? + (z/c)? <1 (2.57)
At the same time,
v = (k-x)/k=(A-p)/k (2.58)
= Nk (2.59)
Therefore,
vl = A-pl/k<Ap/k <Ak=p
vy > 0 (2.60)

Therefore, when x lies within the ellipsoid, the D;j;; tensor can be calculated by simply
performing a surface integral over a unit sphere,

_abe 2 sin
Diji = / / 22); zk 2 7 de do (2.61)
When x lies outside the ellipsoid, 3 + v is positive for some values of # and ¢ but is negative

elsewhere, hence D;ji; will depend on x, and can be calculated directly from the Green’s
function,

Dijri(x) = —/SGijJ(x—X’)nk(x’)dS(X’) (2.62)

Once D, ;i is obtained, Eshelby’s tensor S;;x; can be found by Eq. (2.13).

2.5 Discontinuities across inclusion interface

We now consider the possible discontinuity of elastic fields across the interface Sy of the
inclusion. Let us define [[f]] as the jump of field f from the inside of the inclusion to the
outside, i.e.,

[/l = =1 (2.63)
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where f can be the displacement u;, stress o;; or strain e;; and * indicates the matrix side of
the surface Sy and ! indicates the inclusion side of Sy. First we notice that the displacement
field must be continuous everywhere, i.e.,

([wi]] = 0

Since the total displacements are equal to the constrained displacements, the jump in the
constrained displacements are zero as well, i.e.,

Because the traction forces are continuous across the interface,

(o] = 0
Since
o] = ol —of;
Ui‘f = Ufj
c *
Oy = Tij = Oy

the jump in the total stress is related to the jump in constrained stress field through,
[[o35]] = [lo7;]] — o3
Therefore, the jump in the constrained tractions must be
[[og;mi]]l = —ogm (2.64)

Even though the constrained displacements u; are continuous across S, its gradients uj
are not necessarily continuous. Yet, the continuity of u¢ along the entire Sy surface requires
that the derivative of u$ along the direction within the local tangent plane of Sy must be
continuous across Sy. Let 7; be a vector contained in the local tangent plane of Sy, then,

[[ug,m]] =0 (2.65)
Thus we can write

[[ui]] = pr (2.66)

where py, is a (yet unknown) vector field and n; is the normal unit vector of the local tangent
plane of Sy. From Eq. (2.64) and (2.66), we can establish an equation based on the jump of
the constrained traction field,

logmll = [[Cijrugmni]]
Cijriprming

— * 0y



2.6. ESHELBY’S TENSOR IN ISOTROPIC MEDIUM 35

Recall that we have defined (nn);; as
(nn)y; = Cirjnemy

Then we have
(nn)jppe = —o an
p = —(nn)gonn

The jump in constrained displacement gradients is then
([ui )] = —(nn)y,j ofmim (2.67)
And the jump in constrained stress is

[[o5]] = —Cijpa(nn) ) o5 (2.68)

i kp ¥ pm
Finally the total jump in stress is

(03] = 05 = Cigma(nn) iy Ty Tmm (2.69)

2.6 Eshelby’s tensor in isotropic medium

The derivation of the Eshelby tensor in isotropic materials can be found in [6] and [3]. For
isotropic medium, the Eshelby’s tensor for an ellipsoidal inclusion with semi-axes a, b, ¢ can
be expressed in terms of elliptic integrals.

For a spherical inclusion (a = b = ¢), Eshelby’s tensor has the following compact expres-
sion,

ov—1 4 —

1%
m%fskz + (0ir0j1 + ditdjx) (2.70)

Skt = 510

Notice that the tensor itself does not depend on the radius of the sphere.

In the most general case where a > b > ¢ and the semi axis a aligns with the coordinate x
(and similarly b with y and ¢ with z), the Eshelby’s tensor is,

3 1—-2v
S = ————a’lh +

S0 " =)
Sz = mbﬁm + %h
Siizz = mczjli’) + %h
Si212 = %hz + %(h + Iy)

81112 = 51223 = 81232 =0
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The rest of the nonzero terms can be found by cyclic permutation of the above formulas.
Notice that we should also let @ — b — ¢ together with 1 — 2 — 3. The [ terms are defined

in terms of standard elliptic integrals,

4dmabe
(a2 — b2)(a2 — 2)1/2 [
dmabe b(a? — )'/?
02 — 2) (a2 — 2)1/2

ac

where

6 = arcsin

k::

and

[1—|—[2+[3:47T

47
3l + Lo+ i = po)

3&2111 + b2112 + 02113 = 3]1

I—1
112: a2 — 2

and the standard elliptic integrals are defined as

0 dw
F(97 kj) = /0 (1 _ kQ Sin2 w)1/2

0
E6,k) = /(1—k2sin2w)1/2dw
0

F(0,k)— E(0,k)]

— B(0,k)

(2.71)

(2.72)
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For an elliptic cylinder ( ¢ — oo )

r72
Sun = 2(1 1— v) _Zza—:io)tg +1- 2y>a i b}
r o2
Sao20 = 2(11_1/) _Oéaj_i?f+(1_2V)aj_b}
Sszzz = 0 o )
Sz = 2(11_1/) _(af_b)Q _(1_2y)a+b]
1 2
Soozz = m(zj—ab
T2
St = 2(11—u) _(aj_b)Q_(l_2V)aj_b}
Sz = 5332; =0 el (1)
S = 5y _20(La—|—b)2 T ]
1 2vb
Sz = maib
Saz23 = 2((;:_ ) S3131 = 2(alii— b)

For a flat ellipsoid (a > b>> ¢). The I integrals in this limiting case reduce to

I = 4rx(F(k) —E(k))%

L = 4« (E(k)g = (F(k) = E(k)) — " bg)

I, = 4 (1 . E(k;)g)

Iy = 4 _E(lc)g—2(F(k)—E(k)) b bQ] /(a® = b%)

= 4n 1= B — (P~ B0 5 | o

47
3c?

where E(k) and F(k) are complete elliptic integrals defined as

3 dw
F(k) =
(k) /0 (1 — k2sin?w)1/2

s

Ek) = /2(1—k281n2w)1/2dw
0

37

(2.73)

(2.74)
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We have a penny shaped inclusion if we let @ = b in the flat ellipsoid. The Eshelby’s tensor
further reduces to

(13 —-8v) ¢
S = Sa = 3(2(1—_1/)>5
m(l—2v)c
S A
Ss333 W(1—v) a
(8 —1)c
Stz = S = ﬁa
B _m2v—1)c
v m(dv+ 1) c
Sz = Ssz0 = 1— M—
1—w 1% a
S _ m(T=8)¢
BT 31— a
1 (v —2)c¢
S3131 = Sozez = 5 (1 + ﬁa)

Eshelby’s tensor for various other shapes can be found in [3] and [8].

2.7 Eshelby’s inclusion in 2-dimensions

The derivations on ellipsoidal inclusions in 3D space given above can be repeated for elliptic
inclusions in 2D space (corresponding to elliptic cylinder in 3D). As an illustration, in this
section we show that the Eshelby’s tensor S is a constant within the ellipse and we derive
the explicit expression of S for a circular (i.e. cylindrical) inclusion.

Constant Dy
Consider an elliptic inclusion in the 2D medium that can occupies the area,

T 2 i) 2
<a>+<b> =1 (2.75)
For consistency of notation, we will still use V{ to represent the area (or volume) occupied by
the inclusion and Sy as its boundary. Let its eigenstrain be e; (1,7 = 1,2). Define Eshelby’s
tensor S;jp; and auxiliary tensor D;j;i; similarly as before, but with 4, j,k,1 = 1,2. We will
consider the plane strain condition, so that the elastic constants tensor in 2D ¢;j;,; simply
equals to the elastic constants tensor in 3D Cjjy; for 4,7, k, 0 = 1,2, ie.,

Cijtt = A0ijOr + 1(0ikbjr + 0l

2uy
= 1_u—2y5ij5kl + 11(03051 + 0udj)

2v
= u (1 — 2U5ij5kl + 00 + 5il5jk)



2.7. ESHELBY’S INCLUSION IN 2-DIMENSIONS 39

Similar to the 3D case, the Fourier space expression for the Green’s function in 2D is

(z2);:!

Gij (k) = k;]

The real space expression is then,

1 [ L (=)
Gi(x) = 5 | expl-ik-x)

472 | _

dk (2.76)

o0

Similar to Eq. (2.16), the auxiliary tensor for an elliptic inclusion in 2D is,

Dijkl<x) = / Gijykl(X—X/)dV(X/)
Vo

= ; axfaxl [(23?)2 /exp [—ik - (x — X)] (ZzZ; dk| dV(x)

B _# /v / exp [—ik - (x — x)] (22) ;' 2z dk AV (x)

. (2;2 / exp(—ik - x) (22); 262 Q (k) dk (2.77)

where

Qk) = /Vexp(z'k-x’)dV(X’) (2.78)
Define

A= () = (kakad) , A=Al

R = (R17R2>:(.171/(1,,$2/b), R:‘R|

v = (k-x)/k=(X-R)/k

B = Ak (2.79)
Then

Qk) = /exp(ik-x')dV(x’)
Vo
= ab/ exp(iA - R)dR
IR|<1
1 2m
= ab/ / Rexp(iARcos)dfdR
o Jo

1
— 2mab / RJy(AR)dR
0

A

= 2mab
mab—y

(2.80)
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Therefore,
ab : _ Ji(\)
Diju(x) = —5- exp(—ik - x)(22);; zr2 ok
b 21 [ee) J k
= - / / exp(—z'm)(zz);jlzkzl%;)kdkde
o Jo
ab 2 .
- T or (22);; ze2k(7y) dO (2.81)
0
where

K(y) = % /0 " exp(—iky)Jy (k3) di

_ i2 [1 __hl ] (2.82)
3 N

Notice that D;;(x) is real. Since (zz)i—jlzkzl is also real, the imaginary part of () can be
neglected. Therefore, as long as 3 > |y|, we can write

K0) = 75 (2.83)

which is independent of . Therefore D;;1;(x) is independent of x. 3 > |v| is satisfied if x is
within the inclusion. This can be shown by the following. If x is inside the ellipse, then

2 2
<ﬂ> + (ﬁ) R+ R<1 (2.84)
a b

which means R < 1. Therefore,

v = IA-R|/E < |A|-|R|/E=AR/k < Ak =7 (2.85)

Sijr for circular inclusion
We have shown that inside an elliptic inclusion of an isotropic medium

ab [* 1
Dijkzl(x) = —% (zz)ijlzkzl@ deo
0

For a circular inclusion, a = b, then 3 = a and D;j; becomes

1 2

Dijkl(x) = (ZZ)Z-_jIZkZl do

—5 :
Notice that
Cijtt = A0ijOm + (01 + 050k

A+

oo L Are N _ (e 1
(ZZ)ZJ - U 61.7 /\_‘_Q“ZZZJ - L 57«7 2(1_1/)2:12]
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Therefore,

1 (1 1
- 6 — ————22; dé
27 Jo u(J 2(1—u>”f)z’“zl

Notice that z; = cos @ and 2 = sinf, D;;i; can be evaluated explicitly. Let us define

2m
HME/ 2,2 40
0

Diju(x) =

and
2
']ijkl = / ZiZjZE2 deo (286)
0
The only non-zero elements of Hy; are Hi; and Hao, i.e.,
2T
Hkl = 5kl/ COS2 0do = W(Skl
0

Similarly J;jr is non-zero only when all four indices are the same or they come in pairs.

27
Jiin = Jaoze = / cos* 9 dl = 3—7T
0 4

27 T
202
Ji122 = Joo11 = Ji212 = Jo121 = / cos” fsin“ 0 = —
0 4
therefore

s
ikl = Z(5z‘j5kz + 001 + 0udjn)

Thus
1
Dijkl - _% 51]Hkl y) Jzykl
1
= _H (51]5kl77' ) (6ij§kl5ik5jl + 5iz5jk))
1
= “Top(1 =) (8 — 8V)5135kl 0ij0kt — Oi0j1 — 6110,k
1
= 16/1(1 — V) ((7 81/)51](5kl 5zk5jl — 5i15jk)
Now,
1
Sijmn = _§Clkmn(piklj + Djai)
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Dirr; can be evaluated by

1

Dippi = ——————
M T 6u(1 — v)

((7 — 8v)0ir0k; — OikOr;j — 0ijOkk)

Note, that now in two dimensions, 05, = 2

1
C16p(1 —v)
(4 —8v)
16l —v) Y
2uy
1—-2v
v

ADikj = —m%‘ (2.87)

Digg; ((7 — 8v)dij0r; — 6ij — 20;5)

Thus
v 1
! 30mn ¥ 16(1 —v)

2(1 —v)
v — 1 3 —4v
m (0in0jm + 0jndim)

((6 — 80)(6im0jm + Gjndim) — 20:;0mn)

= méijémn +

This is the Eshelby’s tensor for a circular inclusion in 2D, which is the same as a cylindrical
inclusion in 3D under plane strain.



Chapter 3

Eshelby’s Inclusion II: Energy

3.1 Inclusion energy in an infinite solid

So far we have obtained the expressions for the stress, strain and displacement field both
inside and outside the inclusion. An important question is: ”what is the total elastic en-
ergy F of the solid containing an inclusion?” In this and subsequent sections, we derive
the expressions for F, which we refer to as the inclusion energy for brevity. However, we
emphasize that E is the total elastic energy of the solid containing an inclusion. F includes
the elastic energy stored both inside and outside the inclusion. For example, if we obtain E
as a function of the inclusion size, then the derivative of E provides the driving force for the
expansion (or shrinkage) of the inclusion. Notice that this is the case only if E is the total
elastic energy, not just the energy stored inside the inclusion.

There are two ways to obtain the expression for the total energy E. First, we can integrate
the elastic energy density both inside and outside the inclusion, using the field expressions
we have already obtained. Second, we can obtain the elastic energy E by measuring the
work done in a virtual experiment that transforms a solid system with zero elastic energy
to the solid containing an inclusion. In this section, we take the first approach. The work
method is discussed in the next section, which leads to identical results but may provide
more physical insight.

For clarity, let us introduce some symbols to describe the elastic fields inside and outside
the inclusion. Let the elastic (stress, strain, displacement) fields inside the inclusion be
denoted by a superscript I, and the elastic fields outside the inclusion (i.e. in the matrix)
be denoted by a superscript M. Notice that whenever the superscript I or M is used, the
fields only include the elastic component. For a homogeneous infinite solid, the elastic fields
in the matrix and the inclusion are,

matrix inclusion
M _ _c I _ _c *
M _ _c I _ _c *
M __ ,.c I _ .. *
Therefore, the total elastic energy is,
[ Tel qV 4 2 MM dv (3.1)
Vo o—Vo
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Rewriting £ in terms of displacements, we have

1
E = —/ ol (u + u DAV + - / afy(u% + u%) dv (3.2)
4 Vo 4 o —Vo 7 7

and noting the symmetry of the stress tensor

1
_ L0 qQv M, M q1/
Now, the derivative can be factored out using the following rule

iy = (0ijU;) i — Oijit; (3.4)

1 1
E = —/ (a{]uj) — amuj dV + = / (affu]M) — amujM dv (3.5)
2 Vo 2 ~—Vo

The body is assumed not to have any body forces acting on it, thus the divergence of the
stress tensor, 0y, is zero. Thus

1
E:—/( ofub) dV + = / (ol uf") ;v (3.6)
2 Vo 2 )

We wish to now use Gauss’s theorem on this equation. We need to be careful about the sign
of the unit normal vector that points outside the integration volume. Let the normal vector
pointing out of the inclusion volume V5 be n{"*. Let the unit normal vector pointing out of
the outer surface of the matrix V,, (at 1nﬁn1ty) be n°. Applying Gauss’s theorem,

1 1
E = —/ oluind™ ds — / opluln™tds + - / orlulngeds (3.7)
2 Js, 2 So 2 Js..

