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Chapter 1

Introduction to Elasticity Equations

1.1 Index notation

In order to communicate properly the ideas and equations of elasticity, we need to establish
a standard convention for writing them. The most common one used is the Einstein conven-
tion. This set of rules states that every index that is repeated once in a product implies a
summation over that index from 1 to n for an n-dimensional problem. Any free index (i.e.
not repeated in a product) implies a set of formulas, one formula for each of the degrees of
freedom. Generally, an index does not appear three or more times in a product (otherwise
something is wrong). If there is a need to deviate from this convention, then the meaning
should be explicitly written. This enables us to write a vector, v as

v = viei = v1e1 + v2e2 + v3e3 (1.1)

where e1, e2 and e3 are unit (basis) vectors specifying the coordinate system.
Often we do not want to write out the basis of the vectors explicitly. Thus, we can denote

the vector v by just its components vi. For example, suppose that the vi is the square of ni,
then we can write vi as

vi = n2
i ⇒ v1 = n2

1 v2 = n2
2 v3 = n2

3 (1.2)

Also, if we want to write a scalar a as the sum of the square of the components of v, we can
write

a = vivi = v1v1 + v2v2 + v3v3 = v2
1 + v2

2 + v2
3 (1.3)

Two special tensors worthy of introduction are the Kronecker delta δij and the permuta-
tion tensor εijk.

δij =

{
1 if i = j
0 if i 6= j

(1.4)

εijk =


1 for even permutations of ijk
−1 for odd permutations of ijk
0 for repeated indices

(1.5)
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6 CHAPTER 1. INTRODUCTION TO ELASTICITY EQUATIONS

(a) (b) (c)

Figure 1.1: (a) Leopold Kronecker (1823-1891 Prussia, now Poland). (b) Johann Carl
Friedrich Gauss (1777-1855, Brunswick, now Germany). (c) George Gabriel Stokes (1819-
1903, Ireland).

The Kronecker delta and the permutation tensor are related by

εijkεimn = δjmδkn − δjnδkm (1.6)

The Kronecker delta is useful for expressing vector dot products without using vector no-
tation. For example, the dot product of a · b can be written as aibjδij = aibi. In the same
manner the permutation tensor allows us to to write the cross product as

a× b = εijkaibjek (1.7)

Since most derivatives will be with respect to an implied cartesian coordinate system, the
differentiation symbols need not be explicitly written. Instead, the notation ai,j will denote
∂ai/∂xj. A useful identity that combines this notation and the Kronecker delta is xi,j = δij.

Gauss’s Theorem
If A and its first derivatives, A,i, are continuous and single valued on a given volume V with
surface S and outward normal ni, then∫

V

A,i dV =

∫
S

A ni dS (1.8)

Stoke’s Theorem
If A and its first derivatives, A,i, are continuous and single valued on a given surface S with
boundary line L, then∫

S

εjikA,j nk dS =

∫
L

A vi dL (1.9)

where nk is the normal vector of surface S and vi is the line direction unit vector of line L.
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Current Configuration
(deformed)

Figure 1.2: Configuration of a undeformed and deformed body

1.2 Deformation of an elastic body

Consider the body shown in Fig.1.2. In the reference configuration the body is undeformed
and a point in the body can be denoted X. After deformation, the point previously at X is
now at a point x. The displacement of a point X, denoted u(X), is the difference between
the point in the reference configuration and the current configuration. This is written as

u(x) = x−X (1.10)

Thus, any point in the current configuration can be written as

x = u + X (1.11)

or in component form,

xi = ui + Xi (1.12)

Consider a small vector dX in the undeformed body. The length of this vector is dS =√
dXidXi. After deformation, this vector becomes dx. Its length now becomes ds =

√
dxidxi.

Later on we will use the relationship between ds and dS to define strain.

1.3 Stress and equilibrium

The stress tensor, σij, is defined as the force per unit area on the i-face in the j-direction.
From the stress tensor we can define a traction, Tj, as the force per unit area in the j-
direction, on a surface with normal vector n = niei. The traction is related to the stress
tensor by σijni = Tj.

At equilibrium, every point in the elastic body is stationary. To derive the condition
for σij when the elastic body is at equilibrium, consider a body with a volume V , enclosed
by a surface S with an outward normal n as shown in Fig.1.3. This body has two types
of forces acting on it, tractions and body forces. The tractions act over the surface area,
and are related to the stresses as described above. The body forces act per unit volume and
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S

Vb

n

T

x
y

z

Figure 1.3: An elastic body V under applied loads. T is the traction force on the surface S,
with normal vector n and b is body force.

represent external force fields such as gravity. Force equilibrium in the j-direction can be
written as∫

V

bj dV +

∫
S

Tj dS = 0 (1.13)

where bj is the body force and Tj are the tractions in the j-direction. Substituting in the
definition of tractions,∫

V

bj dV +

∫
S

σijni dS = 0

and using Gauss’s theorem we have,∫
V

(bj + σij,i) dV = 0

The equilibrium equation above is valid for any arbitrary volume and thus must hold in the
limit that the volume is vanishingly small. Thus, the above formula must hold point-wise,
and the equation for equilibrium is

σij,i + bj = 0 (1.14)

At equilibrium, the net moment around an arbitrary point should also be zero. Otherwise,
the body will rotate around this point. For convenience, let this point be the origin. The
moments caused by the tractions and the body forces can be written as the position crossed
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into the force. Using our expression for cross products, the moments in the k-direction can
be written as

Mk =

∫
V

εijkxibj dV +

∫
S

εijkxiTj dS (1.15)

Substituting in the definition of tractions, and noting that Mk must be zero for equilibrium,∫
V

εijkxibj dV +

∫
S

εijkxiσmjnm dS = 0 (1.16)

Using Gauss’s theorem,∫
V

[
εijkxibj + (εijkxiσmj),m

]
dV = 0 (1.17)

Distributing the differentiation and noting that the permutation tensor is a constant∫
V

εijk

[
xibj + xi,mσmj + xiσmj,m

]
dV

=

∫
V

εijk

[
xi(bj + σmj,m) + δimσmj

]
dV = 0

From force equilibrium bj + σmj,m = 0, so that∫
V

εijkσij dV = 0

As before, this must hold for a vanishingly small volume resulting in

εijkσij = 0 (1.18)

Writing out one term of this formula gives

ε123σ12 + ε213σ21 = 0

σ12 = σ21

Carrying this through for the other two equations, it is clear that

σij = σji (1.19)

which says the stress tensor must be symmetric. We can also show that the stress tensor is
also symmetric even if the body is not in equilibrium (see box below). Thus the symmetry
of the stress tensor is independent of equilibrium conditions.

In summary, the equations of equilibrium are

σij,i + bj = 0

and

σij = σji
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Noting that there are 9 components of the stress tensor and equilibrium specifies 6 equations
(or 3 equations for the 6 unknowns of the symmetric stress tensor), at this moment we are
unable to solve this set of partial differential equations.

Also, the reader should be aware that it is possible to define the stress tensor opposite to
the definition used above. σij could be defined as the force in the i-direction on the j-face.
This would result in the force equation of equilibrium

σij,j + bi = 0

and the result from zero moment would be the same. However, since the stress tensor is
symmetric, both equations are the same and it does not matter which definition of stress is
used.
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Symmetry of Stress Tensor in Dynamics

To derive the symmetry of the stress tensor in dynamics, we must first
write the balance of forces using Newton’s law. It is similar to the force
equilibrium, except that the forces are now equal to the time rate of change
of linear momentum. This conservation of linear momentum can be writ-
ten as∫

V

ρv̇j dV =

∫
S

σijni dS +

∫
V

bj dV (1.20)

where ρ is the point-wise density of the body. Following the equilibrium
case, we can easily show that

ρv̇j = σij,i + bj (1.21)

Conservation of rotational momentum about the origin says∫
V

ρεijkxiv̇j dV =

∫
S

εijkxiσmjnm dS +

∫
V

εijkxibj dV (1.22)

Using Guass’s theorem, and rearranging terms we can write∫
V

εijk

[
xi(−ρv̇j + σmj,m + bj) + δijσmj

]
dV = 0 (1.23)

Then, using the balance of linear momentum,∫
V

εijkσij dV = 0

The rest of the argument follows the static case, thus

σij = σji

and the stress tensor is symmetric, regardless of whether or not it is in
equilibrium.

The physical interpretation of this result is the following. If σij 6= σji, say
σ12 6= σ21, then for a small cubic volume V = l3, there will be a net torque
around the x3-axis, which is on the order of M = O(l3). Yet the moment
of inertia for the cube is on the order of I = O(l5). Thus the rotational
acceleration of the cube is ω̇ = M/I = O(l−2). For l → 0, ω̇ diverges
unless σij = σji.
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1.4 Strain and compatibility

The strain tensor, which is a measure of the body’s stretching, can be defined as

ds2 − dS2 = 2eij dxi dxj (1.24)

where ds, dS, and dxi are defined in Fig.1.2 of section 1.2. Why should strain be defined
in this way? In fact, there are many different definitions of strain. Eq.(1.24) is a reasonable
one because it describes how does the change of length of a differential segment in the elastic
body depend on its orientation. If we re-write the left hand side of Eq.(1.24)

ds2 − dS2 = ( ds + dS)( ds− dS)

and dividing by ds2

ds2 − dS2

ds2
=

( ds + dS)( ds− dS)

ds2

For small strains, ds + dS ≈ 2 ds and

ds2 − dS2

ds2
≈ 2 ds( ds− dS)

ds2

This simplifies to

ds2 − dS2

ds2
≈ 2( ds− dS)

ds

This shows that in the small strain approximation, the above strain tensor is indeed a
measure of a change in length per unit length, which is traditionally how engineering strain
is defined. This simple example also shows the motivation for the factor of 2 in the definition
for strain.

The relationship between strain and displacements is important to establish because it
provides more equations that are needed to close the set of equations for the elastic fields of
a deformed body. (More equations will be provided by Hooke’s law in section 1.5.) Thus,
we wish to write ds and dS in terms of displacements ui.

ds2 − dS2 = dxi dxi − dXi dXi (1.25)

= dxi dxjδij −
(

δij −
∂ui

∂xj

)
dxj

(
δik −

∂ui

∂xk

)
dxk

= dxi dxjδij −
(

∂ui

∂xj

∂ui

∂xk

− ∂uk

∂xj

− ∂uj

∂xk

+ δjk

)
= (uj,k + uk,j − ui,jui,k) dxj dxk

Thus, the strain tensor is [2]

eij =
1

2
(ui,j + uj,i − uk,iuk,j) (1.26)
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Notice that strain tensor is symmetric, i.e. eij = eji. For strains much less than unity, higher
order terms are negligible and the strain tensor becomes

eij =
1

2
(ui,j + uj,i) (1.27)

Often times this tensor is referred to the small strain tensor, or the linearized strain tensor.
This form of the strain tensor is particularly useful since it allows for a linear relationship
between strain and displacements. Because of this simplicity, the linearized strain tensor
will be used in all further discussions.