We expect that the surface integral over S, should vanish as it approaches infinity. To show
this, let S, be a spherical surface whose radius R approaches infinity. Notice that

Dijkl(x) = Gij,lcl (X — X/)dV(X/) (38)

Vo

Because Gyjp(x — x') — R~ where R = |x|, for large R, then D;;(x) — R™3. Therefore,

eyl =0 (%) (3.9)

Jf\f =0 (%) (3.10)
dsS = O (Rr?) (3.11)

/ aMuMnout dV —0 as R — o0 (3.12)
Sco
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Combining the two integrals over Sy,

1
E= 5/ (ofuf — ol ul) ng™ dS (3.13)
So

Although the stress across the inclusion interface Sy does not have to be continuous, the
traction force across the interface must be continuous, i.e.,

I _ out _ _M_out
oL =0y n; (3.14)

which leads to

1 I 1 M ou
0

From the definition of (elastic displacement fields) uJI and ué” , we have

uf - uj\/[ = (uj — €jar) — uj = —ejTk (3.16)
Thus
1 I, out x
E= 3 /. oin; ey, dS (3.17)
0

Therefore, we have expressed the total elastic energy E in terms of a surface integral over Sy,
the inclusion interface. We can further simplify this expression by transforming the integral
back into a volume integral (over the inclusion volume ;).

E = —l/ (ijejkzvk).dv
2 VO )t

1 .
0

1 k
0

1 * I
1

= —562} /VO (of, — o) AV (3.18)

For an ellipsoidal inclusion, the stress inside is a constant, thus

1 c * * 1 *
bE= b (05 — oiy) €5 Vo = _§Uifjez‘j Vo (3.19)
If the volume is not an ellipsoid, we can still write the energy in terms of the average stress
in the inclusion

1_ *
E = —Solel Vo (3.20)
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where

— 1
o}, = Vi | of;(x) dV(x) — o} (3.21)
0

Suppose that we wish to account for how much of the energy is stored inside the inclusion
and how much is stored in the matrix. The energy store inside the inclusion is

1
EI I 1 %

For ellipsoidal inclusion, the stress and strain are constant inside, hence

1 1
I Il (e i
E' = sojeVo = o5 (¢ — i) Vo

Since the total elastic energy is

1 *

the elastic energy stored inside the matrix must be,

EM —p_pl = 1,1

(&
9 z‘geijVO

3.2 Inclusion energy by the work method

In this section, we re-derive the expressions in the previous section concerning the inclusion
energy using a different approach. Rather than integrating the strain energy density over
the entire volume, we make use of the fact that the stored elastic (potential) energy in
the solid must equal the work done to it in a reversible process. By considering a virtual
reversible experiment that transforms a stress-free solid into a solid containing an inclusion,
and accounting for the work done along the way, we can derive the total elastic energy (or
the elastic energy stored within the inclusion or the matrix) using considerably less math
than before.
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To better illustrate this method, let us consider a simple example. Con-
sider a mass M attached to a linear spring with stiffness k. Let Fy be the
equilibrium state of the system under no applied force. Obviously Ey = 0.
Define the origin as the position of the mass at this state. Suppose we
gradually apply a force to the mass until the force reaches Fj. At this
point the mass must have moved by a distance x; = F /k. Let the energy
of this state be F;. The work done in moving the mass from 0 to x; equals
the average force I applied to the mass times the distance travelled (zy).
Because the initial force is 0 and the final force is Fi, the average force is
F = Fy /2. Therefore, the work done in moving the mass from 0 to x; is,

— 1 1
W01 = FﬁUl = §F133'1 = 5]{]1'% (322)
Hence
1
E1 = EO T W01 = 5]6.%% (323)

Suppose we further increase the force to Fy and the system reaches a
new state at xo = Fy/k with energy F,. Since the initial force during
this transformation is F; and the final force is F,, the average force is
F = (F, + F;)/2. The mass moves by a distance of x5 — z; under this
force. Therefore the work done is

1 1
Wip = §(F1 + ) (22 — 71) = 51{(1‘3 — af) (3.24)
Hence
1
Eg = E1 + W12 = §]€$§ (325)

Now, let’s apply this method to Eshelby’s inclusion problem. Let us consider the four
steps in Eshelby’s construction of a solid containing an inclusion. Recall that after step 1,
the inclusion is outside the matrix. The inclusion has undergone a deformation due to its
eigenstrain. No forces are applied to either the inclusion or the matrix. Obviously, the total
elastic energy at this state is £} = 0.

In step 2, we apply a set of traction forces on the inclusion surface Sy. At the end of step
2, the traction forces are T = —o7;n; and the displacements on the surface are u; = —ej; @y,
Therefore, the work done in step 2 is

1

W = [ 60w 09a509

1 * *
= 3 /50 oiiniey; T dS(x)
1

= Eafje,:j/ xEn; dS(x) (3.26)
So
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and using Gauss’s theorem

1

Wi = 50‘;}6}2]-/ xy,; dV (%)
Vo

1
= Ea;‘je}zj /VO O AV (x)
1 * *

= §aijeijV0 (3.27)
In step 3, the inclusion is put inside the matrix with the traction force unchanged. No work
is done in this step, i.e. W3 = 0. In step 4, the traction force Tj is gradually reduced to
zero. Both the inclusion and the matrix displace over a distance of uj. Since the traction
force is Tj at the beginning of step 4 and 0 at the end of step 4, the average traction force
is, again, 7j/2. The work done to the entire system (inclusion + matrix) is

1 C
Wiy = E/SOTJ'(X)UJ'(X)dS(X)
1

— —5/30 opmiug(x) dS(x)

= —éafj/vu;i(x)dS(x)

1 * c
= _§giJ[/eide(X)

1
= —5oe5% (3.28)

The total elastic energy at the end of step 4 is,
E = Ey+ Wi+ Woz + Wiy
1 1
= 0+ ;o5e;:Vo+0— so5e5Vo

2 2
1 C * *
= _§(Uij - Uz‘j>€z‘jV(J
1 *

which is exactly the same as Eq. (3.19).

The same approach can also be applied to obtain the elastic energy stored inside the
inclusion (E?) or inside the matrix (E™). In step 4, the matrix also exerts force on the
inclusion, which does work as the interface Sy moves. This leads to a transfer of elastic
energy from the inclusion to the matrix.

3.3 Inclusion energy in a finite solid

Let us now consider a problem with an inclusion in a finite solid. Again, the stress-strain
fields in this case can be solved by superpositions. Suppose the finite solid assumes the
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stress-strain fields of an infinite solid containing an inclusion, as solved previously. Then
we must apply a set of traction forces Tj to the outer surface Sey of the solid to maintain
equilibrium. To obtain the solution of a finite solid with zero traction on its outer surface,
we need to remove Tj on Sex. This is equivalent to applying a cancelling traction force
F; = —T; on the outer surface Sey of the finite solid. Let e, o and w™ be the strain,
stress and displacement fields in response to the surface traction Fj. They are called tmage
fields. In this case, the elastic fields inside the matrix and the inclusion are,

matrix inclusion
M __ _c im I _ _c __ % im

€ =€ T €y | € =€; €5t e
M _ _c im I _ ¢ _ % im

O =04 + Oij | O35 = 035 — 0y5 + 0

M __ ,c im I _ .. * im
u;m = u; +uy; ui—ui—eijxj—i-ui

Obviously, the image fields satisfy the condition,

) = S0+ uli(x) (3.30)
) = Comeli(x) (331)

Notice that the image fields are generally not uniform within the inclusion. The free traction
boundary condition on the outer surface Sey; can be expressed as,

oMnP =0 (on Se) (3.32)

ij 'Y
Similar to Eq. (3.7), the total elastic energy in the solid can be expressed in terms of surface
integrals,
1 u X
E = §/S (ohul — ol ul" g™ dsS —1—/5 orutngtds (3.33)
0 ext

Because of Eq. (3.32), the second integral does not contribute. Using the traction continuity

argument (o;n" = o/ng"*) as before, we get
1 I/, 1 M\, out
Again, using uf —u}’ = —ejxy, we get
1 I x out
2 Js,

This is the same as Eq. (3.17) except that the stress field inside the inclusion now contains
the image component. Define

o = gt _ g (3.36)

v v v

as the stress field inside the inclusion in an infinite medium. Then

ol (x) = ol + o™(x) (3.37)

1] i 1]
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Similarly, define
— 1 I,c0 % out 1 I,00 %
E.= =1 0, eppng dS = ~5%; e:iVo (3.38)
0
as the inclusion energy in an infinite solid. Then the inclusion energy in a finite solid is,

1 im _x ou
E=FE,— 5/5 o eqrrns dS (3.39)
0

Converting the second integral into volume integral, we have

1

E = E, - 3 /v (o3 elear) AV
0
1 im _*
1 * im
= Eoo — 561-]- Uij dVv
Vo
= Foo - 5@63%
== Eoo + Eim
where
im — m () 4V 3.40
% = ; 07 (x)dV (x) (3.40)

is the averaged image stress inside the inclusion.
1— |
Epn = —=0™e Vg (3.41)

is the “image” contribution to the total inclusion energy. The average stress inside the
inclusion is,

ol =0 + ol (3.42)

Thus the total inclusion energy is still related to the averaged stress inside the inclusion as

1_ *
The results of the total inclusion energy for ellipsoidal inclusion under various boundary

conditions are summarized below.

total elastic energy

- - - — 17

infinite solid E=—30; e jVO

finite solid with — — 7 —
. E = —%ai[,ej.VO ol =0, + oln

zero traction J g J ¥ J
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3.4 Colonetti’s theorem

We now wish to study the energy of a solid containing an inclusion subjected to applied
forces at its outer surface. Before we do that, let us first prove Colonetti’s theorem, which
is very useful when studying such problems. Colonetti’s theorem [9] states that

There is no cross term in the total elastic energy of a solid, between the
internal stress field and the applied stress field.

However, there is an interaction energy term between the internal and applied fields
when the energy of the applied loads is included. Colonetti’s theorem can greatly simplify
the energy expressions when we apply stress to a finite solid containing an inclusion. To
appreciate Colonetti’s theorem, we need to be specific about the meaning of internal and
applied stress fields. Let us start with a stress-free homogenous solid with outer surface Sey.
Define internal stress fields as the response to a heterogeneous field of eigenstrain inside
the solid with zero traction on S.. Define applied stress fields as the response to a set of
tractions on Sey When there is no eigenstrain inside the solid.

Let us consider two states of stress. State 1 is purely internal, and state 2 is “applied”.
The total elastic energy inside the solid for these two states are,

1
EM = —/aﬁ)egjl-)dV
1%

2 J
1

E® = - / oDl dvV
2 Jv

Now consider a state 1+ 2 which is the superposition of state 1 and 2. Its total elastic energy
should be,

1 1 2 1 2

P = 2 [ o)+ o)) + e av
1
= 3 / (ag)eg) + ag)eg-) + Jg)eg) + ag)eg)) dv
1%

= O L p®@ 4 pi-2)

where

o1 1) (2 2) (1
BV = o /V (0e? + e}y av (3.44)

is the “interaction term” between state 1 and state 2. Colonetti’s theorem states that E(1=2)

must be zero, which we will prove below. First, we note that

oM C; (2) (1)

ij Cij JkiC €4
o el = Cinejyel)
so that
oD — 50, (3.45)
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B2 = / ol AV = / olel) AV (3.46)
1% 1%
Since there is no body force, Ufjl)l = 0. Therefore,
p-2) _ /V (cDu?y,av (3.47)

Now, we wish to apply Gauss’s theorem to convert the volume integral into a surface integral.
However, to use Gauss’s theorem, the integrand must be continuous inside the entire volume
V. However, this is not necessarily the case if the eigenstrain field ej;(x) is not sufficiently
smooth. For example, in Eshelby’s transformed inclusion problem, ef;(x) is not continuous

at the inclusion surface. As a result, the internal stress field ai(; )(x) is not continuous at the
inclusion surface either.
However, for clarity, let us assume for the moment that the eigenstrain field ej;(x) and

the internal stress field O'i(; )(X) are sufficiently smooth for the Gauss’s theorem to apply.
This corresponds to the case of thermal strain induced by a smooth variation of temperature

inside the solid. In this case,

E(l—?) _ /(UZQ)U@))J‘dV
14

J
= /S n?Xtai(;)ugz) ds (3.48)
Since O’S Vis a purely internal stress state,
ot =0 (on Sex) (3.49)
ig v T ext .
Hence
EUY =0 (3.50)

which is Colonetti’s theorem.

Let us now consider the case where the eigenstrain field ej;(x) and the internal stress field
(1)
ij
V —=> "k Vk. Let n?ut’K be the outward normal vector of inclusion volume Vx. We can apply
Gauss’s theorem in each inclusion and the matrix separately, which gives,

_ 1) (2) ex 1),K 1 2)_out,
P = [ ouPurtas e 3 [ ol ol as a1
ext K K

0;:’(x) are piecewise smooth inside various inclusion volumes Vi as well as in the matrix

where ai(; " is the stress inside the volume Vj, and O'g ) is the stress in matrix. The traction

force across the inclusion interface must be continuous, i.e.,

(of — ai(;))n‘;ut’K =0 forany K , (3.52)
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where the summation is not implied over K. Therefore, again we have,
E1-2) _ /S Ug;)u§2)nlext ds =0 (3.53)

which is Colonetti’s theorem.

Colonetti’s theorem only deals with the elastic strain energy that is stored inside the
solid (internal energy). When the system is under applied load, its evolution proceeds
towards minimizing its enthalpy, which is the internal energy subtracting the work done
by the external force. For example, the enthalpy of a system under external pressure p is
H = E + pV. The enthalpy for the solid under study is,

H=E"? — AWy (3.54)

AWrpn is the work done by the loading mechanism,

AWy = /Sext O'i(]?) (ug-l) + uﬁ”)nf"t ds (3.55)
which can be written as

AWpy = AWS? + AW (3.56)
where

AW&;Q) = /Sag)ugl)nf"t ds

AW = /S oD uPnet ds

AWLM can be regarded as the cross term between the two stress states in the total enthalpy.

3.5 Finite solid with applied tractions

We now apply Colonetti’s theorem to our problem of an inclusion in a finite solid under a
set of applied tractions. We will use superscript A to denote the fields in response to the
applied tractions when the eigenstrain vanishes (no inclusion). Let superscript F' denote the
fields of an inclusion in a finite solid under zero external tractions (as in section 3). From
Colonetti’s theorem,

E=FE*4+ EF (3.57)
where
pt o= L / oendV (3.58)
2/, ¥
Ef = —l(g{fw@)e;‘j% (3.59)

2
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The enthalpy of the system is
H=F — AWy (3.60)

where the A and F fields do have interaction terms in the work term AWpy, i.e.,

AWy = AWy + AW (3.61)
AW, = /s aéu;‘n‘;”‘t dS:/Vazfj-ef} dv =2E4 (3.62)
AW = (/i oufn$ds (3.63)

We would like to express AWS\Z T in terms of an integral over the inclusion volume V;. The
result is,

AWATF = ol 1 (3.64)

VY]

where

—_ 1
ﬁzﬁﬁﬂwf (3.65)
0
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To show that this is the case, first note that o ;n{*" = 0 on the surface
Sext~ Thus

LY ) ]

AWfA}F:/ (cAul™ — aEMuty net ds

where the superscript M denotes the fields in the matrix. Consider a
volume integral of the same integrand over the matrix volume V; = V—1;,

0 = / (UfeE’M—UF’Me-A-)dV
Ve

J v ) )

= / (cAutM — oBMy, A) 4SS — /( Ayt _ oMy, N2t dS
ext SO

ij g ij OijU; iy Y
which means

/ (ofyu; ™ — oM uf)ngt dS = | (ofju™ — oM u)ni*t dS (3.66)
Sext

ij “j ij 055U ij
So
Hence

AWZ‘A}F:/S (Jéuf’M—af;M JA) out 48 (3.67)
0

Notice that the integral is on the matrix side of the inclusion interface.
We can similarly write out the volume integral inside the inclusion

. A FI EI A
0

FI EI
= /(O’ZA-U-’ — 0y uA) nd"tds
So

J )

which means that

/ afjluj fpout s = / ufnfut ds (3.68)
So SO

Substituting this into Eq. (3.67) and noting the traction continuity con-
dition JI;’InOUt 05 Mpout we have,

v

A-F A¢, F.M F.I\ out
AW = /U-»(uj —u; )ng™ dS
So

LV}

= /aAe*kxknfmdS (3.69)
So

95
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Using Gauss’s theorem, we get,

AWET = /V ogel dV
0

— * A
Vo

= —etot 1 (3.70)

iJ 715

The major results of this chapter are summarized below.

total elastic energy total enthalpy
infinite solid E = —%ai[jefjvo
finite solid with e - I, Tm
zero traction B = =505V Oij = 0y T o
nite soll A_ 1 A_A A I, m | _ A A A—F
with traction E" =3 fﬂijelj dV' oy =0 + o | =E°+ E" - AWy — AWy
Ef = —%ai]jefj% =EF —FEA— a;;‘-e;kjvo




Chapter 4

Eshelby’s Inhomogeneity

4.1 Introduction

We can apply Eshelby’s solution of inclusions to other problems such as inhomogeneities,
cracks, and dislocations to name a few. These solutions are modeled using a technique
called the equivalent inclusion method, where the eigenstrain is chosen to model the specific
problem. This is possible for ellipsoidal inhomogeneities because the stress and strain inside
ellipsoidal inclusions are constant.

To start, let us consider a simple example. Suppose we cut a volume Vj out of an infinite
solid and fill it with a liquid to a pressure py. What are the stress, strain, and displacement
fields inside the matrix? In principle, we could use the Green’s function as a direct method
to solve this problem. Because the liquid exerts a force T = podx;ni on the surface of the
void, the displacement field inside the matrix should be,

ui(x) = /poékjnkéij(x, x') dx’ (4.1)

where G;(x, %) is the Green’s function for an infinite body with a cavity. However, we do
not know the expression for éz-j (x,x’), which is different from the Green’s function of an
infinite body (without the cavity). Therefore, the formal solution in Eq. (4.1) is not very
helpful in practice. Thus the remaining question is, can we express the displacement field in
terms of infinite medium Green’s function, G;;(x,x’) = G,j(x — x’)? This turns out to be
possible if the shape of the cavity is an ellipsoid.

The solution can be constructed using Eshelby’s equivalent inclusion method. The idea
is to replace the liquid with an inclusion whose eigenstrain is chosen such that the stress field
inside exactly matches that in the liquid, i.e., O’in = —podi;. This is possible because we know
the stress and strain in both the inclusion and liquid are constant. The required eigenstrain
e of the equivalent inclusion can be obtained from Eshelby’s tensor S;;x;. Because

of; = 05 — 0l = Cijualefy — €)= Cijra(Skimn€rnn — €iy) (4.2)
Therefore
Oijkl(Sklmn - 5km51n)e;knn = —p05z'j (4-3)
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From this set of six equations we can solve for the six unkown equivalent eigenstrains e;;.
Once the eigenstrain is known, the displacements on the void surface Sy can be calculated
from

c *
Uy = U; = Sijklekla:j (44)

What is the elastic energy inside the matrix? It must be the same as the elastic energy
inside the matrix when in contains the equivalent inclusion, instead of the liquid. The total
elastic energy inside the matrix and the inclusion is,

1 *
E=E'+EY = —Zo5e;Vy (4.5)

and the energy in the inclusion is

1 1 ¢ _x
B = 5“%‘[16{]’% - 501‘11(61‘]’ — )V (4.6)

Therefore, the energy in the matrix is

1
EY = E-E'=—co;eiy

1 *
= 3 (—p0di;)Sijrier Vo

1 .
= §p08iiklekl% (4.7)

4.2 Transformed inhomogeneity

Let us now apply the same idea to solve the transformed inhomogeneity problem. A trans-
formed inhomogeneity is otherwise the same as a transformed inclusion, except that it has
a different elastic constant C’;jkl than the matrix. Let us assume that the inhomogeneity is
ellipsoidal in shape and has a volume V[, bounded by a surface Sy. Suppose it undergoes
a permanent transformation described by eigenstrain e;fjl-. Our problem is to determine the
stresses and strains distribution in the solid as well as its total elastic energy. Notice that

we use superscript / to express all properties related to the inhomogeneity.

This problem is more complicated than the liquid-in-void problem in the previous section.
This is because the inhomogeneity is a solid. To replace it with an equivalent inclusion, both
the traction force and the displacement field on the interface Sy should be matched. A
sufficient condition is to match both the elastic stress and the total strain field inside the
transformed in homogeneity and inside the equivalent inclusion.

The stress inside the inhomogeneity is,

I/ / */ ! / */
O = Ufj — 0y = z‘jkl(ezl —ep) (4.8)
This should match the stress inside the equivalent inclusion,

o = 0§ =0y = Cimlef; — i) (4.9)
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Figure 4.1: A linear elastic solid with volume V and a transformed inhomgeneity V;, de-
scribed by elastic constant ngkl and eigenstrain ez‘]/-. While the problem can be defined when
Vo has a general shape, it can only be solved (elegantly) by Eshelby’s equivalent inclusion
method when V} is an ellipsoid.

C/

The total strain inside the inhomogeneity is €f;, which must match the total strain side the

equivalent inclusion ef;. Therefore,

/

Cijkl(eil —ep) = Cijnilely — ex) (4.10)
Because €}; = Skimne€),,, we have,
[(Cljit = Cig)Sttmn + Cigrn) €5n = Cliaei (4.11)

from which we can solve for the equivalent e} = for the inclusion in terms of the eigenstrain
e, of the transformed inhomogeneity.

The total strain inside the inhomogeneity is the same as the total strain inside the
equivalent inclusion, i.e.,

ei; = ey = Sijricr (4.12)
The stress inside the inhomogeneity is also the same as the stress inside the equivalent
inclusion, i.e.,

Q

oi; = 0l = Cijn(efy — €i1) = (CijraSkimn — Cijmn)€in (4.13)
The elastic energy inside the matrix is the same in both the transformed inhomogeneity
problem and the equivalent inclusion problem, i.e.,

1
EY = —SojeVo (4.14)
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However, the elastic energy inside the transformed inhomogenity (EI/) and that inside the
equivalent inclusion (E7) are not the same. Specifically,

1 1 , 1,

’

Bl = 50{;6,{;% = 505(6% —e)Vo= éaij(ejj —e;:)Vo (4.15)
whereas,
r_ L g L oroe *
£ = §aijeijV0 = 50'”-(62-]- — e Vo (4.16)
Thus, the total energy for the solid with a transformed inhomogeneity is,
E=E"+EM= —%a{je;}’.% (4.17)

whereas the total energy of the equivalent inclusion problem is,

eq.inc. 1 *
Eeaire — pl 4 pM — —§o—{jeijv0 (4.18)

4.3 Inhomogeneity under uniform applied loads

Let us consider another important inhomogeneity problem where the inhomogeneity has
no eigenstrain by itself. Instead, the solid containing the inhomogeneity is subjected to
external loads. The load is uniform meaning that if the solid were homogeneous (with no
inhomogeneity) the stress strain fields should be uniform throughout the solid. The question
now is, What are the stress and strain fields when the solid does contain the inhomogeneity?
We can solve this problem when the inhomogeneity is an ellipsoid.

Let us construct the stress strain fields inside the solid by superimposing two sets of fields.
First, imagine that the solid containing the inhomogeneity is subjected to a uniform strain
ef;-, which is the strain throughout the solid under the applied load if the entire solid has
elastic constant Cyjp;. The stress field inside the matrix is 0;;‘- = Cijkle,fl while the stress field

inside the inhomogeneity is 0';-'?-, = C’;jklefl. The equilibrium condition would not be satisfied,

unless a body force T; = (a{}/ — af})ni is applied to the surface Sy of the inhomogeneity.

To obtain the solution of the original problem, this body force must be removed. Thus,
for the second set of elastic fields, imagine that we apply a body force F; = —T} on the
surface Sy of the inhomogeneity. The solid is not subjected to external loads in this case.
Let the stress and strain field due to F} be Jf]/» and efj/-. Superimposing these two sets of
fields, the elastic stress field inside the inhomogeneity is,

ol = 0;‘}/ + Uf; = C{jkl(eﬁl + egl) (4.19)

i g
The total strain field inside the inhomogeneity is the same as its elastic strain (since e;k;- =0),

I/
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(a) (b)

Figure 4.2: A solid containing an inhomogeneity under uniform loads. The total stress strain
fields can be constructed as a superposition of two sets of fields. (a) Let the entire body
have a uniform strain field e;j. We need to apply a body force T; = (0{]‘»/ — 0]3)n; on interior
surface Sy to maintain equilibrium. (b) Apply body force F; = =T} on Sy to cancel the extra
body force. The resulting stress strain fields are called aicj/» and ef}. Notice that this problem

has a simple solution only when the inhomogeneity is an ellipsoid.

At the same time, we can construct the stress strain fields of an equivalent inclusion with
eigenstrain e;; in a solid under a uniform applied load. The elastic stress field inside the
inclusion is,

I _

oi; + 07y — 05y = Cigualera + ek — eqy) (4.21)

]
The total strain field inside the inclusion is,

Aqel (4.22)

€ij T €ij

Similar to the problem in the previous section, both the elastic stress and the total strain
have to match between the inhomogeneity and the inclusion problems. Therefore,

!

Cz'jkz(efz +ey) = Ciulen + e —en) (4.23)
eh el = ente (4.24)

Eq. (4.24) simply leads to ef; = ef;. Plug it into Eq. (4.23), we get,

C;jkz(efz +eg) = Cymlen + ey — k) (4.25)

!

[(C;jkl - Cz‘jkl) Skimn + Cijmn | € = (Cijir — Cijra)eit (4.26)
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Czjkl

Figure 4.3: An equivalent inclusion problem that gives the same stress and total strain
fields as the inhomogeneity problem in Fig.4.2. The stress strain fields can be constructed
as superpositions of two sets of fields: (a) A homogeneous solid (zero eigenstrain) under
uniform strain efj‘ (b) A solid containing an inclusion with eigenstrain e;; and zero applied
load.

From this we can solve for the equivalent eigenstrain e . Notice that e, is proportional
to the difference in the elastic constants Cjji — O;jkl and the applied field ez, as it should.
Once the equivalent eigenstrain is known, the stress and strain fields can be easily obtained.

Now, let us determine the total elastic energy and enthalpy of the inhomogeneity problem.
To compute total elastic energy, we measure the work done during a reversible path that

creates the final configuration. Let system 1 be the solid with inhomogeneity under uniform

strain ef}, as shown in Fig. 4.2(a). The elastic energy of this state is,
B = o AedVar + 10 etV = 10 SelV + 1( A aheAV, (4.27)
L= 57 2 07 2 2 713/ 70 '

where V), is the volume of the matrix, Vj is the volume of the inhomogeneity, and V' is the
total volume of the solid. In system 1, a body force T; = (U;-;‘-’ — ag‘]‘-)ni is applied on Sy
to maintain equilibrium. We then gradually remove this body force and go to system 2,
whose energy Fjs is the desired solution. Let AWjs be the work done to the solid during
this transformation, then £ = Ey = F; + AWj5. Notice that during this transformation,
both the internal force on Sy and the external force on S.; do work. Let these two work

contributions be AW and AW respectively.

Let us first compute AW, During the transformation from E; to E,, the body force on
So decreases from T to 0, so that the average body force is T; /2. The additional displacement
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. /
on Sy is uj . Thus,

in 1 d
0

]_ Al A C/

]_ ’ /
—(03 —03)/ nuj dS
2 So

]. ! /
= 5(03 —03)/ eg; dV
Vo

1 .

= 5(01‘3‘ - 0’3)62%
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(4.28)

Because the applied load does not change, the factor of % does not appear in AWS*. Let
TJA = a;;‘-ni be the traction force on the outer surface Sy, then

AW = /S THus dS

(4.29)

Notice that u? is the displacement field due to body force F; = —Tj on Sy (see Fig. 4.2(b)).

By Betti’s theorem,

AWS = /S Fi(u +uS)dS
0

(4.30)

where uf + u?l is the displacement field due to applied force TjA. Thus,

AWSY = _/s (02 —ag)ni(uf+u§)ds
0
_ A Ay( A c
= _<Uij - 0ij)<€ij +€ij)vo
Therefore,
E = Ey+ AW} + AW

- 95 i5Cij ij

= 1aAeAV — l(aAl — o) (e + eV

T 97 QN 1j/\"ij ij/) v 0
L 4 oa L AN T

= §0ij€ijv - 5(‘%‘ - Oij)eifj‘/o

1 1 / 1 /
—oledV + E(afj‘- - aé)ef}VO + 5(04

(4.31)

/
— o) Vo = (o8 = o)(el + <)V

(4.32)

The enthalpy of the system is obtained by subtracting off the work done by the loading

mechanism from internal energy F, i.e.,

H=FE—-AWpn

(4.33)
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where
AWy = / T (uf +us ) dS
Sext

o A _ext; A c

= / oung (uj +uj)dsS
Sext

_ A A ext

_ A A A AN I
= o6,V — (Uij _Jij)eijvb

2F (4.34)
Therefore,
H = —-F
= —%agef}‘/ + %(af}l — Uf;)eg% (4.35)

The fact that for an elastic medium under applied load, AWy = 2F and H = —F is a
general result that holds for any solid if it is at a state of zero stress everywhere when zero

external stress is applied. For example, this result is used in [10].
We can define

1 A_A

as the enthalpy of the solid without the inhomogeneity under applied load. Then
AH = H-— Hy
1 ! !
= 5(0;2 — Jf})efjvo
1,

= §(Cijkz — Oz‘jkl)ef}ef]/-vo (4.37)

In the limit of 6Cyj = Cjjpy — Cijia very small, then

el = e+ 0(6C) (4.38)

1
AH = §5C’ijkle$efl%+0(5@jkl)2 (439)

Eshelby calls the expression AH = %5C’ijkleéefl% the Feynman-Hellman theorem.