The above definition of strain relates six components of the strain tensor to the three
components of the displacement field. This implies that the six components of the strain
tensor cannot be independent, and the equations that relate this interdependency are termed
compatability. The equations of compatability can be obtained directly from the definition
of the strain tensor, Eq.(1.27), which can be written out explicitly using x-y-z coordinates

exx = ux,x

eyy = uy,y

ezz = uz,z

exy =
1

2
(ux,y + uy,x)

exz =
1

2
(ux,z + uz,x)

eyz =
1

2
(uy,z + uz,y)

Now, the first equation of compatibility can be obtained by calculating exx,yy, eyy,xx and
exy,xy

exx,yy = ux,xyy

eyy,xx = uy,yxx

exy,xy =
1

2
(ux,xyy + uy,yxx)

Thus exx,yy, eyy,xx and exy,xy must satisfy the condition that

exx,yy + eyy,xx − 2exy,xy = 0

Two more equations of compatibility are obtained by simply permuting the indices, giving
a total of three equations. The fourth equation of compatibility can be found in a similar
way to the first. Writing different second derivatives of the strain tensor

exx,yz = ux,xyz

exy,xz =
1

2
(ux,xyz + uy,xxz)

exz,xy =
1

2
(ux,xyz + uz,xxy)

eyz,xx =
1

2
(uy,xxz + uz,xxy)
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Therefore these strain components must satisfy the condition

exx,yz = exy,xz + exz,xy − eyz,xx

Two more equations can be obtained by permuting indices in the above equation, giving a
total of six equations of compatibility. These six equations can be written in index notations
as

εpmkεqnjejk,nm = 0 (1.28)

The equations of compatibility are not very useful in solving three dimensional problems.
However, in two dimensions only one of the equations is non-trivial and is often used to solve
such problems [4]. To solve 3-dimensional problems, we usually use Eq.(1.27) to express the
strain in terms of displacements and write the partial differential equations in terms of ui,
hence bypassing the need to invoke the compatibility Eq. (1.28) explicitly.

1.5 Hooke’s law

In section 1.3 the equilibrium condition gave three equations for the six unknowns of the
symmetric stress tensor. In section 1.4 strain was defined under the pretense that it would
provide additional equations that would allow the equations of equilibrium to be solved. In
order to get those additional equations, there must some way to relate stresses to strains. The
most common way to relate stresses to strains is with a constant tensor (linear relationship)
which is often termed Hooke’s Law. Since stress and strain are both second order tensors,
the most general relationship between stress and strain would involve a fourth order tensor.
The tensor that relates strains to the stresses is called the elastic stiffness tensor (or elastic
constant tensor) and is usually written as

σij = Cijklekl (1.29)

Thus, in the most general sense, the stiffness tensor C has 3 × 3 × 3 × 3 = 81 constants.
However, both the stress and the strain tensor are symmetric so that the stiffness tensor
must also have some symmetries, which are called minor symmetries, i.e.,

Cijkl = Cjikl = Cijlk (1.30)

In elasticity, it is assumed that there exists a strain energy density function W (eij) which is
related to the stress by

σij =
∂W

∂eij

(1.31)

Using the definition of the elasticity tensor in Eq.(1.29), the stiffness tensor can be re-written
as

Cijkl =
∂2W

∂eij∂ekl

(1.32)
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Since the order of differentiation is irrelevant, the stiffness tensor must have the property
that

Cijkl = Cklij (1.33)

which is often called the major symmetry of the stiffness tensor. This reduces the number of
independent elastic constants to 21, the most for a completely anisotropic solid. Similarly,
the strains can be related to the stresses by a fourth rank tensor S, called the compliance
tensor.

eij = Sijkl σkl (1.34)

The compliance tensor is the inverse of the stiffness tensor and the two are related by

CijklSklmn =
1

2
(δimδjn + δinδjm) (1.35)

In isotropic elasticity, there are only two independent elastic constants, in terms of which
the stiffness tensor can be expressed as,

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (1.36)

where λ and µ together are known as Lamé’s constants. µ is commonly referred to as the
shear modulus, and λ is related to Poisson’s ratio, ν, by λ = 2µν

1−2ν
. Substituting Eq.(1.36)

into Eq.(1.29) gives

σij = λδijekk + 2µeij (1.37)

Now there are enough equations to solve for all of the unknowns in the equilibrium
equations. Substituting Eq.(1.29) into Eq.(1.14)

Cijklekl,i + bj = 0 (1.38)

Substituting in the definition of the strain tensor

1

2
Cijkl(uk,li + ul,ki) + bj = 0 (1.39)

using the minor symmetry of C allows the formula to be re-written as

1

2
(Cijkl uk,li + Cijlk ul,ki) + bj = 0 (1.40)

Since repeated indices are dummy indices, the above expression can be combined into

Cijkl uk,li + bj = 0 (1.41)

This is the final equilibrium equation written in terms of displacements. This set of linear
partial differential equations has three equations for the three unknowns (displacements).
Once the displacements are solved for, the strains can be determined from the definition of
the strain tensor and the stresses can be determined from Hooke’s law.
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1.6 Green’s Function

The elastic Green’s function, Gij(x,x′), is defined as the displacement in the i−direction at
x due to a point force in the j−direction at x′. It is the solution ui(x) of Eq.(1.41) when
the body force bj is a delta function, i.e. bk(x) = δ(x− x′)δjk. In the following, we give an
alternative derivation of the equation satisfied by the Green’s function Gij(x,x′). (For an
astonishing story on the life of George Green, see [5].)

S

VF

n

x′

Figure 1.4: A point force is applied to point x′ inside an infinite elastic body. V is a finite
volume within the elastic body and S is its surface.

1.6.1 Equilibrium equation for an infinite body

In an infinite homogenous body the Green’s function only depends on the relative displace-
ment between the points and thus can be written as

Gij(x,x′) = Gij(x− x′) (1.42)

We wish to construct the equations for the displacement field in response to a point force
applied to an infinite body. Consider a constant point force F acting at x′ as shown in
Fig.1.4 within an infinite body. The volume V is any arbitrary volume enclosed by a surface
S with an outward normal n. The displacement field caused by this applied force is

ui(x) = Gij(x− x′)Fj (1.43)

The displacement gradient is thus

ui,m(x) = Gij,m(x− x′)Fj (1.44)

and the stress field can then be determined by Hooke’s law

σkp(x) = CkpimGij,m(x− x′)Fj (1.45)

If the volume V encloses the point x′, then the force F must be balanced by the tractions
acting over the surface S. This can be written as

Fk +

∫
S

σkp(x)np(x) dS(x) = 0

Fk +

∫
S

CkpimGij,m(x− x′)np(x)Fj dS(x) = 0
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Using Gauss’s theorem on the surface integral

Fk +

∫
V

CkpimGij,mp(x− x′)Fj dV (x) = 0 (1.46)

The definition of the three dimensional Dirac delta function is∫
V

δ(x− x′) dV (x) =

{
1 if x′ ∈ V
0 if x′ 6∈ V

(1.47)

This allows us to move the Fk term into the volume integral∫
V

[CkpimGij,mp(x− x′)Fj + Fkδ(x− x′)] dV (x)

Replacing Fk with Fjδkj and factoring Fj gives∫
V

[CkpimGij,mp(x− x′) + δkjδ(x− x′)] Fj dV (x) = 0

This must hold for any arbitrary volume V containing the point x′ and any arbitrary constant
force F, thus it must hold pointwise resulting in the equilibrium condition

CkpimGij,mp(x− x′) + δjkδ(x− x′) = 0 (1.48)

This is the equilibrium equation satisfied by the Green’s function in an infinite elastic body,
which could be arbitrarily anisotropic. Eq.(1.48) is equivalent to Eq.(1.41) when the body
force is a delta function, i.e., bk = δjkδ(x− x′).

1.6.2 Green’s function in Fourier space

Eq.(1.48) can be solved using Fourier transforms. Defining the Fourier transform of the
elastic Green’s function as gkm(k), it is related to the Green’s function as

gij(k) =

∫ ∞

−∞
exp(ik · x)Gij(x) dx (1.49)

Gij(x) =
1

(2π)3

∫ ∞

−∞
exp(−ik · x)gij(k) dk (1.50)

The three dimensional Dirac delta function is

δ(x) =
1

(2π)3

∫ ∞

−∞
exp(−ik · x) dk (1.51)

The equilibrium equation for the elastic Green’s function can be solved in the Fourier
space using the above definitions. Substituting in the definitions of Gij(x) and δ(x) (setting
x′ = 0, which fixes the origin)

1

(2π)3

∫ ∞

−∞

[
Ckpim

∂2

∂xm∂xp

gij(k) + δkj

]
exp(−ik · x) dk = 0 (1.52)
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Defining the vector z as

z =
k

|k|
(1.53)

Thus we can simplify Eq.(1.52) to

1

(2π)3

∫ ∞

−∞

[
−Ckpimzmzpk

2 + gij(k) + δkj

]
exp(−ik · x) dk = 0 (1.54)

This leads to

Ckpim zm zp gij(k) k2 = δjk (1.55)

Defining tensor (zz)ki as

(zz)ki ≡ Cpkimzpzm (1.56)

Substituting this definition into Eq.(1.55)

(zz)ki gij k2 = δkj (1.57)

The inverse of the (zz)ij tensor can be defined such that

(zz)−1
nk (zz)ki = δni (1.58)

Thus the Green’s function in Fourier space is

gij(k) =
(zz)−1

ij

k2
(1.59)

1.6.3 Green’s function in real space

The Green’s function in real space can be obtained by inverse Fourier transform of Eq.(1.59).
However the analytical solution can only be obtained for isotropic and hexagonal medium.
For general anisotropic materials, the Green’s function only has a integral representation in
real space. Substituting the solution for gij(k) into Eq.(1.50)

Gij(x) =

(
1

2π

)3 ∫ ∞

−∞
exp(−ik · x)

(zz)−1
ij

k2
dk (1.60)

Using the spherical coordinate system as shown in Fig.1.5 the integral can be written as

Gij(x) =

(
1

2π

)3 ∫ ∞

0

∫ π

0

∫ 2π

0

exp(−ikx cos φ)
(zz)−1

ij

k2
k2 sin φ dθ dφ dk (1.61)

Because Gij(x) must be real, the integral over k can be written from −∞ to ∞ with a factor
of 1/2 as

Gij(x) =
1

2(2π)3

∫ ∞

−∞

∫ π

0

∫ 2π

0

exp(−ikx cos φ)(zz)−1
ij sin φ dθ dφ dk (1.62)
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x
k

z

φ

θm

n

Figure 1.5: Spherical coordinate system. φ is the angle between k and x. z is a unit vector
along k.