In the above derivation, the volume V' of the solid is assumed to be large enough so that
the image effects at S.y are ignored. When the image effects are accounted for, the above
results can be rewritten as,

1,

AH = S(Cyu — Cijkl)/ eijer; AV (4.40)
Vo

where efj{ = eiAj —i—efj%—e;‘f, and eii’;-“ accounts for the image contribution. Note that the identity

H = —F and the Feynman-Hellman theorem holds independent of the boundary condition

on Sext.



Chapter 5

Cracks I: Energy

5.1 Ellipsoidal void

When the elastic stiffness tensor Cj;; of the inhomogeneity goes to zero, we have a void. The
solution for an ellipsoidal void under uniform load is no different from that of an inhomo-
geneity under uniform load, except that Cj;; = 0 further simplifies some of the expressions.
For example, the total stress inside the void (inhomogeneity) has to be zero. Therefore, the
match between the stress field inside the void (inhomogeneity) and the equivalent inclusion

becomes,

0 = Cliulen + €)= Cigmaler + €y — €5) (5.1)
Hence,

e+ e — e =0 (5.2)
or

_61?1 = eél = €y — €hl (5.3)

—op; = 05 = Cynlely — €)= Cijia(Skimn — OkmOin) € (5.4)

This means that the total stress inside the equivalent inclusion (when no stress is applied)
must exactly cancel the applied stress. Eq. (5.4) provides a simple relationship between the
applied stress and the equivalent eigenstrain.

The total strain inside the void (inhomogeneity) is

I A cd _ A c %
e =€, tej=e el =e; (5.5)

which is simply the eigenstrain of the equivalent inclusion. This should not be surprising,
because the equivalent inclusion must be under zero stress, so that its total strain must be
equal to its eigenstrain. The (extra) enthalpy of the void is,

1

/ 1 .
AH = 5( i — Cigm)egjen Vo = _503%% (5.6)

A

Notice that from Eq. (5.4), e; can be solved from applied stress o;;.
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5.2 Penny-shaped crack

We obtain a crack when one dimension of the ellipsoidal void (a, b, or ¢) goes to zero. Let
us consider a simple case of penny-shaped crack, which corresponds to the condition: a = b,
¢ — 0. The Eshelby’s tensor for such geometry in isotropic elasticity has been derived [3].

(13 —8v) ¢
Sunn = S = ﬁa
m(l—2v)c
_ e
S3333 (1-7)a
B _mBv—1)c
Sz = Soonn = 3901 — 1) a
B _m2v—1)c
Siizz = Soazz = 30— a
v m(dv+1)c
S3311 = Sszp = 1 (1 — g—)
—v v a
S _ w(T=8v)c
P2 32(1-v)a
1 m(v—2)c
S3131 = Sazpz = 3 (1 + ﬁa)

These expressions are valid in the limit of ¢ < a. Let us now apply a tensile load in the
direction normal to the crack surface, i.e. the only non-zero component of the applied stress
is o4, As a first step we need to obtain the equivalent eigenstrain e

5.2.1 Equivalent eigenstrain

In isotropic elasticity, the elastic stiffness tensor does not mix shear and normal strain com-
ponents. Neither does the Eshelby’s tensor in this case. Therefore, even though we need to
solve 6 equations given by Eq. (5.4), and we already know that all shear eigenstrain compo-
nents must be zero, i.e. e, = e3; = e3; = 0. We only need to solve the normal eigenstrain
components €3, €5, €55. Plug in the Eshelby’s tensor into Eq. (5.4), we obtain the following
explicit equations.

_oh = {_ 21 N 13umc } et [_ 2ur - (16v — 1),u7rc} et — (2v + 1),u7rc€§3
1—v 16(1 —v)a 1—v 16(1 — v)a 41 —-v)a
oA [_ 2uvy (16v — 1);1%01 o [_ 24 N 13ume 1 o (2v + 1),u7rc€*f
22 1—v  16(1—v)a | " 1—v 16(1—-v)a| * 41 —-v)a *
N (14 2v)pume , (14 2v)umce , ure
OB T T —v)e M 41 —v)a 2T 21— ) ®

Notice that of} = a3, = 0. To construct a solution that leads to finite 044 at ¢ — 0, we need
to let e53 — oo but let e55c remain finite. Let e]; and e, remain finite. Define

e = lir% €53C (5.7)
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Then
0 2p o 2w (Qutlpm
= ——e]; — €59 — e
l-v 1-v* 4(1-v)a
0 2pv o 2p o (v Dpr
= — e1 — €59 — e
l-v 1-v* 4(1-v)a
e AN
Ts3 21— v)a"
Therefore,
2(1 -
P— waé‘é (5.8)
T3
* * <1+2V)7T * (1+21/)<1_V> A
— - et = — 5.9
€11 = €22 8(1—|—I/)a6 A1+ o) T33 (5.9)

Notice that ely = e*/c > e}, = eb,.

5.2.2 Griffith criteria
The (extra) enthalpy of the crack is

AH = ——O'A.@ik.‘/b

2m N
= 3 oimeta’
41 —v)
The driving force for crack growth from elastic interaction is,
. OAH 4(1—-v
o= O A g (5.11)

Therefore, a larger crack has a larger driving force to grow. The elastic driving force for
crack growth is always positive. On the other hand, there are situations where a crack is
stable (stationary) when a finite load is applied. This means there must be other driving
forces that inhibit crack growth. Griffith [10] noticed that when a crack grows, new surfaces
must be created, which increases the total energy. Let the surface energy (per unit area) of
the solid be v and let the surface area of the penny shaped crack be A, A = 27a?. Then the
Gibbs free energy of the system is,

4(1 —
AG=AH+ Ay = —(3—1/)((7?3)%3 + 2mya? (5.12)
i
The total driving force for crack growth is,
OAG  4(1—
flot = — _ 4=y (04%)%a® — 47va (5.13)

da
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At the critical condition fi°* =0,

A THY
=, /— 5.14
033 (1 . V)CL ( )

This is the Griffith criteria [10] for crack growth. For a penny shaped crack with a radius a,
it will grow if the applied stress exceeds the value given by Eq. (5.14). The critical condition
can also be written as,

a= % (5.15)

This means that under the applied stress o4, cracks with radii smaller than Eq. (5.15) are
stable while those with larger radius will grow even larger (eventually propagate through the
solid). The critical value a is usually called the “Griffith crack length”.

Similarly, if we apply a constant shear stress oiy, at infinity, the critical stress can be
found in the same way as above. The result is

A Ty (2 - v) (5.16)

713 2(1-v)a

5.3 Slit-like crack

Many of the theoretical and experimental works on cracks deal with the 2-dimensional (plane-
strain or plane-stress) problem. A 2-dimensional crack problem in plane-strain can be solved
using Eshelby’s approach by letting one of the dimensions of the ellipsoid go to infinity. In
the following, we will take the limit: ¢ — oo, b — 0. The result is a slit-like crack with
length 2a, as shown in Fig. 5.1.

Preteetts

2a

RERERREY

Figure 5.1: Slit like crack under uniform tension stress os.
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5.3.1 Equivalent eigenstrain

To solve this problem, we first need to obtain the Eshelby’s tensor in this limit. Let us first
take the limit of ¢ — oco. The resulting Eshelby’s tensor in isotropic elasticity is,

Mp2

Sun = 2(11_1/) _IZa_:—i()l2b+(1_2y)aL—|-b}
M2

S22z 2(11—y) _?aii?g+(1_2y)aib}
T2

S1i22 2(11—u) _(a:)_b)Q_(l_2V)a_be}
T2

o = 2(11—1/) _(aflirb)2 _(1_2y>aib}

Here we only list the “relevant” components of the Eshelby’s tensor. Since we only apply
o4, and shear and normal strain components do not couple to each other (either in the
elastic stiffness tensor or in Eshelby’s tensor), the shear components of eigenstrain must be
zero. Since we are considering a plain strain problem, e}, is also zero. Thus, we only need
to solve for €%, and e, in terms of o4,. Similar to the previous section, Eq. (5.4) becomes,

A (2&2 + ab)lu * abu *
o1 (1—-v)(a+ b)2611 (1—-v)(a+ b)ze22
A o ab:u * (ab + 2b2)lu *
—099

TO—v)a+or ™M T T v)(atbR®

Take the limit of b — 0 and notice that o4 = 0, we have,

BRI (1-— 1/)@622
bu bu
A - _ * *
022 1— V)aen 1- J/)ae22

Define e* = lim;_,g €5,b, and let e]; remain finite as b — 0, we have

0 = _ P ok
1-v ' (1-v)a
B R
722 (1— y)ae
Therefore,
1—
e* = ( V)CLU?Q
. e 1—v
‘i = T5- % _uazAz
2a 20

Notice that e}, = €*/b>> e];.
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5.3.2 Griffith criteria

The volume of a elliptic cylinder of length c is
Vo = mabe (5.17)
Hence the (extra) enthalpy of the crack is

AH = ——O'.A.Qik.‘/b

= ——(0542)2@20 (5.18)

The enthalpy per unit length of crack is

(A=)

AH/c =
/e 2

(035)%a” (5.19)

The driving force (per unit length) for the crack growth from elastic interaction is,

_O0AH[c (1-v)7
da

The surface area (per unit length) of a slit-like crack is A/c¢ = 4a. Then the Gibbs free
energy per unit length (along the crack) is,

fe = (o32)%a (5.20)

AG/e= AH/Jc+ Ayje = —L=1)T

2 (035)%a* + 4ya (5.21)

The total driving force (per unit length) for crack growth is,
OAG/c  (1—v)r

o = OEC (080~ 1y (5.2
At the critical condition ff°* =0,
Apry
A
=) —"L 5.23
2 (1—v)ma (5:23)

This is the Griffith criteria [10] for crack growth in plane strain.! This result can be easily
converted to plain stress condition, which reads,

0542:\/4M(1+u)7:\/2m (5.24)

yes yes

!The original Griffith paper contains a typo making it not in perfect agreement with Eq. (5.23).



5.4. FLAT ELLIPSOIDAL CRACK 71

where E = 24(1 +v) is the Young’s modulus. The conversion can be done by expressing the
result in terms of the Kolosov’s constant,

o { 3 —4v  for plane strain (5.25)

3—v
[ for plane stress

The elasticity solutions of plane strain and plane stress are the same if the result is expressed
in terms of k. For example, the critical stress expressed in terms of x is,

16y

A

=, —" 5.26
022 &(1 —F/i)ﬂ' ( )

If we apply a constant shear stress o4}, we can show that the Griffith criteria for critical
stress is (the same as in tension)

16y
A
=, — 5.27
712 a(l+ rK)mw ( )
In plane stress, this means,
2vE
o =] = (5.28)

aTm

5.4 Flat ellipsoidal crack

A flat ellipsoidal crack (a > b, ¢ — 0) is a general situation between the two extreme
cases considered above — penny-shaped and slit-shaped cracks. Studying the flat ellipsoidal
crack would help us answer an important question: Would the crack tend to become more
elongated (become slit-like) or less elongated (close to penny-shaped)?

Let us consider the case of simple tension: o5, with all other components of applied
stress zero. It turns out that, similar to the penny-shaped crack case, as ¢ — 0, we need to
keep

hH(l) esqc =€ (5.29)
constant. The solution is (Mura 1987, p. 244)
1—v)b
oo 1-7) o (5.30)

nE(k)

where E(k) is the elliptic integral

w/2
E(k) :/ V1 — k2sin® w dw (5.31)
0

w/2 d
F(k) = / - (5.32)
0 1 — k2sin?w

ko= 1-0/a? (5.33)
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The extra enthalpy is,

The Gibbs free energy is,
27(1 —v) ab?
AG = — (3u ) B (o45)% + 2myab (5.35)
The Griffith critical conditions are,
A
0 8aG =0 (5.36)
A
8a—bG = 0 (5.37)

If condition Eq. (5.36) is met before (at a lower 04;) Eq. (5.37) is reached, the crack would
extend along x; direction and become more elongated. Otherwise, the crack would extend
along z, direction and become more penny-like.
Using the identities,
dE(k) E(k) — F(k)

& - ? (5.38)
dF(k)  E(k)/(1—k*) — F(k)
% - p (5.39)
dk b
dk b
we obtain,
OAG 20%(1 — v)m(ody)? b? F(k)
%% — 3 ER(R) [1— R (1— E(k))] + 27myb (5.42)
OAG 2ab(1 — v)m(osy)? b? F(k)
— = —= 24— (1 ——=—=% 2 A4
ab 3 uE() M Bl )| T (5.43)
The two conditions gives rise to the following critical stress expressions.
JA,a . 3N7k2E2(k)
B Vb1 —v)[(-142k2)E(k) + (1 — k2 F (k)]
Ab 3uyk?E2 (k)
) = 44
%33 \/ b(1— ) [(1+ K)E(k) — (1 — k) F (k)] (5.44)

The crack would grow if the applied stress reaches the lower one of the two. It can be
shown that for a > b (k > 0), 045" < 04" (Mura 1987, p.245). This means that the crack
would always grow in the x5 direction until it becomes penny shaped. Applying more stress
components, e.g. o together with o4 could change the situation.



Chapter 6

Cracks II: Driving force

6.1 Crack Opening Displacement

We now consider the elastic fields — displacement, strain and stress — of a slit like crack.
Under a tensile loading stress o4y, the slit like crack will open up. Let d(z) be defined as the
distance between the crack faces as a function of z. In a purely elastic model, d(+a) = 0,
i.e. the crack tip opening displacement is zero. We can obtain the displacements along the
crack face by considering the equivalent inclusion

uj(x) = ej;x;

The displacement in the x direction is zero, and the displacement in the y direction on the
crack face is

Uy = €3y
The equivalent inclusion is an ellipse with semi-axes a and b (with b — 0). Thus on the
crack surface, x and y are related by the equation
2 2
€ Y
@ et

so the displacement field on the upper surface of the crack at = € [—a, a] is

a
Therefore
w(e) — 20y (o)
2 " .
A
_ 022(1 B V) a2 — 12
1
Thus, the crack opening displacement in plane strain is
A
1—
d(:l?) — QM a2 — 2 (6.1)
7
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Figure 6.1: Opening displacement d(z) of a slit like crack.