The k-integral is the one-dimensional inverse Fourier transform of the delta function

Gij(x) =
1

8π2

∫ π

0

∫ 2π

0

δ(x cos φ)(zz)−1
ij sin φ dθ dφ (1.63)

Using the property of delta functions that says δ(ax) = δ(x)
a

and using a transformation of
variables such that s = cos φ

Gij(x) =
1

8π2x

∫ −1

1

∫ 2π

0

−δ(s)(zz)−1
ij dθ ds (1.64)

=
1

8π2x

∫ 1

−1

∫ 2π

0

δ(s)(zz)−1
ij dθ ds (1.65)

Using the definition of the delta function this reduces to

Gij(x) =
1

8π2x

∫ 2π

0

(zz)−1
ij dθ

∣∣∣
s=0

(1.66)

Gij(x) =
1

8π2x

∫ 2π

0

(zz)−1
ij dθ

∣∣∣
x·z=0

(1.67)

Eq.(1.67) represents the infinite medium Green’s function for general anisotropic materials.
This integral can be evaluated by integrating (zz)−1

ij over a unit circle normal to the point
direction x as shown in Fig.1.6. The circle is normal to x and represents all possible values
of the unit vector z. Let α and β be two unit vectors perpendicular to each other and both
in the plane normal to x, so that z = α cos θ + β sin θ.

1.6.4 Green’s function in isotropic medium

As previously mentioned, the integral in Eq.(1.67) can be evaluated analytically for isotropic
materials. Substituting in the elastic constants for isotropic materials into the definition of
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x

t
α

z

β
Figure 1.6: Coordinate system for evaluating the integral in Green’s function expression.

(zz)ij gives

(zz)ij = zmznCimjn

= zmzn[λδimδjn + µ(δijδmn + δinδjm)]

= λzizj + µ(zizj + δijznzn)

= (λ + µ)zizj + µδij (1.68)

Thus (zz)ij can be written as

(zz)ij = µ

(
δij +

λ + µ

µ
zizj

)
(1.69)

and the inverse can be written as

(zz)−1
ij =

1

µ

(
δij −

λ + µ

λ + 2µ
zizj

)
(1.70)

This can be verified by showing (zz)−1
ij (zz)jk = δik. Substituting this into Eq.(1.67)

Gij =
1

8π2x

∫ 2π

0

1

µ

(
δij −

λ + µ

λ + 2µ
zizj

)
dθ
∣∣∣
x·z=0

(1.71)

In Fig.1.6 the unit vector z can be written as a function of two fixed perpendicular vectors
α and β

zi = αi cos θ + βi sin θ (1.72)

zizj = αiαj cos2 θ + (αiβj + αjβi) cos θ sin θ + βiβj sin2 θ (1.73)
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Substituting into Eq.(1.71)

Gij =
1

8π2xµ

∫ 2π

0

[
δij −

λ + µ

λ + 2µ

(
αiαj cos2 θ +

+ (αiβj + αjβi) cos θ sin θ + βiβj sin2 θ

)]
dθ

=
1

8π2xµ

[
2πδij −

λ + µ

λ + 2µ
(αiαjπ + βiβjπ)

]
=

1

8πµx

[
2δij −

λ + µ

λ + 2µ
(αiαj + βiβj)

]
(1.74)

By now we have evaluated the integral, but the Green’s function is expressed by two (arbi-
trary) vectors in the plane perpendicular to x. It would be much more convenient to express
the Green’s function in terms of the field point itself (x) which can be done with a simple
trick. The vectors α and β form a basis with the vector t as shown in Fig.1.6 where t = x

|x| .
Thus any vector v can be written in terms of α, β and t.

v = (v ·α)α + (v · β)β + (v · t)t (1.75)

and in component form

vi = vjαjαi + vjβjβi + vjtjti (1.76)

This means that

δij = αiαj + βiβj + titj (1.77)

Substituting 1.77 into 1.74

Gij =
1

8πµx

[
2δij −

λ + µ

λ + 2µ
(δij − titj)

]
Simplifying results in

Gij =
1

8πµx

[
λ + 3µ

λ + 2µ
δij +

λ + µ

λ + 2µ

xixj

x2

]
(1.78)

or, in terms of µ and ν

Gij =
1

16πµ(1− ν)x

[
(3− 4ν)δij +

xixj

x2

]
(1.79)

or in terms of R ≡ |x|

Gij =
1

8πµ

[
δijR,kk −

1

2(1− ν)
R,ij

]
(1.80)
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1.7 Betti’s Theorem and reciprocity

Betti’s Theorem
Consider a linear elastic body with two sets of equilibrating tractions and body forces

applied to it. Let u(1) be the displacement field in response to traction force t(1) and body
force b(1). Let u(2) be the displacement field in response to traction force t(2) and body force
b(2). Under the assumptions of linear elasticity theory, the Betti’s Theorem states,∫

S

t(1) · u(2) dS +

∫
V

b(1) · u(2) dV =

∫
S

t(2) · u(1) dS +

∫
V

b(2) · u(1) dV (1.81)

and in component form∫
S

t
(1)
i u

(2)
i dS +

∫
V

b
(1)
i u

(2)
i dV =

∫
S

t
(2)
i u

(1)
i dS +

∫
V

b
(2)
i u

(1)
i dV (1.82)

Proof
First, lets establish the fact that σ

(1)
ij e

(2)
ij = σ

(2)
ij e

(1)
ij . This is because,

σ
(1)
ij e

(2)
ij = Cijkle

(1)
kl e

(2)
ij

σ
(2)
ij e

(1)
ij = Cijkle

(2)
kl e

(1)
ij

Cijkl = Cklij

Integrating this identity over the volume of the solid, we have∫
V

σ
(1)
ij e

(2)
ij dV =

∫
V

σ
(2)
ij e

(1)
ij dV (1.83)

The left hand side can be re-written as,∫
V

σ
(1)
ij e

(2)
ij dV =

∫
V

σ
(1)
ij u

(2)
j,i dV

=

∫
V

[σ
(1)
ij u

(2)
j ], i − σ

(1)
ij,iu

(2)
j dV

From equilibrium condition,

σ
(1)
ij,i + b

(1)
j = 0 (1.84)

we have,∫
V

σ
(1)
ij e

(2)
ij dV =

∫
V

[σ
(1)
ij u

(2)
j ],i + b

(1)
j u

(2)
j dV

Applying Gauss’s Theorem on the first term, we have,∫
V

σ
(1)
ij e

(2)
ij dV =

∫
S

σ
(1)
ij u

(2)
j ni dS +

∫
V

b
(1)
j u

(2)
j dV
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Noticing the definition of traction force,

t
(1)
j = σ

(1)
ij ni (1.85)

we obtain,∫
V

σ
(1)
ij e

(2)
ij dV =

∫
S

t
(1)
j u

(2)
j dS +

∫
V

b
(1)
j u

(2)
j dV

Similarly, the right hand side of Eq. (1.83) can be written as,∫
V

σ
(2)
ij e

(1)
ij dV =

∫
S

t
(2)
j u

(1)
j dS +

∫
V

b
(2)
j u

(1)
j dV

Therefore,∫
S

t
(1)
j u

(2)
j dS +

∫
V

b
(1)
j u

(2)
j dV =

∫
S

t
(2)
j u

(1)
j dS +

∫
V

b
(2)
j u

(1)
j dV

which is Betti’s Theorem.

Reciprocity of Green’s function
Betti’s Theorem can be used to prove the reciprocity of Green’s function,

Gij(x,x′) = Gji(x
′,x) (1.86)

Proof
Consider a specific situation onto which we will apply the Betti’s Theorem. Let b(1) be
a concentrated body force F at point x(1). Let b(2) be a concentrated body force H at
point x(2). We would like to show that the contribution of the traction integral from Betti’s
theorem is zero, however they cannot be set to zero identically since the body must be in
equilibrium. Let’s consider a body that has a displacement restraints over part of the surface
such that ui = 0 on S∗, where S∗ is a subsection of the total surface S. Let’s also further
assume that there are no other tractions on S. In this case,

u
(1)
i (x) = Gij(x,x(1))Fj

b
(1)
i (x) = Fiδ(x− x(1))

u
(2)
i (x) = Gij(x,x(2))Hj

b
(2)
i (x) = Fiδ(x− x(2))

t
(1)
j = t

(2)
j = 0 on S − S∗

u
(1)
j = u

(2)
j = 0 on S∗

(1.87)

Applying Betti’s Theorem and noting that the surface integrals are zero, we get,∫
V

Fiδ(x− x(1))Gij(x,x(2))Hj dV (x) =

∫
V

Hjδ(x− x(2))Gji(x,x(1))Fi dV (x) (1.88)
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Using the property of δ function, we have,

FiHjGij(x
(1),x(2)) = FiHjGji(x

(2),x(1)) (1.89)

This condition must be true for arbitrary forces F and H. Therefore,

Gij(x
(1),x(2)) = Gji(x

(2),x(1)) (1.90)

which is the reciprocity of Green’s function.



Chapter 2

Eshelby’s Inclusion I: Stress and
Strain

2.1 Inclusion and eigenstrain

Consider a homogeneous linear elastic solid with volume V and surface area S, with elastic
constant Cijkl, as shown in Fig. 2.1. Let a sub-volume V0 with surface area S0 undergo
a uniform permanent (inelastic) deformation, such as a martensitic phase transformation.
The material inside V0 is called an inclusion and the material outside is called the matrix.
If we remove V0 from its surrounding matrix, it should assume a uniform strain e∗ij and
will experience zero stress. e∗ij is called the eigenstrain, meaning the strain under zero
stress. Notice that both the inclusion and the matrix have the same elastic constants. The
eigenstress is defined as σ∗ij ≡ Cijkle

∗
kl.

In reality, the inclusion is surrounded by the matrix. Therefore, it is not able to reach the
state of eigenstrain and zero stress. Instead, both the inclusion and the matrix will deform
and experience an elastic stress field. The Eshelby’s transformed inclusion problem is to
solve the stress, strain and displacement fields both in the inclusion and in the matrix.

V
S

V
S

0

0

Figure 2.1: A linear elastic solid with volume V and surface S. A subvolume V0 with
surface S0 undergoes a permanent (inelastic) deformation. The material inside V0 is called
an inclusion and the material outside is called the matrix.

25
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Figure 2.2: John Douglas Eshelby (1916-1981, United Kingdom).

2.2 Green’s function and Eshelby’s tensor Sijkl

Eshelby showed that the problem stated above can be solved elegantly by the superposition
principle of linear elasticity and using the Green’s function [6]. Eshelby used the following 4
steps of a “virtual” experiment to construct the desired solution.

Step 1. Remove the inclusion from the matrix.

V

V0

Apply no force to the inclusion, nor to the matrix. The strain, stress and displacement fields
in the matrix and the inclusion are,

matrix inclusion
eij = 0 eij = e∗ij
σij = 0 σij = 0
ui = 0 ui = e∗ijxj

Step 2. Apply surface traction to S0 in order to make the inclusion return to its original
shape
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V

V0 T

The elastic strain of the inclusion should exactly cancel the eigenstrain, i.e. eel
ij = −e∗ij. The

strain, stress and displacement fields in the matrix and the inclusion are,

matrix inclusion
eij = 0 eij = eel

ij + e∗ij = 0
σij = 0 σij = Cijkle

el
ij = −Cijkle

∗
ij = −σ∗ij

ui = 0 ui = 0

The traction force on S0 is Tj = σijni = −σ∗ijni.

Step 3. Put the inclusion back to the matrix.

V

V0 T

The same force T is applied to the internal surface S0. There is no change in the deformation
fields in either the inclusion or the matrix from step 2.

Step 4. Now remove the traction T. This returns us to the original inclusion problem as
shown in Fig. 2.1. The change from step 3 to step 4 is equivalent to applying a cancelling
body force F = −T to the internal surface S0 of the elastic body.

V

V0 F
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Let uc
i (x) be the displacement field in response to body force Fj on S0. uc

i (x) is called the
constrained displacement field. It can be easily expressed in terms of the Green’s function
of the elastic body, (notice that Fj = −Tj = σ∗jknk)

uc
i (x) =

∫
S0

Fj(x
′)Gij(x,x′)dS(x′) =

∫
S0

σ∗jknk(x
′)Gij(x,x′)dS(x′) (2.1)

The displacement gradient, strain, and stress of the constrained field are

uc
i,j(x) =

∫
S0

σ∗lknk(x
′)Gil,j(x,x′) dS(x′) (2.2)

ec
ij(x) =

1

2
(uc

i,j + uc
i,j) =

1

2

∫
S0

σ∗lknk(x
′) [Gil,j(x,x′) + Gjl,i(x,x′)] dS(x′) (2.3)

σc
ij(x) = Cijkle

c
kl(x) (2.4)

In terms of the constrained field, the strain, stress and displacement fields in the matrix and
the inclusion are,

matrix inclusion
eij = ec

ij eij = ec
ij

σij = σc
ij σij = σc

ij − σ∗ij = Cijkl(e
c
kl − e∗kl)

ui = uc
i ui = uc

i

To obtain explicit expressions for the stresses and strains everywhere, the constrained
field must be determined both inside and outside the inclusion. We can define a fourth order
tensor Sijkl that relates the constrained strain inside the inclusion to its eigenstrain,

ec
ij = Sijkle

∗
kl (2.5)

Sijkl is often referred to as Eshelby’s tensor. Because it relates two symmetric strain tensors,
the Eshelby’s tensor satisfies minor symmetries,

Sijkl = Sjikl = Sijlk (2.6)

However, in general it does not satisfy the major symmetry, i.e. Sijkl 6= Sklij. In the following
sections, we derive the explicit expressions of Eshelby’s tensor in an infinite elastic medium
(V → ∞). In principle, Eshelby’s tensor is a function of space, i.e. Sijkl(x). However, an
amazing result obtained by Eshelby is that,

For an ellipsoidal inclusion in a homogeneous infinite matrix, the
Eshelby tensor Sijkl is a constant tensor. Hence the stress-strain
fields inside the inclusion are uniform.

2.3 Auxiliary tensor Dijkl

For convenience, let us define another tensor Dijkl that relates the constrained displacement
gradients to the eigenstress inside the inclusion [7],

uc
i,l(x) = −σ∗kjDijkl(x) (2.7)
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Obviously, tensor Dijkl is related to Eshelby’s tensor,

Sijmne
∗
mn = ec

ij (2.8)

=
1

2
(uc

i,j + uc
j,i) (2.9)

= −1

2
(σ∗lkDiklj + σ∗lkDjkli) (2.10)

= −1

2
σ∗lk(Diklj +Djkli) (2.11)

= −1

2
Clkmne

∗
mn(Diklj +Djkli) (2.12)

Therefore,

Sijmn(x) = −1

2
Clkmn(Diklj(x) +Djkli(x)) (2.13)

Rewrite Eq. (2.7) as uc
i,j(x) = −σ∗klDilkj(x) and compare it with From Eq. (2.2), we obtain,

Dilkj(x) = −
∫

S0

nk(x
′)Gil,j(x− x′) dS(x′) (2.14)

or equivalently,

Dijkl(x) = −
∫

S0

Gij,l(x− x′)nk(x
′) dS(x′) (2.15)

Notice that we have used the fact that Gij(x,x′) = Gij(x− x′) for an infinite homogeneous
medium. Applying Gauss’s Theorem, we obtain

Dijkl(x) = −
∫

V0

∂

∂x′k
Gij,l(x− x′) dV (x′)

=

∫
V0

∂

∂xk

Gij,l(x− x′) dV (x′)

Therefore,

Dijkl(x) =

∫
V0

Gij,kl(x− x′) dV (x′) (2.16)

Recall that the Green’s function for an anisotropic medium is,

Gij(x− x′) =
1

(2π)3

∫
exp [−ik · (x− x′)]

(zz)−1
ij

k2
dk (2.17)

where z = k/k. Substituting this into Eq. (2.16), we get

Dijkl(x) =

∫
V0

∂2

∂xk∂xl

[
1

(2π)3

∫
exp [−ik · (x− x′)]

(zz)−1
ij

k2
dk

]
dV (x′)

=
1

(2π)3

∫
V0

∫ ∞

−∞

[
dk(−ikk)(−ikl) exp [−ik · (x− x′)]

(zz)−1
ij

k2

]
dV (x′)

= − 1

(2π)3

∫
V0

∫
exp [−ik · (x− x′)] (zz)−1

ij zk zl dk dV (x′) (2.18)
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Because the integration over the inclusion volume V0 only depends on x′, but not on x, it is
helpful to rearrange integrals as,

Dijkl(x) = − 1

(2π)3

∫
dk exp(−ik · x)(zz)−1

ij zk zl

∫
V0

exp(ik · x′) dV (x′)

= − 1

(2π)3

∫
dk exp(−ik · x)(zz)−1

ij zk zl Q(k) (2.19)

where

Q(k) ≡
∫

V0

exp(ik · x′) dV (x′) (2.20)

Therefore, for an infinite homogeneous medium, the auxiliary tensor Dijkl also satisfies minor
symmetries,

Dijkl = Djikl = Dijlk (2.21)

But in general it does not satisfy the major symmetry, i.e. Dijkl 6= Dklij (similar to Eshelby’s
tensor Sijkl).

2.4 Ellipsoidal inclusion

Now let us restrict our attention to inclusions that are ellipsoidal in shape. The goal is to
prove that Dijkl(x) is a constant inside an ellipsoidal inclusion. The volume V0 occupied by
the inclusion can be expressed as,(

x′

a

)2

+

(
y′

b

)2

+

(
z′

c

)2

≤ 1 (2.22)

where a, b, c specify the size of the ellipsoid. Define new variables,

X ′ ≡ x′

a
(2.23)

Y ′ ≡ y′

b
(2.24)

Z ′ ≡ z′

c
(2.25)

R ≡ X ′e1 + Y ′e2 + Z ′e3 (2.26)

R ≡ |R| (2.27)

Then the integration over V0 becomes an integration over a unit sphere in the space of R,∫
V0

dV (x′) ⇒ abc

∫
|R|≤1

dR (2.28)
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Also define new variables in Fourier space,

λx ≡ akx (2.29)

λy ≡ bky (2.30)

λz ≡ ckz (2.31)

λ ≡ λxe1 + λye2 + λze3 (2.32)

λ ≡ |λ| =
√

a2k2
x + b2k2

y + c2k2
z (2.33)

Therefore,

k · x′ = λ ·R (2.34)

Q(k) ≡
∫

V0

exp(ik · x′) dV (x′)

= abc

∫
|R|≤1

exp(iλ ·R) dR (2.35)

In polar coordinates,

Q(k) = abc

∫ 1

0

∫ 2π

0

∫ π

0

R2 sin φ exp(iλR cos φ) dφ dθ dR (2.36)

= 2πabc

∫ 1

0

dR R2

∫ 1

−1

ds exp(iλRs) (2.37)

= 2πabc

∫ 1

0

R2

[
2 sin(λR)

λR

]
dR (2.38)

= 4π
abc

λ

∫ 1

0

R sin λR dR (2.39)

= 4π
abc

λ3
(sin λ− λ cos λ) (2.40)

Substituting this result into Eq. (2.19), we have

Dijkl(x) = − 1

8π3

∫ ∞

−∞
dk exp(−ik · x)(zz)−1

ij zk zl
4π

λ3
abc(sin λ− λ cos λ)

= − abc

2π2

∫ ∞

−∞
(zz)−1

ij zk zl exp(−ik · x)
sin λ− λ cos λ

λ3
dk (2.41)

Again we go to polar coordinates. Define new variables Φ, Θ, γ through,

kx = k sin Φ cos Θ (2.42)

ky = k sin Φ sin Θ (2.43)

kz = k cos Φ (2.44)

γ ≡ (k · x)/k = x sin Φ cos Θ + y sin Φ sin Θ + z cos Φ (2.45)

β ≡ λ/k =
√

(a2 cos2 Θ + b2 sin2 Θ) sin2 Φ + c2 cos2 Φ (2.46)
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Then

Dijkl(x) = − abc

2π2

∫ ∞

0

∫ π

0

∫ 2π

0

k2(zz)−1
ij zk zl exp(−ikγ)

sin λ− λ cos λ

λ3
sin Φ dΘ dΦ dk

= − abc

2π2

∫ π

0

∫ 2π

0

(zz)−1
ij zk zl κ(γ) sin Φ dΘ dΦ (2.47)

where

κ(γ) ≡
∫ ∞

0

dk k2 exp(−ikγ)
sin λ− λ cos λ

λ3

=

∫ ∞

0

dk k2 exp(−ikγ)
sin kβ − kβ cos kβ

k3β3

=
1

β3

∫ ∞

0

dk exp(−ikγ)

[
sin kβ

k
− β cos kβ

]
(2.48)

Notice that the dependence of Dijkl on x is through γ = (k ·x)/k in κ(γ). To evaluate κ(γ),
notice that the term in the square bracket is an even function of k. Because Dijkl is real,
κ(γ) must be real as well. Therefore, we can rewrite the integral as,

κ(γ) =
1

2β3

∫ ∞

−∞
dk exp(−ikγ)

[
sin kβ

k
− β cos kβ

]
(2.49)

Notice that∫ ∞

−∞
dk exp(−ikγ) cos kβ =

1

2

∫ ∞

−∞
dk e−ikγ(eikβ + e−ikβ)