The crack opening displacement in plane stress is
A

d(x) = 2% a? — x? (6.2)

With the expression for d(x), we can calculate the enthalpy of the crack by measuring the
work done while opening up the crack, i.e. (in plane stress),

AH 1 [

which is exactly the enthalpy calculated previously.

6.2 Stress Intensity Factors

We now consider the stress field in front of the crack tip. We will determine the nature of
the stress field singularity in front of the crack tip. Let r be the distance to the crack tip.



6.2. STRESS INTENSITY FACTORS 75

We will show that as r — 0, the stress field diverges as o(r) — 1/4/r. To measure the
“intensity” of this singularity, the stress intensity factor is defined to be,

K = liII[l) o(r)V2mr (6.3)
The subscript I denotes the mode of the crack. There are three crack opening modes as

shown in Fig. 6.2: tensile (mode I), in-plane shear (mode I7), and out-of-plane shear (mode
I11).

l ¥ - (a)

(b) ()

Figure 6.2: Crack opening modes: (a) mode I — tension, (b) mode /I — in-plane shear, and
(c) mode I1I — out-of-plane shear.

In order to determine the stress intensity factors of a slit like crack under tension, the
stress field around the crack must be evaluated. This can be done by the Eshelby’s tensor
outside the equivalent inclusion. Previously we have introduced the auxiliary tensor D;ji; to
relate the constrained displacements inside the inclusion to the eigenstrain. For ellipsoidal
inclusion, D;jy, is a constant. Similarly, we can can define D;?]‘?kl as the tensor to relate the
constrained displacements outside the inclusion to the eigenstrain inside the ellipsoid. D7,
is no longer a constant but is a function of x. Similarly, we can define a new Eshelby’s tensor
to relate the constrained strain outside the inclusion to the eigenstrain, §7%;,. The auxillary
tensor Dgy, for a two dimensional elliptical inclusion (elliptic cylinder) is

o0 CLb o —1
Diju = o (22);; ze21k(7y) dO (6.4)
T™Jo

where

1
o) = (1 - %) (6.5)
A= ()\1, )\2) = (/ﬁa, ka) (66)
B=Ak= \/CLQCOSQQ-i—bQSinZQ
v=k-x/k
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In the following, we derive the stress field on the crack plane, i.e. x = (2,0), x > a. In this
case (y = 0), k() can be written as

5(7) = 1 (1- [z cos | ) (6.9)

a2 cos? 6 + b2 sin® 0 (12 — a?) cos? § — b2 sin® §

In isotropic elasticity (zz);jl is known analytically,

S S
(22);; = dij 2(1—1/)ZZZJ

thus

1 1
(ZZ)i_j1ZkZl = ; (5@%21 — mzizjzkzl)

ijokl can be written in terms of a second order and fourth order tensors Hy; and J;jx

1 1

2(1—v

T —ab 1 17|

2
T —ab 1 v
Jijki = / ——zizizpm |1l — — | 40
J o 2m g2 /N2 = 32
All of the components of the above tensors can be written in terms of a few integrals. Define
the integrals

2 COSQkQ
o [,
o a?cos?f+b?sin” 0

where

21 2k
cos“F 0 1
Jp = / CP SR do
o a?cos*f+0%sin“ 0 /p2 — b2 tan? 6
ab
L, = —%[Ik—lxm]
where
p=Va2 — a2
Then
Jiin = Lo

Jozes = Lo—2L1+ Ly

Jiez = Jiziz = Jioz = Jonie = Ly — Lo
Hy = LIy
Hyy = Lo— 1y
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all other terms are zero. Evaluating the integrals gives

2m
=%
2 27b 9
= -7 +o0)
T
12 - ;‘FO(()Z)
2m
Jo = o
0 ab\x!++ )
2r 2mb 9
J = an—m-i--i-O(b)
4 2
Jo = an+O(b)

Ly = 0+0(@0%
L = b (1—m>+0(b2)

a p
N b |z 2
SR R e

The Eshelby’s tensor inside the matrix is

(e.) (o] /’L (o] [o¢]
Sijkl = _XDikkj(Smn Y (D‘ D

2 inmj + jnma

+ D3,

jmnt

+ D5 i)

mnj

and the non-zero terms of the Eshelby’s tensor are

St = 31_—2: %
Sypoe = Siim = _11—_2:%
San = _11+—2VV %
Stz = - 1 i y%
where

b ||
A=2(1-1H
a( 1/17/-.2_012)

From previous analysis of a slit like crack under uniform tension using the equivalent eigen-
strain method the eigenstrain was determined to be



78 CHAPTER 6. CRACKS II: DRIVING FORCE
The constrained stresses can now be written using the stiffness tensor and Eshelby’s tensor
(2) - s(2)
022 €22
_ Cunr Cha Sun - Sz el
Cao11 Caaz Saz11 Sazo2 €39
BRI =-1C)
Sl Bt e Sty e A BN

() )

The total stress is

tot

( o >
tot
022

Now define the variable » =  — a as the distance from the crack tip. Then the leading term
of total stress in the limit of r — 0 is

tot
. 01 _ 1 /g A
}}L% ( Uggt ) = ( 1 ) 27“022 (6.11)

Thus, the stress intensity factor, K7 is

K = liII[l) o(r)V2nr = \/raoy, (6.12)

6.3 Another derivation of crack extension force

Using the crack opening displacement d(z) and the stress field o3 (x) in front of the crack tip,
we can recompute the driving force for crack extension using yet another method. Consider
the two dimensional crack under uniform tension 045, as shown in Fig. 6.3. Imagine that the
crack half-size extends from a to a + da. Initially we apply additional traction forces TjjE on
the lower and upper surfaces of the crack in the region of [a,a + da] and [—a — da, —a] so
that the shape of the crack remains the same as before. We then slowly remove the traction
forces so that in the end we have a crack with half-size a+da. The work done by the traction
forces is the change of system enthalpy, i.e. dH = dW. The thermodynamic driving force
onais f=—(dH/c)/da. Notice that

Ti(x) = opl)

Ti(2) = —opla)
d(z) = uy —ug (6.13)
Thus
SH 1 a+da o
T:2§/a (1}+U;F+T} u])dx (614)
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+ AAK \;\‘Jr X
I; I u

a oa

Figure 6.3: Reversibly opening up the crack by removing the traction force TjjE on the upper
and lower surfaces, during which the surfaces experience a displacement of uji

The overall prefactor of 2 accounts for the simultaneous extension of both sides of the crack.
Notice that 7} is evaluated when the crack half-size is a while d(z) is evaluated when the
crack half-size is a + da. Thus

SH a+da
= [ B @hd@)sds
a+da A
x 2045(a — v)
= — ) mcﬁ 22 V(a+da)? — z2dx
2(05)*(1 ~v) / Viatoap -2z
pum —_— :L‘
2 a V 22 — a?
~ 2(0%)*(1 — v) ba(2a + da)
= . 1 ™
In the limit of da < 1 and keeping only terms linear with da, we have,
H 1-—
of = ——V(U§42)27m5a
c
and the driving force is
)(AH 1-—
f=- (AH/c) = V(02A2)27m (6.15)
oa 1

which is exactly the same as obtained before.

6.4 J-Integral

In 1951 Eshelby showed that an elastic singularity can be computed using the energy mo-
mentum tensor [11]. In 1968 Rice extended Eshelby’s derivation to include crack driving
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force and called it the J-integral [12]. Because the J-integral is applicable for infinite as well
as finite, homogeneous as well as inhomogeneous, linear as well as non-linear materials, it is
a very powerful method for determining the crack extension force.

The J-integral in its three dimensional form states that the force on an elastic singularity
in the z; direction is

S

In two dimensions, the J-integral is often written for the z direction (.J,) for a crack along
x direction as

ou
J—/Fwdy—T-gds (6.17)

where I is a contour line going counter-clockwise from the bottom surface to the top surface
of the crack. The J-integral has the following properties.

1. J; is the driving force for the singularity along x; direction.

2. J; is invariant with respect to the shape of surface S or contour I' as long as it contains
the same singularity.

We will prove these properties in the following.

6.4.1 J-integral as driving force

In order to show that the J-integral is indeed the force on a crack, let us consider a finite
elastic body shown in Fig. 6.4. The body is under constant load Tf"t boundary condition on
part of the surface S; and constant displacement boundary condition on other part of the
surface S,. The total enthalpy of the system is

H = E—/ Tje"tuj ds
St
where
E= / wdV
and w is the strain energy density
w(ei;) = / 7i; dey;
0

The driving force on the singularity is

o oH
0&;

fi=
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Figure 6.4: A finite solid under constant traction 7;** condition on Sy and constant dis-
placement condition on S, containing a crack tip at &. An arbitrary volume inside the solid
Vo contains the crack tip. Sy is the surface of V. Vg is the volume outside Vj.

In order to determine f;, we will first compute the change of total enthalpy 0 H when the
crack tip moves by 6&;. Let dw and du; be the corresponding change of strain energy density
field and displacement field. Then,

SH = / swdV — / T6u; dS (6.18)
\4 St

Let us now consider a sub-volume V[, within the solid and the corresponding surface Sy. Let
Ve =V — V5. The change of elastic energy stored inside Vg is

(511) dV = / Uijéeij dV
Ve

= / O'ijéuj',i dV
Ve

= / (O'ij(S'LLj)’Z' dVv
Ve

Ve

Apply Gauss’s Theorem

/ 5de:/ Tf"t(Sude—/ T;ou; dS
Ve St So
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VAN
Mj"‘SUj l/lj+8uj

Figure 6.5: An intermediate state (middle) is introduced to facilitate the derivation of energy
change as the singularity move from &; (left) to & + 0&; (right) (see text).

Thus, the enthalpy change for the total system becomes

0H = /5de—|—/5de—/ Tje"téude
Vi Vo ST

= /(5de—/ Tf"t5ujd5+/ Tf’(téude—/ T;6u; dS
Vo St St So

= /(5de—/ T du; dS (6.19)
Vo So

This means that the driving force for the crack can be computed based on the information
within an arbitrary volume V{ and its surface Sy, as long as V[ contains the crack.

Now we wish to convert this equation into a similar form as the J-integral defined above.
The key is to analyze the energy term 0F = fVo dwdV in the above equation and to see
how it depends on 0&;. Notice that before the motion of the singularity, the traction force
and displacement field on Sy are T and u; respectively. After the singularity has moved to
& + 0&;, they become Tj 4 07} and u; + du; respectively. What we want is 6 £, the change
of elastic energy stored Vj, caused by the singularity motion.

Because energy is a state variable, i.e. it does not depend on how the state is reached,
we can derive 0 E/ by imagining that the system goes from the initial state to the final state
through an intermediate state, as shown in Fig. 6.5. In the intermediate state, the singularity
has moved to & + 0§;, but the traction force and displacement field on Sy are 7} + MA’]- and
uj + 04, different from the final state. The intermediate state is chosen (i.e. adjusting 572)
such that the elastic fields inside V} is a simple translation of the fields in the initial state
by 0¢;, i.e. rigidly following the singularity. This means that
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« 8Tj
oL = ox; 0%
_ aakj
- 8:61 ké&
. ou;

Let the energy of the initial, intermediate and final state be Fy, Fy and E3. Then the energy
change from initial to intermediate state is,

ow
Ey — E) = / —0& dV
Vo axl
The change in energy from intermediate state to final state can be obtained by measuring
the reversible work done on the surface Sp. The average tractions in this process is Tj +

%6Tj + %6@ Hence
1 1 _. .
So
Neglecting O(6€?) terms, we have
By Ey = / Ty(5u; — 8d;) dS (6.21)
So

Hence,

SE = By— B
- awé@ dV+/ T)(6u; — 5it;) dS

Vo a So

0H = (5de—/ T;ou; dS
Vo So

_ gwagzdv+ /

VQ SO

= Mseav / T;6ii; dS
So

Vo axz

T'J((SUJ — 51%) dS — /S T](Suj dS

ow

— 8]
= - [ getadv+ /S 5 0648

Therefore, the driving force on the singularity is

oH ow 8u
P = — = d - j d

= /(wz‘—TjUj,z')dS
So
- J




84 CHAPTER 6. CRACKS II: DRIVING FORCE

6.4.2 Invariance of J-integral

Since the driving force on a singularity is unique, the J-integral must be invariant with
respect to the surface Sy on which it is evaluated, as long as Sy always contains the same
singularity. But the invariance of J-integral can also be proved more rigorously. In order to
prove this, we first show that over a closed surface Sy containing no defect, the J-integral is
zero. Recall that

Jo = 3_wdv_/ 7. 9% 4g
So

Vo al'k 8xk
The derivative of strain energy density is

ow ow Oe;j
oxy, Oe;j Oxy,

82Uj
O'. - —
* (9xk8:cl

_ 9, 0%
N 8$Z U”@xk

The equilibrium condition o;;, = 0 was used in the last step. Thus the J-integral becomes

0 Ou, ou;
= — ) dV — T.——14
I /Vo ox; (U” 8a:k> v /So T 0xy o

an 8u
/Sonajﬁa:k Jaxk
=0

Now consider two contour lines I'; and I's around a crack tip in a 2-dimensional problem.
As shown in Fig. 6.6, there exist a complete contour: I' =1y + B, —I'; + B_ that contains
no singularity, so that the J-integral evaluated on I' is zero, i.e.,
J(T) = J(Ty) = J(T3) + J(B,) + J(B.)
Noticing that
J(By)=J(B-)=0

since dy = 0 and T = 0 on the crack faces, we have

J(F1) = J(F2)
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Figure 6.6: I'y and I'y are two different contours around the crack tip. I' =11+ B, —I's+ B_

form a complete contour containing no defects.
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Figure 6.7: Contours Used to Evaluate The J Integral For Rice’s Example Problem. A slit
like crack in a long slab with fixed displacements at the top and bottom. The dashed lines

St ,99, S3, Sy and S5 form the contour to evaluate the J-integral.
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6.4.3 Applications of J-integral

We now apply the J-integral formula to a few examples and demonstrate how it can facilitate
the calculation of crack extension driving forces.

Example 1. Let us first look at an example considered by Rice [12]. Consider the crack
in a very long solid slab as shown in Fig. 6.7. The top and bottom surface are subjected
to constant displacement boundary conditions and the left and right ends are subjected to
zero surface traction boundary conditions. In this case, the most convenient contour goes
around the out-most boundary of the solid: I' = S; + S5 + S3 4+ 5S4 + S5. The 2-dimensional
J integral is

J:/wdy—t~a—ud5
Ox

Notice that on Sy and Sy, dy = 0 and du/dx = 0. On S; and S5, w = 0 and Ju/dzx = 0.
On S3, w = Wy and and du/0x = 0. Therefore, the total J-integral becomes,

J = wsh

Example 2. Consider a contour around a two dimensional crack with a blunt tip. Since J
does not depend on which contour is used, we can shrink the contour all the way to the tip
of the crack such that [12]

J:/Fwdy (6.22)

Thus, the J integral can be thought of as the average strain energy density around the crack
tip.

Example 3. For the third application consider a mode-I crack with stress intensity factor
K7 as shown in Fig. 6.8. We will derive the relationship between J and K;. Because the
J-integral is invariant with respect to contour shape (as long as it contains the crack tip),
we choose the contour I' to be a circle of radius r in the limit of » — 0. In this limit, the
leading singular field dominates the J-integral.

The stress fields around this crack can be calculated using isotropic elasticity stress
functions in two dimensions. The leading singular terms are [4]

K; 5 0 1 30 n
Opp = — COS — — — COS —
Vorr \ 4 2 4 2

K; 3c059+1cs39 .
Opg = — | — — 4+ —cos—
0 o \4 2 T4

K (1 .0 1 39)
Opg = —F—= | —-smm—=-+-smn— | +...

2mr \ 4 2 4 2
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b

Figure 6.8: A model of a crack in 2D. The circle with radius r is the contour I" used to
evaluate the J-integral

Notice that

o X

w

Q)
?
R

Hence the strain energy of the solid should be finite. The stress intensity factor can be
calculated using the leading terms of the stress. The strain energy density is

1
w=3 (0o0€o0 + Orrerr + 20,9€10) (6.23)
and
T, = on
Ty = o9
Thus
" 1-2
/wdy:/ wr cos 0df = I/KIQ
r - Su
and

Ju T ou 3—2v
T -—dS= | T -—rdf=— K?
/ Ox S / o su !

Thus the J-integral is

—T

1—v
21

J =

K} (6.24)
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Recall that for a slit like double crack with half-width a, the stress intensity factor was
derived previously as K; = y/maogy. Therefore

_1—2V

J
2p

ma(og,)?

The enthalpy of this crack is

c 20

AH 1w

7r(022)2a2

(6.25)

and its derivative is the driving force on a

0 AH 1—v

fo="3a ¢ =
= 2J

ma(03,)’

fa = 2J because when a increases by da, both cracks move ahead (in opposite directions) by

da.

Although in the examples considered above, the materials are always linear elastic, the
J-integral is also applicable to non-linear elastic materials. Because we may use a non-linear
elastic material as a model for a elasto-plastic material (provided our load always increase
monotonically, i.e. do not unload), J-integral has been applied to elasto-plastic material as

well.



Chapter 7

Dislocations

7.1 Introduction

The idea of a dislocation was originally introduced by mathematician Volterra in 1907 [13].
In his paper, Volterra introduced several types of “dislocations” by the displacement of a
cut cylinder. The types of dislocations proposed by Volterra cover the class of modern
elasticity models of dislocations and disclinations. However, the importance of Volterra’s
dislocations in elasticity were not appreciated until 1934, when three scientists, Taylor,
Orowan and Polanyi independently proposed that dislocations are responsible for crystal
plasticity [14]. They postulated that these types of defects could exist in crystals and that
their motion under stress (much lower than previous theoretical predictions) can explain the
actual yield stress of metals. Dislocations remained a theoretical model until the 1950’s, when
it was first observed in experiments. The most common method of observing dislocations is
Transmission Electron Microscopy (TEM) [15].

shear stress t

— —
0000 0000
® 06000 --.-.-2-.-.-A
0000 0o 0 00
0000 0o 000
-+ -

(a) (b)

Figure 7.1: (a) A perfect crystal consisting of a periodic array of atoms subject to external
loading. (b) The crystal has undergone permanent shear deformation. The upper half of the
crystal has slipped to the right by one lattice vector with respect to the lower half.

To see how dislocations could explain the low yield stress of metals, let us first consider
the theoretical strength of a perfect crystal against plastic shear deformation [15]. Let 7
be the shear stress needed to cause the spontaneous shearing of all the bonds across the

89
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plane A, such that the upper half crystal is shifted to the right by x with respect to the
lower half. Because of the periodicity of the crystal structure, 7 is a periodic function of x
with periodicity b, see Fig. 7.1(b). The simplest model (see Section 7.7) would give us the
expression,

b 2
(o) = 22 sin 270 (7.1)
The maximum of function 7(x) gives us the theoretical critical shear stress,

ub (7.2)

Tth = 2ma
This is the stress under which the crystal is unstable against spontaneous shear deformation
shown in Fig. 7.1(b). Using various models of 7(z), the theoretical critical shear stress is
found to be between 1/3 and /30, which is more than 3 orders of magnitudes higher than
the experimentally measured yield stress in real crystals. The yield stress is the stress at
which macroscopic plastic deformation is observed.

The apparent discrepancy between theory and experiments can be resolved by noticing
that crystals are not perfect, as shown in Fig. 7.1(a), but contain defects such as dislocations,
which can move and introduce plastic deformation at much lower stress than 7,. A model
of edge dislocation is shown in Fig. 7.2. Imagine that only part of the atoms above plane
A has slipped with respect to those below the plane by a lattice vector b. The area over
which the slip has occurred is shown in the dashed line in Fig. 7.2. The configuration is
equivalent to inserting an extra half plane of atoms inside the crystal (plus the surface step
on the left side of the crystal). The boundary line between the slipped and un-slipped area
is a dislocation, and is represented by the L symbol. It represents a dislocation line going
perpendicular to the paper. Notice that the local bonding environment inside the crystal is
close to that in a perfect crystal except near the dislocation line. If the dislocation moves to
the right and travels across the entire crystal, we will end up at the same configuration as
in Fig. 7.1(b). Because the dislocation can move at much lower stress than 7y, this explains
why the crystal has much lower yield stress than 7.

0 00000 0 00
0 00000 0 00
o 0000000 OO
A—.——.—.—:......
000 000 0 00
00 0606 0600 00
0 000000 00
00600000 00

Figure 7.2: An end-on view of an edge dislocation L. It is the boundary between slipped
(dashed line) and un-slipped area of plane A.
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Before constructing a continuum model for dislocations, let us first introduce a few rules
and terminology that will facilitate the discussion of dislocations. Consider a case where the
material below a surface S has slipped with respect to the material above S by b, as shown in
Fig. 7.3. The boundary L of surface S is then a dislocation line. The slip vector b is related
to the Burgers vector of the dislocation. To rigorously define the Burgers vector, we need
to introduce the notion of the Burgers circuit. Imagine that we draw closed circuits (loops)
inside the crystal before the dislocation is introduced. After introducing the dislocation,
the circuit will no longer be closed if it encloses the dislocation line L. (The circuit will
remain closed if it does not enclose the dislocation line L.) Choose a positive direction & for
dislocation line L, and define the direction of the Burgers circuit with respect to & according
to the right-hand rule. The vector that connects the starting point S and ending point E of
the open Burgers circuit is the Burgers vector. In this case, the Burgers vector is exactly b.

Figure 7.3: The direction of the Burgers circuit is defined through the dislocation line direc-
tion & according to the right-hand rule. The vector b connecting the starting point S and
ending point E of the Burgers circuit is the Burgers vector.

From this definition, we see that the Burgers vector b is only defined with respect to
a dislocation line direction &. If the line direction of a dislocation is reversed, the Burgers
vector should also be reversed (i.e —b). This can be illustrated with the following example.
Consider a dislocation dipole, i.e. two parallel infinite straight dislocations with opposite
Burgers vectors. This dipole is exactly the same as two parallel dislocations with the same
Burgers vector but opposite line directions, as shown in Fig. 7.4. Thus the two dislocations
may also be regarded as opposite sides of the same (elongated) dislocation loop, as the length
of the loop goes to infinity.

Let us now apply the Burgers circuit analysis to the dislocation in Fig. 7.2. As shown
in Fig. 7.5, if we let the dislocation line direction & point out of the plane, then according
to the right-hand rule, the Burgers circuit goes counter-clockwise. In this case, the Burgers
vector b is one lattice spacing pointing to the right. If we choose the line direction to point
into the plane, then the Burgers vector would point to the left.

Since the Burgers vector is constant along a dislocation loop, but the line direction may
vary, the angle between the two may change over the loop. This angle is called the character
angle §. When b and £ are parallel, the dislocation is called screw (§ = 0°) and when they are
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Figure 7.4: Equivalent representations of a dislocation dipole.
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Figure 7.5: Burger’s circuit around an edge dislocation. Choose the line direction to point out
of the plane. According to the right-hand rule, the Burgers circuit goes counter-clockwise.
In this case the Burgers vector b points to the right.

perpendicular it is called edge (f = 90°). Anything in between is called a mized dislocation.

7.2 Dislocation’s effects on mechanical properties

Dislocations are responsible for plastic deformation in crystals (e.g. metals and semicon-
ductors). The stress strain curve of a crystal is linear up to the yield stress. At the yield
stress, a large number of dislocations are able to move and the material deforms plastically.
The total length of dislocations generally multiplies significantly during plastic deformation.
Therefore, continued deformation of the material usually requires higher stress because dis-
locations themselves start to act as barriers to the motion of other dislocations. The plastic
strain rate is related to the mobile dislocation density through the well known Orowan’s law,

€pt = pbv (7.3)
where p is the mobile dislocation density (in unit of m~2), b is the Burgers vector, and v is
the average dislocation velocity. Orowan’s law can be proven using Betti’s theorem.
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Some stress-strain curves for body-centered-cubic (BCC) metal Molybdenum under uni-
axial tension at a constant strain rate are shown in Fig. 7.6. The behavior at T' = 493°K
shows a typical 3-stage behavior. Immediately after yield, there is stage I in which the
plastic deformation proceeds easily without significant increase of applied stress. In stage
I, dislocations are mostly gliding on parallel planes and their mutual interaction is weak.
However, at higher deformation, the crystal enters stage II with the characteristic of a much
higher but constant slope, i.e. hardening rate. This is because dislocations on several non-
parallel slip planes have been activated and they started to block each other’s motion. The
dislocations start to form dense entangled structures. The total dislocation density keeps
increasing during stage I1. Eventually, the crystal enters stage I1]in which the hardening rate
deviates from a constant due to recovery mechanisms that start to annihilate dislocations in
the dense network.

0k Molybdenum

b

Lt T rmw
E [/

g | [111]

©

20+

K
i [100]

i [/
yield stress —>»|

yield stress 3 fxmmx—z"

Figure 7.6: Tensile stress strain curve for Molybdenum at two temperatures [16]. The
behavior at T' = 493°K exhibits a typical 3-stage behavior after initial yield (see text). The
tensile axis A and strain rate ¢ are given in the inset. 1kp/mm?=9.8MPa.

Dislocations also play an important role in fracture, due to their interactions with cracks.
For example, in ductile materials, a crack tip can nucleate many dislocations that shield and
blunt the crack tip. This results in a higher critical strain energy release rate J. for crack
advancement and hence higher fracture toughness. A snapshot from Molecular Dynamics
simulation of crack motion is shown in Fig. 7.7. A large number of dislocations are nucleated
at the crack tip. Dislocations can also initiate fracture. In the fatigue process [18], the
material is under cyclic loading. Dislocations keep multiplying during the cyclic loading
and can form dense pile-up structures with very high local stresses that can lead to crack
nucleation even in ductile materials.
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Figure 7.7: Snapshot of Molecular Dynamics simulation of dislocation nucleation in front of
a crack tip [17].

7.3 Elastic fields of a dislocation loop

We now derive the elastic displacement and stress fields of a dislocation loop. Consider a
dislocation loop L that is formed by displacing the lower side of surface S by b with respect
to the upper side, as shown in Fig. 7.8. Notice that we have chosen the surface normal n of
S and the line sense & of L to be consistent with the right-hand rule. To be more precise
about the operation that introduces the dislocation, let us imagine that an infinitesimally
thin layer of material around surface S is removed, so that the remaining material has two
internal surfaces: S™ and S~. The lower surface is ST with normal vector nt = n and
the upper surface is S~ with normal vector n= = —n. The dislocation is introduced by
displacing the surface S* by b with respect to S~ and then gluing the two surfaces together.
If this creates a gap or an overlap, then material must be added or removed to eliminate it.

Figure 7.8: Continuum model of a dislocation. Imagine that a thin layer of material around
surface S is removed, creating two internal surfaces ST and S~. The dislocation is introduced
by displacing ST by b with respect to S~.

The elastic fields of this dislocation loop in a homogeneous infinite medium can be solved
analytically by modeling this configuration as an equivalent inclusion. The inclusion occupies
the space between ST and S™. Let h be the separation between ST and S™, i.e. the thickness
of the inclusion. Then the equivalent eigenstrain to model the dislocation loop is,

nib]’ + njbi
G= T
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Now, in the limit as the separation h goes to zero the eigenstrain becomes

e = —M 4(S —x)

Where 6(S — x) is a shorthand notation for

6(S — x) E/Sé(x—xl)dS(x')

i.e., 5(S — x) is zero when x is not on S and infinite when it is. Therefore,

Aﬁ@—xﬁwgq:/daﬂ

S

Now, the eigenstress associated with the inclusion is

ol = —Cwmnnmbné(s - X)

v

The constrained displacement field is
wlx) = [ 606y (x - ) as(x)
= [ omGx = x) as(x)
- _ /v 05, Gijr(x — x') dV(xX')
- /V Cikmnbmnnd (S — x)Gij(x — x) dV (X) (7.4)
— /SC’jkmnbmnnGij,k(x —x")dS(x)

This is the Volterra’s formula for displacement field of a dislocation loop. The constrained
field is the displacement field everywhere in the solid, both in the inclusion and the matrix.
It contains both elastic and plastic components. If one wishes to write down the elastic
displacement gradients (to compute stress) everywhere in the solid, it is
’U,il]qStiC<X) = / CklmnbmnnGikylj (X — X/) dS(X/> + bmjé(S — X)
s

The second term is to account for the removal of the plastic distortions (i.e., the eigenstrain).
The stress follows from Hooke’s Law:

Oij (X) = /SCl-jlepqmbmska,ql(x — X/) dS(X,) + Cijklbknlé(s — X)

Suppose we wish to compute the stress of a continuous distribution of dislocations using
Volterra’s formula (for example, see section 7.6), where every point on the original Volterra’s
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dislocation is spread out according to a distribution function w(x), then the stress would
just be a convolution of the original stress field with the distribution function, as in,

Gij(x) = 04;(x) * w(x) = / o (x") w(x — x")dV (x")

\%

The resulting stress field becomes
G(x) = / wix — x) / CointComsby Gyt (X" — ') dS(x') AV (x)
v s
—1—/ Cijrbrnw(x — x")0(S — x") dV (x")
v
= / CijttCparsbrns Gy (X — x')dS(x") + / Cijribrnw(x — x') dS(x')
S s
where G, ;(x — X') = Grpa(x — X) xw(x) = [, w(x — X")Gjpq(x" — x')dV(x") and the
Burgers vector is assumed to be a constant over surface S. Notice that the second term on the
right hand side corresponds to the eigenstress of an inclusion, whose eigenstrain distribution
is,
bin, + bym;
() = T Lo / w(x — x)dS(x) (75)
S

So that the stress field of this continuously distributed dislocation is,

gij(x) = /S CijriCrpqrsbrns Gy g (x — x') dS(X') — Cijriey (x) (7.6)
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Volterra’s Formula for General Eigenstrain

In the above, Volterra’s was derived for dislocations with a constant
Burger’s vector b on the slip plane S. However, Volterra’s formula has
the same form as above even if b is a non-uniform function of x in the slip
plane. To show this, let’s consider an inclusion as in Chapter 2, but now
with a non-uniform eigenstrain distribution. The eigenstrain is assumed
to be function of position in the inclusion. The displacement formula is
then

U; (X) = /S.FJ(X/)GZJ (X — X/) dS(X/) == /Vb] (X/)Gij (X - X/) dV(X/)

where F}; and b; are surface traction and body forces such that, if they were
applied to the elastic medium, the total displacement of the body is zero
everywhere (in this case, the stress field would be minus the eigenstress

U;‘j). Therefore, Fj is simply related to the eigenstress by F; = —ojng
and equilibrium condition gives —o7, , + b; = 0. Therefore,

ui(x) = — /s a;k(x')nk(x')Gij(x —x')dS(x)
uE /V b;j(x")Gij(x — x')dV (x')
= [ Font)Gualx =) = Tjualx)Gylx =)
+b;(x')Gij(x — x')] dV (x')
- /v o5 (x) Gijn(x — x) AV (x') (7.7)

Now, let the thickness of the eigenstrain go to zero as before, but let the
Burgers vector be a function of x, i.e.,

nib; (%) + n;bi(x)
2

62} (x) = —

d(S —x)
and substituting this into the Eq. (7.7) we get
ui(x) = / Clikmnbm (X )n,0(S" — x)Gyj p(x — x') AV (X')
1%
which reduces to
) = / Commbr (%) G (% — ') dS(x) (7.8)
5
which is exactly Volterra’s formula as previously stated earlier. Thus,
Volterra’s formula holds for any eigenstrain that is arbitrarily distributed
over a surface S (so that it can be used to model a crack as well). However,

Mura’s formula, which will be derived shortly, only holds for uniform
eigenstrains on surface S.