=
1

2

∫ ∞

−∞
dk
[
e−ik(γ−β) + e−ik(γ+β)

]
= π [δ(β − γ) + δ(β + γ)] (2.50)

d

dβ

∫ ∞

−∞
dk exp(−ikγ)

sin kβ

k
=

∫ ∞

−∞
dk exp(−ikγ) cos kβ (2.51)∫ ∞

−∞
dk exp(−ikγ)

sin kβ

k
= π [h(β − γ) + h(β + γ)] (2.52)

where

h(α) =


−1

2
if α < 0

0 if α = 0
1
2

if α > 0
(2.53)

Therefore, if β ± γ > 0 then the κ(γ) reduces to

κ(γ) =
π

2β3
[h(β − γ) + h(β + γ)− βδ(β − γ)− βδ(β + γ)]

=
π

2β3
(2.54)
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In other words, κ(γ) becomes a constant if β ± γ > 0. In this case, Dijkl(x) reduces to a
surface integral that is independent of x,

Dijkl(x) = − abc

2π2

∫ π

0

∫ 2π

0

(zz)−1
ij zk zl

π

2β3
sin Φ dΘ dΦ (2.55)

We will now show that if x is within the ellipsoid, then β± γ > 0. This will then prove that
Dijkl and Sijkl are constants within the ellipsoidal inclusion. To see why this is the case,
consider vector ρ such that,

ρ =
x

a
e1 +

y

b
e2 +

z

c
e3 (2.56)

If x lies within the ellipsoid, then

ρ ≡ |ρ| =
√

(x/a)2 + (y/b)2 + (z/c)2 < 1 (2.57)

At the same time,

γ ≡ (k · x)/k = (λ · ρ)/k (2.58)

β ≡ λ/k (2.59)

Therefore,

|γ| = |λ · ρ|/k ≤ λρ/k < λ/k = β

β ± γ > 0 (2.60)

Therefore, when x lies within the ellipsoid, the Dijkl tensor can be calculated by simply
performing a surface integral over a unit sphere,

Dijkl = −abc

4π

∫ π

0

∫ 2π

0

(zz)−1
ij zk zl

sin Φ

β3
dΘ dΦ (2.61)

When x lies outside the ellipsoid, β± γ is positive for some values of θ and φ but is negative
elsewhere, hence Dijkl will depend on x, and can be calculated directly from the Green’s
function,

Dijkl(x) = −
∫

S

Gij,l(x− x′)nk(x
′) dS(x′) (2.62)

Once Dijkl is obtained, Eshelby’s tensor Sijkl can be found by Eq. (2.13).

2.5 Discontinuities across inclusion interface

We now consider the possible discontinuity of elastic fields across the interface S0 of the
inclusion. Let us define [[f ]] as the jump of field f from the inside of the inclusion to the
outside, i.e.,

[[f ]] ≡ fM − f I (2.63)
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where f can be the displacement uj, stress σij or strain eij and M indicates the matrix side of
the surface S0 and I indicates the inclusion side of S0. First we notice that the displacement
field must be continuous everywhere, i.e.,

[[ui]] = 0

Since the total displacements are equal to the constrained displacements, the jump in the
constrained displacements are zero as well, i.e.,

[[uc
i ]] = 0

Because the traction forces are continuous across the interface,

[[σijni]] = 0

Since

[[σij]] = σM
ij − σI

ij

σM
ij = σc

ij

σI
ij = σc

ij − σ∗ij

the jump in the total stress is related to the jump in constrained stress field through,

[[σij]] = [[σc
ij]]− σ∗ij

Therefore, the jump in the constrained tractions must be

[[σc
ijni]] = −σ∗ijni (2.64)

Even though the constrained displacements uc
i are continuous across S0, its gradients uc

k,l

are not necessarily continuous. Yet, the continuity of uc along the entire S0 surface requires
that the derivative of uc

i along the direction within the local tangent plane of S0 must be
continuous across S0. Let τl be a vector contained in the local tangent plane of S0, then,

[[uc
k,lτl]] = 0 (2.65)

Thus we can write

[[uc
k,l]] = µknl (2.66)

where µk is a (yet unknown) vector field and nl is the normal unit vector of the local tangent
plane of S0. From Eq. (2.64) and (2.66), we can establish an equation based on the jump of
the constrained traction field,

[[σc
ijni]] = [[Cijklu

c
k,lni]]

= Cijklµkninl

= −σ∗ijni
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Recall that we have defined (nn)ij as

(nn)ij ≡ Cikljnknl

Then we have

(nn)jkµk = −σ∗ijni

µk = −(nn)−1
kj σ∗ijni

The jump in constrained displacement gradients is then

[[uc
k,l]] = −(nn)−1

kj σ∗ijninl (2.67)

And the jump in constrained stress is

[[σc
ij]] = −Cijkl(nn)−1

kp σ∗pmnmnl (2.68)

Finally the total jump in stress is

[[σij]] = σ∗ij − Cijkl(nn)−1
kp σ∗pmnmnl (2.69)

2.6 Eshelby’s tensor in isotropic medium

The derivation of the Eshelby tensor in isotropic materials can be found in [6] and [3]. For
isotropic medium, the Eshelby’s tensor for an ellipsoidal inclusion with semi-axes a, b, c can
be expressed in terms of elliptic integrals.

For a spherical inclusion (a = b = c), Eshelby’s tensor has the following compact expres-
sion,

Sijkl =
5ν − 1

15(1− ν)
δijδkl +

4− 5ν

15(1− ν)
(δikδjl + δilδjk) (2.70)

Notice that the tensor itself does not depend on the radius of the sphere.

In the most general case where a > b > c and the semi axis a aligns with the coordinate x
(and similarly b with y and c with z), the Eshelby’s tensor is,

S1111 =
3

8π(1− ν)
a2I11 +

1− 2ν

8π(1− ν)
I1

S1122 =
1

8π(1− ν)
b2I12 +

1− 2ν

8π(1− ν)
I1

S1133 =
1

8π(1− ν)
c2I13 +

1− 2ν

8π(1− ν)
I1

S1212 =
a2 + b2

16π(1− ν)
I12 +

1− 2ν

16π(1− ν)
(I1 + I2)

S1112 = S1223 = S1232 = 0
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The rest of the nonzero terms can be found by cyclic permutation of the above formulas.
Notice that we should also let a → b → c together with 1 → 2 → 3. The I terms are defined
in terms of standard elliptic integrals,

I1 =
4πabc

(a2 − b2)(a2 − c2)1/2
[F (θ, k)− E(θ, k)]

I3 =
4πabc

(b2 − c2)(a2 − c2)1/2

[
b(a2 − c2)1/2

ac
− E(θ, k)

]

where

θ = arcsin

√
a2 − c2

a2

k =

√
a2 − b2

a2 − c2

and

I1 + I2 + I3 = 4π

3I11 + I12 + I13 =
4π

a2

3a2I11 + b2I12 + c2I13 = 3I1

I12 =
I2 − I1

a2 − b2

and the standard elliptic integrals are defined as

F (θ, k) =

∫ θ

0

dw

(1− k2 sin2 w)1/2
(2.71)

E(θ, k) =

∫ θ

0

(1− k2 sin2 w)1/2 dw (2.72)
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For an elliptic cylinder ( c →∞ )

S1111 =
1

2(1− ν)

[
b2 + 2ab

(a + b)2
+ (1− 2ν)

b

a + b

]
S2222 =

1

2(1− ν)

[
a2 + 2ab

(a + b)2
+ (1− 2ν)

a

a + b

]
S3333 = 0

S1122 =
1

2(1− ν)

[
b2

(a + b)2
− (1− 2ν)

b

a + b

]
S2233 =

1

2(1− ν)

2νa

a + b

S2211 =
1

2(1− ν)

[
a2

(a + b)2
− (1− 2ν)

a

a + b

]
S3311 = S3322 = 0

S1212 =
1

2(1− ν)

[
a2 + b2

2(a + b)2
+

(1− 2ν)

2

]
S1133 =

1

2(1− ν)

2νb

a + b

S2323 =
a

2(a + b)
S3131 =

b

2(a + b)

For a flat ellipsoid (a > b � c). The I integrals in this limiting case reduce to

I1 = 4π(F (k)− E(k))
bc

a2 − b2

I2 = 4π

(
E(k)

c

b
− (F (k)− E(k))

bc

a2 − b2

)
I3 = 4π

(
1− E(k)

c

b

)
I12 = 4π

[
E(k)

c

b
− 2(F (k)− E(k))

bc

a2 − b2

]
/(a2 − b2)

I23 = 4π

[
1− 2E(k)

c

b
+ (F (k)− E(k))

bc

a2 − b2

]
/b2

I31 = 4π

[
1− E(k)

c

b
− (F (k)− E(k))

bc

a2 − b2

]
/a2

I33 =
4π

3c2

where E(k) and F (k) are complete elliptic integrals defined as

F (k) =

∫ π
2

0

dw

(1− k2 sin2 w)1/2
(2.73)

E(k) =

∫ π
2

0

(1− k2 sin2 w)1/2 dw (2.74)
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We have a penny shaped inclusion if we let a = b in the flat ellipsoid. The Eshelby’s tensor
further reduces to

S1111 = S2222 =
π(13− 8ν)

32(1− ν)

c

a

S3333 = 1− π(1− 2ν)

4(1− ν)

c

a

S1122 = S2211 =
π(8ν − 1)

32(1− ν)

c

a

S1133 = S2233 =
π(2ν − 1)

8(1− ν)

c

a

S3311 = S3322 =
v

1− v

(
1− π(4ν + 1)

8ν

c

a

)
S1212 =

π(7− 8ν)

32(1− ν)

c

a

S3131 = S2323 =
1

2

(
1 +

π(ν − 2)

4(1− ν)

c

a

)
Eshelby’s tensor for various other shapes can be found in [3] and [8].

2.7 Eshelby’s inclusion in 2-dimensions

The derivations on ellipsoidal inclusions in 3D space given above can be repeated for elliptic
inclusions in 2D space (corresponding to elliptic cylinder in 3D). As an illustration, in this
section we show that the Eshelby’s tensor S is a constant within the ellipse and we derive
the explicit expression of S for a circular (i.e. cylindrical) inclusion.