97
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If we assume that b is a constant, then the displacement gradients, strains, and stresses
can all be written as line integrals around L. The elastic displacement gradients can be
written as

uelastic — / [CklmnbmnnGikylj (X — X/) + binjé(x — X/)] dS(X’)
S

(2%]
= / [Chimn Gk (X — X') + 0im0nd(x — X')] by, dS(X')
s
Using the equilibrium of the Green’s function from Chapter 1
6(X - X,)aim - _Gmlqupi,ql(X - X/) - _OklmnGk:i,ln (X - X,)

the elastic displacement gradients become
adlostic = / [Chtrn Gty (% — %) — 830 CrtmnGian (x — 3)] b dS(x)
S
- / Chammbrn [ Gt (X — X) — 1 G m(x — x)] dS(x') (7.9)
S

The Stoke’s Theorem,

]{fvh dL = / €k fine dS (7.10)
L s

can be re-written as,

%fUthnh dL = / €inkEinn S ik AS = /(5kj5m — Opn0ij) fine dS = /(njf,n —npfj)dS
L s s

S

So that the displacement gradients becomes
uzl]qstic = f Ejnhcklmnbmvaik,l(X — X/) dS(X/) (711)
L

In this last step there were two sign changes that cancel each other — one for turning (n; f,, —
n f;) into —(n, fj —n;f,) (where f = Gj;;) and the other for turning 0/0x, Gy (x —x') into
—Girn(x — x). Notice that in changing the surface integral to a line integral, the surface
delta function has completely disappeared and the displacement gradients are continuous
everywhere. If the contribution from the surface delta function was originally ignored in the
surface integral, this would not be the case. The stress field is

—o 7{ e Commnbmntn (%) G ( — x) AL (') (7.12)

Eq. (7.12) is called Mura’s formula. vy, is the unit vector along the local line direction, i.e.
it is the same vector as £ and we will use them interchangeably. Note that the above line
integral forms of the stress field and displacement gradients are meaningful only when they
are evaluated around a complete loop. Since any function that gives zero integral around a
closed loop L can be added to these formulas without changing the final result, the stress



7.4. SELF ENERGY OF A DISLOCATION LOOP 99

field of a finite dislocation segment is not unique. This mathematical argument agrees with
the physical model of a dislocation because dislocations in crystalline solids cannot end inside
a crystal (although they can terminate at the crystal surface).

For numerical simulations, dislocation lines are usually represented by a connected set
of straight dislocations segments, as shown in Fig. 7.9. The stress field from each segment
only has physical meaning when they are summed over the entire loop. The stress field of
a straight dislocation segment can be obtained analytically in isotropic elasticity, i.e. there
exist a function o};*(x™M,x® b)), where x1) and x*) are two end points of the segment
and b"? is the Burgers vector. The stress field of the dislocation loop shown in Fig. 7.9 can
then be obtained by summing over the stress fields of individual segments,

N
ol = 3 o X by XV = (0 (7.13)
n=1
X1
b
XN X2
XN-1 X3

Figure 7.9: A dislocation loop with line direction & and Burgers vector b is represented by
N straight dislocation segments.

7.4 Self energy of a dislocation loop

In the previous section the elastic fields of stress and strain of a dislocation loop were reduced
to line integrals. We have shown that mathematically, this can be done but we should also
expect this because of the line structure of the dislocation. From this physical argument, we
should also expect that the self energy of, and interaction energies between, dislocations can
be written as line integrals. However, the actual realization of these formulas will prove to
be much more difficult. To see why this causes problems, lets attempt to calculate the self
energy of a dislocation loop.

Now that we have the stress and strain field of a dislocation loop, the self energy can be
evaluated in a very straight forward method by integrating the strain energy density over
the volume of the crystal.

E:/de
1%
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where
1
w(ey;) = 5 7ii€ij

for linear elastic materials. However, a more elegant and arguably easier method is to use
the work method. This method measures the amount of reversible work done when creating
a dislocation loop. Both methods will give the same result. However, the energy of a
dislocation loop obtained from linear elasticity theory is in fact singular (infinite), unless a
certain truncation scheme is applied. The singularity problem will be discussed in Section 7.6.
For now let us simply ignore the singularity.

Imagine that we create the dislocation loop shown in Fig. 7.8 by applying traction forces
Ff and F;” on S * and S~ and very slowly displace ST with respect to S~ by b. The traction
forces can be written in terms of the stress field,

+ T
F- = ogn,

Let the displacements on ST and S~ be u;r and u; . We have

uf —u; = b (7.14)
The work done to create the dislocation loop is
1 1
_ +,,+ -
W = §/S+Fjujd8+§/_Fjude
1 _
1
= - / kankbj dS (715)
2 Js

This is the same as the self energy E of the dislocation loop. Substituting in Mura’s formula
for the stress, we have,

]' / / /
B =5 [ b0 CuctnComubntn(x)Grfx ~ X)) dL(x) S0 (7.16)
SJL

A first reaction would be to use Stoke’s theorem on this integral, but that gives back both a
line integral and a surface integral which will not reduce further. In fact, no one has been able
to reduce this formula to a line integral in its present form for general anisotropic materials.
For isotropic material, substituting the analytic expression for the Green’s function, the
equation for the self energy can be reduced to

7 7
%[‘1 %[‘1 b b, Rpp d.]?l d.??; + mﬁiklﬁjmnbkme,zj dxl d.T;1 (717)

and the interaction energy between two dislocation loops is (in vector form) [19]

W . o) f % (bl X bQ) . (dLl X dLQ)
12 — — 5
27 o, Jr,

f{ f{ - dLy) (bQ- dL,)
Ly J Lo

_7{ ]4 (by x dL;) - VVR - (by x dLs) (7.18)




7.5. FORCE ON A DISLOCATION 101

Full derivations of these equations can be found in [19]. For anisotropic elastic medium,
while Eq. (7.16) has not been reduced to a double line integral, Lothe [20] has reduced the
interaction energy to following integral form,

T 32 751 j{z dL(x) dL(x )R/ bi(&; x m, &, x m)P"by d¢ (7.19)

where (a,b)P™ = (a, b) (a,m)(m, m)"*(m,b), (a,b);r = a;Cyjub;, m is a unit vector
perpendicular to R = x’ — x, and ¢ specifies the angle between m and an arbitrary reference
direction in the plane perpendicular to R. The reader is directed to Lothe’s 1982 paper [20]
for a complete explanation of this equation which is to long to reproduce here.

7.5 Force on a dislocation

In order to determine the force exerted on a dislocation line, let us first look at the virtual
displacement of a dislocation loop. Consider the dislocation L with line direction v as shown
in Fig. 7.10. Notice that v and & mean the same thing and we will use them interchangeably.
Let the loop move by a small amount dr(x), with or(x) - v(x) = 0 because a line moving
along itself has no physical consequence. Let the change of energy be dFE. If JE can be
expressed in the form of

OF = —%Lf(x) - 0r(x) dL(x) (7.20)

then f(x) is the line force (per unit length) on L. Because or(x) - v(x) = 0, if f(x) is along
v(x), it contributes zero to . This means that we may add this function to any solution
f(x) of Eq. (7.20) and we obtain yet another solution. For uniqueness, we will enforce the
intuitive constraint that f(x) - v(x) = 0.

The energy of a set of N dislocation loops can be written as the sum of the loop self
energies and the interaction energies between the loops,

E = ZE +Z Z Wi (7.21)

Let us consider the force on loop 1. We need to calculate the variation of the total energy
with respect to the virtual displacement of the loop, dr;(x), i.e.,

OF 0B o~ Wy
f, = — — - J 22
! ory(x) ori(x) 4~ dr(x) (7.22)

Jj=2

The first term of this equation is divergent, since the self energy is singular (we will deal
with this problem in Section 7.6). The second term is the force do to the interaction energy
between the dislocations.

For brevity, let us consider a system with only two dislocations, so that we only have one
interaction term,

Wi, = / ol (x)niMb') dS(x)
S1
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/ 67”

08

Figure 7.10: Virtual shape change of a dislocation loop.

Note that US) (x) is invariant with respect to dr(x) since the virtual motion is only for
dislocation 1. Therefore, the only change of Wi, is induced by the change of the integration
area 91, i.e.,

5Ty — / o2 ()b ds(x) (7.23)
051

and
néS = or x vdL
n; dS = €y 0T mv, dL

Thus

v

MWia = § o 60 i (x)0l2 (x) AL
= Pl 0 el (151 () AL ()
which leads us to the self force
(%) = €y ()65 0 (x) (7.24)
This is often written in the vector form as
f=(o-b)x& (7.25)

This is called the Peach-Koehler formula. Even though we have pictured ag) to be the
stress due to another dislocation loop, it could come from any stress source and the resulting
force can be obtained from the Peach-Koehler formula in the same way. The total force
on the dislocation should also include the effect of the stress field on itself. However, this
contribution is infinite, unless some truncation scheme is applied (see Section 7.6).
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7.6 Non-singular dislocation model

In the previous discussions we have introduced a model for a dislocation that has both a stress
singularity and a self energy singularity. The nature of this singularity presents problem to
define self forces on the dislocation. While several approaches have been proposed to define
a finite self-force on dislocations, in this section we will discuss the model proposed in [21]
which is relatively easy to explain. This model removes the singularity for dislocations while
maintaining the simplest analytic expressions for the stress, energy and force formulas. It
lets each point on the dislocation line become the center of a distribution of dislocations
which spreads out the dislocation core. Let the spreading (distribution) function be w(x).
Recall that the stress field of a dislocation loop according the Mura’s formula (singular) is

s () = f CousrteinnCoamnbrntn (X) Gipg (x — x) dL(X') (7.26)
L
In the non-singular theory, the stress field should be the convolution of the above expression
with w(x), i.e.,
Tap(X) = Tap(x)* w(X)

= j{ /Cagqunhcpqmnbmvn(X/>ka7q<X — x"w(x" —x')dL(x") dx"
L
However, to compute the force on the spread-out dislocation line, what is relevant is
not the stress at a single point x, but the stress field convoluted with a spreading function

centered at x. Both the stress source point x’ and the field point x are spread out because
they are both points on the dislocation line. Therefore, the more relevant stress field is,

azg(x) = W(X) * 0ap(X) * W(x)

Define

w(x) = W(x) * w(x)
The nonsingular stress field becomes
oap(X) = oap(x) * w(x)

In isotropic elasticity the Green’s function is expressible in terms of third derivatives of
R = |x — X/|. For example, Mura’s formula for the singular stress field is

oap(x) = 8% ji 90,0y R [bim€ima dzy + by é€imp da |

H ’
+ m f; bmeimk(&aa@gR - 6a58i8p8pR) d$k (727)

If we choose

15a*
87 (|x|? + a?)7/2

w(x) = (7.28)
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then
Rxw(x) =R, = VR?>+a? (7.29)
Therefore,
+ ﬁ ji bmeimk(aiaaaﬂRa — 5a58i8p6pRa) CL'L‘;€ (730)

This completely removes the singularity from the stress field. Because the spatial deriva-
tives of R, and R are very similar, the analytic structures of the original singular theory is
maintained in the non-singular theory. For example the stress field of a straight dislocation
segment in isotropic elasticity can be obtained and the results are very similar to the original
(singular) expressions.

Following the same derivation as before, the self energy of a dislocation loop now becomes,

= i% lgﬂ'b b Ra 0P dl’z dl‘; + ﬁeiqumnbkbm}%a,ij dxl dx% (731)

and the interaction energy is (in vector form) [19]

Wi = —ﬁf 7{ (by % bg) - (dL; x dLs) V2R,
L1 J Lo
7{ jf - dL1)(by - dLy) V2R,
Ly J Lo
—f % (bl X dLl) . VVRCL . (bQ X dLQ) (732)
L1 J Lo

The self energy is now finite and the stress field is smooth and finite everywhere (including on
the dislocation line itself). The Peach-Koehler formula can now be safely applied to obtain
the self force on the dislocation without ambiguity. The total force on the dislocation can be
simply obtained from the Peach-Koehler formula using the total stress field, from Eq. (7.30),
on the dislocation itself.

7.7 Peilerls-Nabarro model

The displacement jump as introduced in Volterra’s singular dislocation model is a discontin-
uous function on the slip plane. For example, consider an infinite straight dislocation along
the z-axis and let the cut plane S be the < 0 portion of the z-z plane. Let v~ and u™ be
the displacement field on S~ and S™, i.e. the upper and lower side of surface S, respectively,
similar to Fig. 7.8. Define [[u]] = u™ — u~ as the displacement jump across the cut plane.
In Volterra’s model, [[u]] is a step function, as shown in Fig. 7.11. If the dislocation line
direction is chosen to be along the positive z-axis (out of plane), then the Burgers vector of
this dislocation is b.
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We can define the derivative of [[u]](x) as the dislocation core density p(x). In this case,
p(x) is a delta function, i.e. p(x) = bd(x), as shown in Fig.7.11. The concentrated Burgers
vector distribution is responsible for the singularity we experienced earlier. However, in a
real crystal, no such singularity exists and we cannot define the position of a dislocation
more accurately than the lattice spacing between atoms. Therefore, a more realistic model
would be to let the core density be a spread-out smooth function of z, as shown in Fig. 7.12.