Constant Dijkl

Consider an elliptic inclusion in the 2D medium that can occupies the area,(x1

a

)2

+
(x2

b

)2

≤ 1 (2.75)

For consistency of notation, we will still use V0 to represent the area (or volume) occupied by
the inclusion and S0 as its boundary. Let its eigenstrain be e∗ij (i, j = 1, 2). Define Eshelby’s
tensor Sijkl and auxiliary tensor Dijkl similarly as before, but with i, j, k, l = 1, 2. We will
consider the plane strain condition, so that the elastic constants tensor in 2D cijkl simply
equals to the elastic constants tensor in 3D Cijkl for i, j, k, l = 1, 2, i.e.,

cijkl = λδijδkl + µ(δikδjl + δilδjk)

=
2µν

1− 2ν
δijδkl + µ(δikδjl + δilδjk)

= µ

(
2ν

1− 2ν
δijδkl + δikδjl + δilδjk

)
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Similar to the 3D case, the Fourier space expression for the Green’s function in 2D is

gij(k) =
(zz)−1

ij

k2

The real space expression is then,

Gij(x) =
1

4π2

∫ ∞

−∞
exp(−ik · x)

(zz)−1
ij

k2
dk (2.76)

Similar to Eq. (2.16), the auxiliary tensor for an elliptic inclusion in 2D is,

Dijkl(x) =

∫
V0

Gij,kl(x− x′)dV (x′)

=

∫
V0

∂2

∂xk∂xl

[
1

(2π)2

∫
exp [−ik · (x− x′)]

(zz)−1
ij

k2
dk

]
dV (x′)

= − 1

(2π)2

∫
V0

∫
exp [−ik · (x− x′)] (zz)−1

ij zkzl dk dV (x′)

= − 1

(2π)2

∫
exp(−ik · x)(zz)−1

ij zkzlQ(k) dk (2.77)

where

Q(k) ≡
∫

V0

exp(ik · x′)dV (x′) (2.78)

Define

λ ≡ (λ1, λ2) = (k1a, k2b) , λ = |λ|
R ≡ (R1, R2) = (x1/a, x2/b) , R = |R|
γ = (k · x)/k = (λ ·R)/k

β = λ/k (2.79)

Then

Q(k) ≡
∫

V0

exp(ik · x′)dV (x′)

= ab

∫
|R|≤1

exp(iλ ·R) dR

= ab

∫ 1

0

∫ 2π

0

R exp(iλR cos θ) dθ dR

= 2πab

∫ 1

0

R J0(λR) dR

= 2πab
J1(λ)

λ
(2.80)
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Therefore,

Dijkl(x) = − ab

2π

∫
exp(−ik · x)(zz)−1

ij zkzl
J1(λ)

λ
dk

= − ab

2π

∫ 2π

0

∫ ∞

0

exp(−ikγ)(zz)−1
ij zkzl

J1(kβ)

kβ
k dk dθ

= − ab

2π

∫ 2π

0

(zz)−1
ij zkzlκ(γ) dθ (2.81)

where

κ(γ) =
1

β

∫ ∞

0

exp(−ikγ)J1(kβ) dk

=
1

β2

[
1− i|γ|√

β2 − γ2

]
(2.82)

Notice that Dijkl(x) is real. Since (zz)−1
ij zkzl is also real, the imaginary part of κ(γ) can be

neglected. Therefore, as long as β > |γ|, we can write

κ(γ) =
1

β2
(2.83)

which is independent of γ. Therefore Dijkl(x) is independent of x. β > |γ| is satisfied if x is
within the inclusion. This can be shown by the following. If x is inside the ellipse, then(x1

a

)2

+
(x2

b

)2

= R2
1 + R2

2 < 1 (2.84)

which means R < 1. Therefore,

|γ| = |λ ·R|/k ≤ |λ| · |R|/k = λR/k < λ/k = β (2.85)

Sijkl for circular inclusion
We have shown that inside an elliptic inclusion of an isotropic medium

Dijkl(x) = − ab

2π

∫ 2π

0

(zz)−1
ij zkzl

1

β2
dθ

For a circular inclusion, a = b, then β = a and Dijkl becomes

Dijkl(x) = − 1

2π

∫ 2π

0

(zz)−1
ij zkzl dθ

Notice that

cijkl = λδijδkl + µ(δikδjl + δilδjk)

(zz)ij = µδij + (λ + µ)zizj

(zz)−1
ij =

1

µ

(
δij −

λ + µ

λ + 2µ
zizj

)
=

1

µ

(
δij −

1

2(1− ν)
zizj

)
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Therefore,

Dijkl(x) = − 1

2π

∫ 2π

0

1

µ

(
δij −

1

2(1− ν)
zizj

)
zkzl dθ

Notice that z1 = cos θ and z2 = sin θ, Dijkl can be evaluated explicitly. Let us define

Hkl ≡
∫ 2π

0

zkzl dθ

and

Jijkl ≡
∫ 2π

0

zizjzkzl dθ (2.86)

The only non-zero elements of Hkl are H11 and H22, i.e.,

Hkl = δkl

∫ 2π

0

cos2 θ dθ = πδkl

Similarly Jijkl is non-zero only when all four indices are the same or they come in pairs.

J1111 = J2222 =

∫ 2π

0

cos4 θ dθ =
3π

4

J1122 = J2211 = J1212 = J2121 =

∫ 2π

0

cos2 θ sin2 θ =
π

4

therefore

Jijkl =
π

4
(δijδkl + δikδjl + δilδjk)

Thus

Dijkl = − 1

2πµ

(
δijHkl −

1

2(1− ν)
Jijkl

)
= − 1

2πµ

(
δijδklπ −

1

2(1− ν)

π

4
(δijδklδikδjl + δilδjk)

)
= − 1

16µ(1− ν)
((8− 8ν)δijδkl − δijδkl − δikδjl − δilδjk)

= − 1

16µ(1− ν)
((7− 8ν)δijδkl − δikδjl − δilδjk)

Now,

Sijmn = −1

2
clkmn(Diklj +Djkli)

= −λDikkjδmn − µ(Dinmj +Djnmi)
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Dikkj can be evaluated by

Dikkj = − 1

16µ(1− ν)
((7− 8ν)δikδkj − δikδkj − δijδkk)

Note, that now in two dimensions, δkk = 2

Dikkj = − 1

16µ(1− ν)
((7− 8ν)δijδkj − δij − 2δij)

= − (4− 8ν)

16µ(1− ν)
δij

λ =
2µν

1− 2ν

λDikkj = − ν

2(1− ν)
δij (2.87)

Thus

Sijmn =
ν

2(1− ν)
δijδmn +

1

16(1− ν)
((6− 8ν)(δinδjm + δjnδim)− 2δijδmn)

=
4ν − 1

8(1− ν)
δijδmn +

3− 4ν

8(1− ν)
(δinδjm + δjnδim)

This is the Eshelby’s tensor for a circular inclusion in 2D, which is the same as a cylindrical
inclusion in 3D under plane strain.



Chapter 3

Eshelby’s Inclusion II: Energy

3.1 Inclusion energy in an infinite solid

So far we have obtained the expressions for the stress, strain and displacement field both
inside and outside the inclusion. An important question is: ”what is the total elastic en-
ergy E of the solid containing an inclusion?” In this and subsequent sections, we derive
the expressions for E, which we refer to as the inclusion energy for brevity. However, we
emphasize that E is the total elastic energy of the solid containing an inclusion. E includes
the elastic energy stored both inside and outside the inclusion. For example, if we obtain E
as a function of the inclusion size, then the derivative of E provides the driving force for the
expansion (or shrinkage) of the inclusion. Notice that this is the case only if E is the total
elastic energy, not just the energy stored inside the inclusion.

There are two ways to obtain the expression for the total energy E. First, we can integrate
the elastic energy density both inside and outside the inclusion, using the field expressions
we have already obtained. Second, we can obtain the elastic energy E by measuring the
work done in a virtual experiment that transforms a solid system with zero elastic energy
to the solid containing an inclusion. In this section, we take the first approach. The work
method is discussed in the next section, which leads to identical results but may provide
more physical insight.

For clarity, let us introduce some symbols to describe the elastic fields inside and outside
the inclusion. Let the elastic (stress, strain, displacement) fields inside the inclusion be
denoted by a superscript I, and the elastic fields outside the inclusion (i.e. in the matrix)
be denoted by a superscript M . Notice that whenever the superscript I or M is used, the
fields only include the elastic component. For a homogeneous infinite solid, the elastic fields
in the matrix and the inclusion are,

matrix inclusion
eM

ij = ec
ij eI

ij = ec
ij − e∗ij

σM
ij = σc

ij σI
ij = σc

ij − σ∗ij
uM

i = uc
i uI

i = uc
i − e∗ijxj

Therefore, the total elastic energy is,

E =
1

2

∫
V0

σI
ije

I
ij dV +

1

2

∫
V∞−V0

σM
ij eM

ij dV (3.1)

43
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Rewriting E in terms of displacements, we have

E =
1

4

∫
V0

σI
ij(u

I
i,j + uI

j,i) dV +
1

4

∫
V∞−V0

σM
ij (uM

i,j + uM
j,i) dV (3.2)

and noting the symmetry of the stress tensor

E =
1

2

∫
V0

σI
iju

I
j,i dV +

1

2

∫
V∞−V0

σM
ij uM

j,i dV (3.3)

Now, the derivative can be factored out using the following rule

σijui,j = (σijuj),i − σij,iuj (3.4)

E =
1

2

∫
V0

(σI
iju

I
j),i − σI

ij,iu
I
j dV +

1

2

∫
V∞−V0

(σM
ij uM

j ),i − σM
ij,iu

M
j dV (3.5)

The body is assumed not to have any body forces acting on it, thus the divergence of the
stress tensor, σij,i, is zero. Thus

E =
1

2

∫
V0

(σI
iju

I
j),i dV +

1

2

∫
V∞−V0

(σM
ij uM

j ),i dV (3.6)

We wish to now use Gauss’s theorem on this equation. We need to be careful about the sign
of the unit normal vector that points outside the integration volume. Let the normal vector
pointing out of the inclusion volume V0 be nout

i . Let the unit normal vector pointing out of
the outer surface of the matrix V∞ (at infinity) be n∞i . Applying Gauss’s theorem,

E =
1

2

∫
S0

σI
iju

I
jn

out
i dS − 1

2

∫
S0

σM
ij uM

j nout
i dS +

1

2

∫
S∞

σM
ij uM

j n∞i dS (3.7)

We expect that the surface integral over S∞ should vanish as it approaches infinity. To show
this, let S∞ be a spherical surface whose radius R approaches infinity. Notice that

Dijkl(x) =

∫
V0

Gij,kl(x− x′)dV (x′) (3.8)

Because Gijkl(x− x′) → R−3 where R = |x|, for large R, then Dijkl(x) → R−3. Therefore,

eM
ij = O

(
1

R3

)
(3.9)

σM
ij = O

(
1

R3

)
(3.10)

dS = O
(
R2
)

(3.11)

Thus ∫
S∞

σM
ij uM

j nout
i dV → 0 as R →∞ (3.12)



3.1. INCLUSION ENERGY IN AN INFINITE SOLID 45

Combining the two integrals over S0,

E =
1

2

∫
S0

(
σI

iju
I
j − σM

ij uM
j

)
nout

i dS (3.13)

Although the stress across the inclusion interface S0 does not have to be continuous, the
traction force across the interface must be continuous, i.e.,

σI
ijn

out
i = σM

ij nout
i (3.14)

which leads to

E =
1

2

∫
S0

σI
ij

(
uI

j − uM
j

)
nout

i dS (3.15)

From the definition of (elastic displacement fields) uI
j and uM

j , we have

uI
j − uM

j = (uc
j − e∗jkxk)− uc

j = −e∗jkxk (3.16)

Thus

E = −1

2

∫
S0

σI
ijn

out
i e∗jkxk dS (3.17)

Therefore, we have expressed the total elastic energy E in terms of a surface integral over S0,
the inclusion interface. We can further simplify this expression by transforming the integral
back into a volume integral (over the inclusion volume V0).