[[u] p

-

Figure 7.11: Displacement jump [[u]](z) and dislocation core distribution p(x) = d[[u]](z)/dz
for a Volterra’s dislocation.

_ N\

—b——/

Figure 7.12: Displacement jump [[u]](z) and dislocation core distribution p(z) = d[[u]](x)/dz
for a more realistic model which allows dislocation core to spread out.

To obtain the actual spreading function p(z), the strategy is to obtain the total energy
Eio as a functional of p(x) and find the p(x) that minimizes Ey,. Obviously, Ei should
include the elastic energy contribution. The elastic energy of a dislocation can be evaluated
by finding the reversible work done while creating the dislocation. The elastic energy for an
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infinite straight dislocation is

| A - -
E, = 5/_00(T u" =T -u)de
100
- 3/ (e @
100
- 3/ @l

For an edge Volterra’s dislocation

o_omb x(@ -y
Y 2n(1—v) (22 + y?)?

On the plane y =0
b 1

Uzy == —27'('(]_ — y) E (733)
For this dislocation the displacement jump is
-b <0
i ={ 5 550
The energy is
1/ w1
Eg=—= ———d 7.34
: 2 /_ 2n(1 —v) x ‘ (7:34)

which is infinite. However, for a dislocation with core density p(x) other than a delta function,
the stress field is the convolution of Eq. (7.33) with p(z), i.e

_ M <o) L
ny<x)_ 9 ( )/ /dl’

ml—-v) /) o —2

The corresponding elastic energy is

1

Edzzﬁ/ %wwum>m

= / / dxdx
1—]/
= 47?1—1// / )In|x — 2’| deda’ + C

where C' is a constant from integration by parts, which is independent of the shape of
[[u]](x) as long as the boundary conditions at & = 400 are fixed. This solution is for edge
dislocations. The solution for screw dislocations only differs by a constant and the general
solution can be written as

el——K/ / 2)Inlz — 2'|deda’ + C
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where

P { % scgew
(1) ©d8e

As the function p(x) becomes more widely distributed (subjected to the normalization con-
dition f x)dxr = b), the elastic energy Eg becomes smaller. If the elastic energy is the
only contrlbutlon to the total energy, the dislocation would spread out completely (in the
end there will be no dislocation to speak of). In reality, the dislocation core is stabilized
by the non-linear interfacial misfit energy between the two surfaces ST and S~. This misfit
energy is also called the generalized stacking fault energy . Due to the periodic nature of
the crystal structure, « is a periodic function of [[u]]. The simplest model for +(-) is,

0= i (22

and the corresponding misfit energy would be

B, - / T () (2)) da

Therefore the total energy the dislocation is

[e.e]

iy — K/ / ln|x—x|dxdx+/ (]l () dz + C

—00

The function that minimizes E\.; describes the physical shape of the dislocation core. The
minimizing function [[u]](x) satisfies the condition

o[ [u]]

= 2[(/Oo xp(_x;z/ dz’ + a7l

More explicitly,

2K/ dfu]]/ dz

r—x

0

' = %Sm (27T[b[U]]>

Tr=x

The analytic solution to this differential-integral equation was given by Rudolf Peierls as

([u])(z) = %arctan (%) - g (7.35)
where
Kb
- = (7.36)

¢ is called the half width of the dislocation core. We notice that the core half-width £ repre-
sents the competition between the elastic stiffness K (which tends to spread the dislocations
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out) and the non-linear misfit potential Uy(which tends to localize the dislocation core). The
dislocation distribution function p(z) is

b ¢
-2 7.37
o) = 2 (7.7
and the stress field along the z-axis (y = 0) becomes
b
Ouy(2) = a ° (7.38)

21(1 —v) a2 4+ &2

When an external stress field is applied, the optimal dislocation shape should minimize the
Gibb’s free energy, which also includes the negative of the work done by the external stress.

o0 (e 9]

8=k [ [ pwpe)nle—vldedss [ (@) de— [ ok @)(ule) dere

—0o0 —00

This model can be generalized to model the nucleation of a dislocation dipole (in 1D) or a
dislocation loop (in 2D).



Appendix A

Exercise Problems

A.1 Index Notation and Gauss’s Theorem

Problem 1.1 (10’) Index notation.
(a) Show that €k€nkg = 20mn-

(b) Consider a rank-two tensor p;; = ad;; + bz;z;, where z is a unit vector (z;z; = 1). Find
the inverse ¢;; of p;;, which is defined through ¢;;p;r = ;.
[ Hint: suppose ¢;; also has the form of g¢;; = ¢d;; + dz;2;. |

Problem 1.2 (10’) Tensor symmetry.

Any second rank tensor A;; can be decomposed into its symmetric and antisymmetric parts
Aij = Agig) + Apig)
where
1
Ay = 5 (Ayj + Aji)

is the symmetric part and
1
2

is the antisymmetric part.

Apg) = 5 (i — Aji)

(a) Show that if A;; is a symmetric tensor, and B;; is an arbitrary tensor, then,

AijBij = Ay Bj (A1)

(b) Show that if A;; is an antisymmetric tensor, then

Aijaiaj =0

109
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Problem 1.3 (10’) Gauss’s Theorem.

(a) For a elastic body V' with surface S in equilibrium under surface traction 7; and zero
body force (b; = 0), show that

/TZuZdS:/aweUdV
S %4

where u;, 05, e;; are displacement, stress and strain fields.
[ Hint: Use the result in Problem 1.2. |

(b) Show that the average stress in the elastic body under zero body force is,

_ 1

A.2 Elasticity in one and two dimensions

Problem 2.1 (10’) Elastic constants.
The elastic stiffness tensor for the isotropic medium is Cjjr = A0k + p(didj + 0udji)-
Determine the compliance tensor, S;;r, which is the inverse of Cjjy, i.e.,

1
[ Hint: assume that S;;; has the form ad;;0, + 5 (0ix0j1 + 0idjk)- |
Problem 2.2 (10°) 1D elasticity.
Determine the displacement, strain and stress field of a long rod of length L standing ver-

tically in a gravitational field g. Assume the rod is an isotropic elastic medium with shear
modulus g and Poisson’s ratio v.

Figure A.1: A rod of length L standing vertically in a gravitational field g.

Problem 2.3 (10’) 2D elaticity.
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Lets look at equilibrium in 2-D elasticity using z-y cartesian coordinates under zero body
force. Assume the 2-d body is in a state of plane stress, i.e.,

Ozg = Ozy = Ozz = 0
which corresponds to a free standing thin film. The equilibrium equations reduce to

Ogzx 1 Oyxy = 0 (A?))
Oyyy + Oaya =0 (A.4)

And the compatability equations reduce to
Cazyy = 2Cayay T Cyyac = 0 (A.5)

One popular method to solve such problems is to introduce the Airy’s stress function ¢ such
that,

Ogx = ¢,yy (A6)
Oyy = (b,zx (A7)
Ozy = _¢,xy (A 8)

(a) Show that this particular choice of stress function automatically satisfies equilibrium.

(b) Assuming that Hooke’s Law is of the form

Ope  VOyy

— Al
err = T2 L (A9
o U0y
1
Cay = W (A.11)

show that the compatability equation reduces to

(,b,xxxm + 2¢,mxyy + ¢,yyyy =0 <A12)

This is the biharmonic equation, which is often written as V4¢ = 0.
(c) What is the relation between E and the shear modulus p and Poisson’s ration v?

(d) Note that the solution of Eq.(A.12) does not depend on elastic constants. Let’s use
this solution to solve a very simple stress problem. Consider a square of length a under
hydrostatic pressure P. What are the stress components inside the box? (guess!) What is
the stress function ¢?
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TN

Figure A.2: A square of length a under hydrostatic pressure P.

A.3 Elastic Green Function

Problem 3.1 (10’) Numerical calculation of Green’s function.
(a) Write a Matlab program that returns Cjjy given Ci1, Cia, and Cyy of an anisotropic
elastic medium with cubic symmetry.

(b) Write a Matlab program that computes (2z);; and (zz)z_j1 given Cj;i and z;. The elastic
constants of Silicon are C1; = 161.6GPa, Ci5 = 81.6GPa, Cyy = 60.3GPa. What are the
values for all components of g;;(k) for k = [112] (k in unit of pm™")?

(c) Write a Matlab program that computes G;;(x) given Cyjp; and x. What are the values
for all components of G;;(x) for x = [112] (x in unit of gm)? Plot Gs3(x,y) on plane z = 1.

Include a print out of your source code in your report. You may feel free to use other
softwares (e.g. Mathematica) instead of Matlab if you prefer to do so.

Problem 3.2 (10’) Reciprocal Theorem.
Use Betti’s theorem (under zero body force),

/tu) 1 ?ds :/t@) a®Wds (A.13)
S S

to show that, the volume change of an isotropic medium with Young’s modulus F and
Possion’s ratio v under surface traction t() is,

Sy = / Lo QintZ(.l)dS (A.14)
s E

Notice that the traction force satisfies,
/ tVds = 0 (A.15)
s

S
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(2)

[ Hint: use auxiliary solution 0;;” = d;, i.e. the medium under unit hydrostatic tension. |

Problem 3.3 (10’) Contact problem.

Consider a semi-infinite isotropic elastic medium filling the half space x3 > 0. Let the shear
modulus be p and Poisson’s ratio be v. The Green’s function for the half space is G?j (x,x).
If the force is only applied to the surface, i.e. z% = 0, then the Green’s function can be
written as,

h h
G (x,x') = Gij(x - x') (A.17)
Introduce function F(x) = z3ln(xs + R) — R where R = |x|. Then the surface Green’s
function can be expressed as (when the surface force is applied at x’ = 0),
h 1 2 8
G(x) = - [6;;V?R — 0;0;R — (—1)"*(1 — 2v)8;0; F | (A.18)
T

(a) What is the explicit form of GE5(x), i.e. the normal displacement in response to a normal
surface force? What is the normal displacement G3;(z,y) on the surface (x5 = 0)?

(b) Consider a spherical indentor with radius of curvature p punching on the surface along
the z3 axis. Let a be the radius of the contact area. The indentor is much stiffer than the
substrate so that we can assume the substrate conforms to the shape of the indentor in the
contact area, i.e.,

%+ y2
2p
where d is the maximum displacement on the surface and r = /22 +y2 Let the total

indenting force be F. What is the pressure distribution on the surface p(x,y)?

[ Hint: try the form p(x,y) = By/1 — (z/a)? — (y/a)? and determine B in terms of F. Show
that p(x,y) indeed gives rise to displacement according to Eq. (A.19). |

us(w,y) =d — (A.19)

(c) What is the expression for the contact radius a in terms of indenting force F' and indentor
radius of curvature p?

(d) What is the expression for the maximum displacement d in terms of indenting force F
and indentor radius of curvature p?

Note: you may find the following identity useful,

\/m 'daf! 2 2 2
/ 22 — 2 da'dy _7r_<1_x —l—y) (A.20)

rpa o =P+ (y—y)? 2 2

A.4 Eshelby’s Inclusion I

Problem 4.1 (15’) Spherical inclusion.
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(a) Derive the expressions for the auxiliary tensor D;;i; for a spherical inclusion in an isotropic
medium with shear modulus p and Poisson’s ratio v.

[ Hint: many components of D;;; are zero, unless there are repeated indices. |

(b) Derive the corresponding expressions for Eshelby’s tensor S;j.

Problem 4.2 (15’) Dilation field.

The “constrained” dilation of a transformed inclusion (not necessarily ellipsoidal) is,
w = [ ghm)Guilx — x)dS(x)
So

_ / 07 Gaan(x — X))V (x') (A.21)
Vo

(a) Show that if ef; = ed;; (pure dilational eigenstrain), then in isotropic elasticity the
constrained dilation is constant inside the inclusion and independent of inclusion shape.

(b) What is ug; inside the inclusion in terms of £7

Hint: The Green’s function G;;(x) can be expressed in terms of second derivatives of R = |x|.

1 1

Gij(x) S 0;; V'R 31— V)@@R (A.22)
Notice that
2
2p A2
VR I (A.23)
vl —475(x) (A.24)

R

A.5 Eshelby’s Inclusion II

Problem 5.1 (15’) Use work method to derive the energy inside the inclusion EX and inside
the matrix EM for an ellipsoidal inclusion in an infinite matrix. Follow the Eshelby’s 4 steps
to construct the inclusion.

(a) What are the forces applied to the inclusion and to the matrix in all 4 steps?

(b) What are the work done to the inclusion and to the matrix in all 4 steps?

(c) What is the elastic energy inside the inclusion E, and what is the elastic energy inside
the matrix EM at the end of step 4?
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Problem 5.2 (15’) Spherical inclusion. The Eshelby’s tensor of a spherical inclusion inside
an infinite medium is (see Lecture Note 2),

4 — by

ov —1
) 7
R 50 =)

Sk = 1500

(03051 + 0ud k) (A.25)

Consider a spherical inclusion of radius R with a pure shear eigenstrain e}, = ¢ (other
components of ej; = 0).

(a) What is the total elastic energy of the system F as a function of R?

(b) Now apply a uniform stress field o5 = 7 to the solid (other stress components are zero).
What is the total elastic energy F(R)?

(c) What is the enthalpy of the system H(R)? What is the driving force for inclusion growth,
ie. f(R)=—dH(R)/dR?

[ Hint: Consider the solid has a finite but very large volume V. The external stress is applied
at the external surface. Volume V is so large that the Eshelby’s solution in infinite solid
remains valid. |

A.6 Cracks

Problem 6.1 (15’) Plane strain and plain stress equivalence.

Let the elastic stiffness tensor of a homogeneous solid be Cjj; and its inverse (compliance
tensor) be S;jr. In the plane strain problem, ej3 = es3 = e33 = 0. Let the 2-dimensional
elastic stiffness tensor be ¢;jx, i.e.,

0ij = Ciymer  for i,j,k,1,=1,2 (plane strain) (A.26)

Obviously, ¢k = Ciji for ¢, 5, k, 1 =1, 2.
For a plain stress problem, 013 = 093 = 033 = 0. Let the 2-dimensional elastic compliance
tensor be s;;, i.e.,

€ij = gijklo'kl for i,j, k, l, = 1, 2 <A27)
Obviously, §;k = Sijw for i,7,k,1 = 1,2. The inverse of §;j;; (in 2-dimension) is the effective
elastic stiffness tensor in plain stress, ¢;j.

(a) For isotropic elasticity, write down the explicit expression for ¢;ji and ¢k

(b) The Kolosov’s constant is defined as

o { 3 —4v for plane strain

3—v
[ for plane stress
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Express ¢ and & in terms of 4 and k. (They should have the same expression now.)

Problem 6.2 (15") Mode II crack
(a) Derive the eigenstrain of equivalent inclusion for a slit-like crack (width 2a) under uniform

shear ¢{, in plane strain.

(b) Derive the stress distribution in front of the crack tip. What is the stress intensity factor
Ki; = lim,_g012(r)V/27r, where r = x — a is the distance from the crack tip?
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