E = −1

2

∫
V0

(
σI

ije
∗
jkxk

)
,i

dV

= −1

2

∫
V0

e∗jk
(
σI

ij,ixk + σI
ijxk,i

)
dV

= −1

2

∫
V0

e∗jkσ
I
kj dV

= −1

2
e∗ij

∫
V0

σI
ij dV

= −1

2
e∗ij

∫
V0

(
σc

ij − σ∗ij
)

dV (3.18)

For an ellipsoidal inclusion, the stress inside is a constant, thus

E = −1

2

(
σc

ij − σ∗ij
)
e∗ij V0 = −1

2
σI

ije
∗
ij V0 (3.19)

If the volume is not an ellipsoid, we can still write the energy in terms of the average stress
in the inclusion

E = −1

2
σI

ije
∗
ij V0 (3.20)
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where

σI
ij ≡

1

V0

∫
V0

σc
ij(x) dV (x)− σ∗ij (3.21)

Suppose that we wish to account for how much of the energy is stored inside the inclusion
and how much is stored in the matrix. The energy store inside the inclusion is

EI =
1

2

∫
V0

σI
ije

I
ij dV

For ellipsoidal inclusion, the stress and strain are constant inside, hence

EI =
1

2
σI

ije
I
ijV0 =

1

2
σI

ij

(
ec

ij − e∗ij
)
V0

Since the total elastic energy is

E = −1

2
σI

ije
∗
ijV0

the elastic energy stored inside the matrix must be,

EM = E − EI = −1

2
σI

ije
c
ijV0

3.2 Inclusion energy by the work method

In this section, we re-derive the expressions in the previous section concerning the inclusion
energy using a different approach. Rather than integrating the strain energy density over
the entire volume, we make use of the fact that the stored elastic (potential) energy in
the solid must equal the work done to it in a reversible process. By considering a virtual
reversible experiment that transforms a stress-free solid into a solid containing an inclusion,
and accounting for the work done along the way, we can derive the total elastic energy (or
the elastic energy stored within the inclusion or the matrix) using considerably less math
than before.
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To better illustrate this method, let us consider a simple example. Con-
sider a mass M attached to a linear spring with stiffness k. Let E0 be the
equilibrium state of the system under no applied force. Obviously E0 = 0.
Define the origin as the position of the mass at this state. Suppose we
gradually apply a force to the mass until the force reaches F1. At this
point the mass must have moved by a distance x1 = F1/k. Let the energy
of this state be E1. The work done in moving the mass from 0 to x1 equals
the average force F applied to the mass times the distance travelled (x1).
Because the initial force is 0 and the final force is F1, the average force is
F = F1/2. Therefore, the work done in moving the mass from 0 to x1 is,

W01 = Fx1 =
1

2
F1x1 =

1

2
kx2

1 (3.22)

Hence

E1 = E0 + W01 =
1

2
kx2

1 (3.23)

Suppose we further increase the force to F2 and the system reaches a
new state at x2 = F2/k with energy E2. Since the initial force during
this transformation is F1 and the final force is F2, the average force is
F = (F1 + F2)/2. The mass moves by a distance of x2 − x1 under this
force. Therefore the work done is

W12 =
1

2
(F1 + F2)(x2 − x1) =

1

2
k(x2

2 − x2
1) (3.24)

Hence

E2 = E1 + W12 =
1

2
kx2

2 (3.25)

Now, let’s apply this method to Eshelby’s inclusion problem. Let us consider the four
steps in Eshelby’s construction of a solid containing an inclusion. Recall that after step 1,
the inclusion is outside the matrix. The inclusion has undergone a deformation due to its
eigenstrain. No forces are applied to either the inclusion or the matrix. Obviously, the total
elastic energy at this state is E1 = 0.

In step 2, we apply a set of traction forces on the inclusion surface S0. At the end of step
2, the traction forces are Tj = −σ∗ijnj and the displacements on the surface are uj = −e∗kjxk.
Therefore, the work done in step 2 is

W12 =
1

2

∫
S0

Tj(x)uj(x) dS(x)

=
1

2

∫
S0

σ∗ijnie
∗
kjxk dS(x)

=
1

2
σ∗ije

∗
kj

∫
S0

xkni dS(x) (3.26)
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and using Gauss’s theorem

W12 =
1

2
σ∗ije

∗
kj

∫
V0

xk,i dV (x)

=
1

2
σ∗ije

∗
kj

∫
V0

δki dV (x)

=
1

2
σ∗ije

∗
ijV0 (3.27)

In step 3, the inclusion is put inside the matrix with the traction force unchanged. No work
is done in this step, i.e. W23 = 0. In step 4, the traction force Tj is gradually reduced to
zero. Both the inclusion and the matrix displace over a distance of uc

j. Since the traction
force is Tj at the beginning of step 4 and 0 at the end of step 4, the average traction force
is, again, Tj/2. The work done to the entire system (inclusion + matrix) is

W34 =
1

2

∫
S0

Tj(x)uc
j(x) dS(x)

= −1

2

∫
S0

σ∗ijniu
c
j(x) dS(x)

= −1

2
σ∗ij

∫
V0

uc
j,i(x) dS(x)

= −1

2
σ∗ij

∫
V0

ec
ij dS(x)

= −1

2
σ∗ije

c
ijV0 (3.28)

The total elastic energy at the end of step 4 is,

E = E1 + W12 + W23 + W34

= 0 +
1

2
σ∗ije

∗
ijV0 + 0− 1

2
σc

ije
∗
ijV0

= −1

2
(σc

ij − σ∗ij)e
∗
ijV0

= −1

2
σI

ije
∗
ijV0 (3.29)

which is exactly the same as Eq. (3.19).
The same approach can also be applied to obtain the elastic energy stored inside the

inclusion (EI) or inside the matrix (EM). In step 4, the matrix also exerts force on the
inclusion, which does work as the interface S0 moves. This leads to a transfer of elastic
energy from the inclusion to the matrix.

3.3 Inclusion energy in a finite solid

Let us now consider a problem with an inclusion in a finite solid. Again, the stress-strain
fields in this case can be solved by superpositions. Suppose the finite solid assumes the
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stress-strain fields of an infinite solid containing an inclusion, as solved previously. Then
we must apply a set of traction forces T̃j to the outer surface Sext of the solid to maintain
equilibrium. To obtain the solution of a finite solid with zero traction on its outer surface,
we need to remove T̃j on Sext. This is equivalent to applying a cancelling traction force
F̃j = −T̃j on the outer surface Sext of the finite solid. Let eim

ij , σim
ij and uim

i be the strain,

stress and displacement fields in response to the surface traction F̃j. They are called image
fields. In this case, the elastic fields inside the matrix and the inclusion are,

matrix inclusion
eM

ij = ec
ij + eim

ij eI
ij = ec

ij − e∗ij + eim
ij

σM
ij = σc

ij + σim
ij σI

ij = σc
ij − σ∗ij + σim

ij

uM
i = uc

i + uim
i uI

i = uc
i − e∗ijxj + uim

i

Obviously, the image fields satisfy the condition,

eim
ij (x) =

1

2
(uim

i,j(x) + uim
j,i(x)) (3.30)

σim
ij (x) = Cijkl e

im
kl (x) (3.31)

Notice that the image fields are generally not uniform within the inclusion. The free traction
boundary condition on the outer surface Sext can be expressed as,

σM
ij next

i = 0 (on Sext) (3.32)

Similar to Eq. (3.7), the total elastic energy in the solid can be expressed in terms of surface
integrals,

E =
1

2

∫
S0

(σI
iju

I
j − σM

ij uM
j )nout

i dS +

∫
Sext

σM
ij uM

j next
i dS (3.33)

Because of Eq. (3.32), the second integral does not contribute. Using the traction continuity
argument (σI

ijn
out
i = σM

ij nout
i ) as before, we get

E =
1

2

∫
S0

σI
ij(u

I
j − uM

j )nout
i dS (3.34)

Again, using uI
j − uM

j = −e∗ikxk, we get

E = −1

2

∫
S0

σI
ije

∗
jkxkn

out
i dS (3.35)

This is the same as Eq. (3.17) except that the stress field inside the inclusion now contains
the image component. Define

σI,∞
ij ≡ σc

ij − σ∗ij (3.36)

as the stress field inside the inclusion in an infinite medium. Then

σI
ij(x) = σI,∞

ij + σim
ij (x) (3.37)



50 CHAPTER 3. ESHELBY’S INCLUSION II: ENERGY

Similarly, define

E∞ ≡ −
1

2

∫
S0

σI,∞
ij e∗jkxkn

out
i dS = −1

2
σI,∞

ij e∗ijV0 (3.38)

as the inclusion energy in an infinite solid. Then the inclusion energy in a finite solid is,

E = E∞ −
1

2

∫
S0

σim
ij e∗jkxkn

out
i dS (3.39)

Converting the second integral into volume integral, we have

E = E∞ −
1

2

∫
V0

(σim
ij e∗jkxk),i dV

= E∞ −
1

2

∫
V0

σim
ij e∗ij dV

= E∞ −
1

2
e∗ij

∫
V0

σim
ij dV

= E∞ −
1

2
σim

ij e∗ijV0

= E∞ + Eim

where

σim
ij ≡

1

V0

∫
V0

σim
ij (x) dV (x) (3.40)

is the averaged image stress inside the inclusion.

Eim ≡ −
1

2
σim

ij e∗ijV0 (3.41)

is the “image” contribution to the total inclusion energy. The average stress inside the
inclusion is,

σI
ij ≡ σI,∞

ij + σim
ij (3.42)

Thus the total inclusion energy is still related to the averaged stress inside the inclusion as

E = −1

2
σI

ije
∗
ijV0 (3.43)

The results of the total inclusion energy for ellipsoidal inclusion under various boundary
conditions are summarized below.

total elastic energy
infinite solid E = −1

2
σI

ije
∗
ijV0

finite solid with
zero traction

E = −1
2
σI

ije
∗
ijV0 σI

ij = σI,∞
ij + σim

ij
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3.4 Colonetti’s theorem

We now wish to study the energy of a solid containing an inclusion subjected to applied
forces at its outer surface. Before we do that, let us first prove Colonetti’s theorem, which
is very useful when studying such problems. Colonetti’s theorem [9] states that

There is no cross term in the total elastic energy of a solid, between the
internal stress field and the applied stress field.

However, there is an interaction energy term between the internal and applied fields
when the energy of the applied loads is included. Colonetti’s theorem can greatly simplify
the energy expressions when we apply stress to a finite solid containing an inclusion. To
appreciate Colonetti’s theorem, we need to be specific about the meaning of internal and
applied stress fields. Let us start with a stress-free homogenous solid with outer surface Sext.
Define internal stress fields as the response to a heterogeneous field of eigenstrain inside
the solid with zero traction on Sext. Define applied stress fields as the response to a set of
tractions on Sext when there is no eigenstrain inside the solid.

Let us consider two states of stress. State 1 is purely internal, and state 2 is “applied”.
The total elastic energy inside the solid for these two states are,

E(1) =
1

2

∫
V

σ
(1)
ij e

(1)
ij dV

E(2) =
1

2

∫
V

σ
(2)
ij e

(2)
ij dV

Now consider a state 1+2 which is the superposition of state 1 and 2. Its total elastic energy
should be,

E(1+2) =
1

2

∫
V

(σ
(1)
ij + σ

(2)
ij )(e

(1)
ij + e

(2)
ij ) dV

=
1

2

∫
V

(σ
(1)
ij e

(1)
ij + σ

(1)
ij e

(2)
ij + σ

(2)
ij e

(1)
ij + σ

(2)
ij e

(2)
ij ) dV

= E(1) + E(2) + E(1−2)

where

E(1−2) ≡ 1

2

∫
V

(σ
(1)
ij e

(2)
ij + σ

(2)
ij e

(1)
ij ) dV (3.44)

is the “interaction term” between state 1 and state 2. Colonetti’s theorem states that E(1−2)

must be zero, which we will prove below. First, we note that

σ
(2)
ij e

(1)
ij = Cijkle

(2)
kl e

(1)
ij

σ
(1)
ij e

(2)
ij = Cijkle

(1)
kl e

(2)
ij

so that

σ
(2)
ij e

(1)
ij = σ

(1)
ij e

(2)
ij (3.45)
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E(1−2) =

∫
V

σ
(1)
ij e

(2)
ij dV =

∫
V

σ
(2)
ij e

(1)
ij dV (3.46)

Since there is no body force, σ
(1)
ij,i = 0. Therefore,

E(1−2) =

∫
V

(σ
(1)
ij u

(2)
j ),i dV (3.47)

Now, we wish to apply Gauss’s theorem to convert the volume integral into a surface integral.
However, to use Gauss’s theorem, the integrand must be continuous inside the entire volume
V . However, this is not necessarily the case if the eigenstrain field e∗ij(x) is not sufficiently
smooth. For example, in Eshelby’s transformed inclusion problem, e∗ij(x) is not continuous

at the inclusion surface. As a result, the internal stress field σ
(1)
ij (x) is not continuous at the

inclusion surface either.
However, for clarity, let us assume for the moment that the eigenstrain field e∗ij(x) and

the internal stress field σ
(1)
ij (x) are sufficiently smooth for the Gauss’s theorem to apply.

This corresponds to the case of thermal strain induced by a smooth variation of temperature
inside the solid. In this case,

E(1−2) =

∫
V

(σ
(1)
ij u

(2)
j ),i dV

=

∫
Sext

next
i σ

(1)
ij u

(2)
j dS (3.48)

Since σ
(1)
ij is a purely internal stress state,

σ
(1)
ij next

i = 0 (on Sext) (3.49)

Hence

E(1−2) = 0 (3.50)

which is Colonetti’s theorem.
Let us now consider the case where the eigenstrain field e∗ij(x) and the internal stress field

σ
(1)
ij (x) are piecewise smooth inside various inclusion volumes VK as well as in the matrix

V −
∑

K VK . Let nout,K
i be the outward normal vector of inclusion volume VK . We can apply

Gauss’s theorem in each inclusion and the matrix separately, which gives,

E(1−2) =

∫
Sext

σ
(1)
ij u

(2)
j next

i dS +
∑
K

∫
SK

(σ
(1),K
ij − σ

(1)
ij )u

(2)
j nout,K

i dS (3.51)

where σ
(1),K
ij is the stress inside the volume Vk and σ

(1)
ij is the stress in matrix. The traction

force across the inclusion interface must be continuous, i.e.,

(σK
ij − σ

(1)
ij )nout,K

i = 0 for any K , (3.52)
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where the summation is not implied over K. Therefore, again we have,

E(1−2) =

∫
Sext

σ
(1)
ij u

(2)
j next

i dS = 0 (3.53)

which is Colonetti’s theorem.
Colonetti’s theorem only deals with the elastic strain energy that is stored inside the

solid (internal energy). When the system is under applied load, its evolution proceeds
towards minimizing its enthalpy, which is the internal energy subtracting the work done
by the external force. For example, the enthalpy of a system under external pressure p is
H = E + pV . The enthalpy for the solid under study is,

H = E(1+2) −∆WLM (3.54)

∆WLM is the work done by the loading mechanism,

∆WLM =

∫
Sext

σ
(2)
ij (u

(1)
j + u

(2)
j )next

i dS (3.55)

which can be written as

∆WLM = ∆W
(1−2)
LM + ∆W

(2)
LM (3.56)

where

∆W
(1−2)
LM =

∫
S

σ
(2)
ij u

(1)
j next

i dS

∆W
(2)
LM =

∫
S

σ
(2)
ij u

(2)
j next

i dS

∆W
(1−2)
LM can be regarded as the cross term between the two stress states in the total enthalpy.

3.5 Finite solid with applied tractions

We now apply Colonetti’s theorem to our problem of an inclusion in a finite solid under a
set of applied tractions. We will use superscript A to denote the fields in response to the
applied tractions when the eigenstrain vanishes (no inclusion). Let superscript F denote the
fields of an inclusion in a finite solid under zero external tractions (as in section 3). From
Colonetti’s theorem,

E = EA + EF (3.57)

where

EA =
1

2

∫
V

σA
ije

A
ij dV (3.58)

EF = −1

2
(σI,∞

ij + σim
ij )e∗ijV0 (3.59)
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The enthalpy of the system is

H = E −∆WLM (3.60)

where the A and F fields do have interaction terms in the work term ∆WLM, i.e.,

∆WLM = ∆WA
LM + ∆WA−F

LM (3.61)

∆WA
LM =

∫
Sext

σA
iju

A
j next

i dS =

∫
V

σA
ije

A
ij dV = 2EA (3.62)

∆WA−F
LM =

∫
Sext

σA
iju

F
j next

i dS (3.63)

We would like to express ∆WA−F
LM in terms of an integral over the inclusion volume V0. The

result is,

∆WA−F
LM = e∗ijσ

A
ij V0 (3.64)

where

σA
ij ≡

1

V0

∫
V0

σA
ij dV (3.65)
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To show that this is the case, first note that σF
ijn

ext
i = 0 on the surface

Sext. Thus

∆WA−F
LM =

∫
Sext

(σA
iju

F,M
j − σF,M

ij uA
j ) next

i dS

where the superscript M denotes the fields in the matrix. Consider a
volume integral of the same integrand over the matrix volume VM = V−V0,

0 =

∫
VM

(σA
ije

F,M
ij − σF,M

ij eA
ij) dV

=

∫
Sext

(σA
iju

F,M
j − σF,M

ij uA
j )next

i dS −
∫

S0

(σA
iju

F,M
j − σF,M

ij uA
j )nout

i dS

which means∫
Sext

(σA
iju

F,M
j −σF,M

ij uA
j )next

i dS =

∫
S0

(σA
iju

F,M
j −σF,M

ij uA
j )nout

i dS (3.66)

Hence

∆WA−F
LM =

∫
S0

(σA
iju

F,M
j − σF,M

ij uA
j )nout

i dS (3.67)

Notice that the integral is on the matrix side of the inclusion interface.
We can similarly write out the volume integral inside the inclusion

0 =

∫
V0

(σA
ije

F,I
ij − σF,I

ij eA
ij) dV

=

∫
S0

(σA
iju

F,I
j − σF,I

ij uA
j )nout

i dS

which means that∫
S0

σA
iju

F,I
j nout

i dS =

∫
S0

σF,I
ij uA

j nout
i dS (3.68)

Substituting this into Eq. (3.67) and noting the traction continuity con-
dition σF,I

ij nout
i = σF,M

ij nout
i , we have,

∆WA−F
LM =

∫
S0

σA
ij(u

F,M
j − uF,I

j )nout
i dS

=

∫
S0

σA
ije

∗
jkxkn

out
i dS (3.69)
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Using Gauss’s theorem, we get,

∆WA−F
LM =

∫
V0

σA
ije

∗
ij dV

= −e∗ij

∫
V0

σA
ij dV

= −e∗ijσ
A
ij V0 (3.70)

The major results of this chapter are summarized below.

total elastic energy total enthalpy
infinite solid E = −1

2
σI

ije
∗
ijV0

finite solid with
zero traction

E = −1
2
σI

ije
∗
ijV0 σI

ij = σI,∞
ij + σim

ij

finite solid
with traction

E = EA + EF

EA = 1
2

∫
V

σA
ije

A
ij dV

EF = −1
2
σI

ije
∗
ijV0

σI
ij = σI,∞

ij + σim
ij

H = E −∆WLM

= EA + EF −∆WA
LM −∆WA−F

LM

= EF − EA − σA
ije

∗
ijV0



Chapter 4

Eshelby’s Inhomogeneity

4.1 Introduction

We can apply Eshelby’s solution of inclusions to other problems such as inhomogeneities,
cracks, and dislocations to name a few. These solutions are modeled using a technique
called the equivalent inclusion method, where the eigenstrain is chosen to model the specific
problem. This is possible for ellipsoidal inhomogeneities because the stress and strain inside
ellipsoidal inclusions are constant.

To start, let us consider a simple example. Suppose we cut a volume V0 out of an infinite
solid and fill it with a liquid to a pressure p0. What are the stress, strain, and displacement
fields inside the matrix? In principle, we could use the Green’s function as a direct method
to solve this problem. Because the liquid exerts a force Tj = p0δkjnk on the surface of the
void, the displacement field inside the matrix should be,

ui(x) =

∫
p0δkjnkG̃ij(x,x′) dx′ (4.1)

where G̃ij(x,x′) is the Green’s function for an infinite body with a cavity. However, we do
not know the expression for G̃ij(x,x′), which is different from the Green’s function of an
infinite body (without the cavity). Therefore, the formal solution in Eq. (4.1) is not very
helpful in practice. Thus the remaining question is, can we express the displacement field in
terms of infinite medium Green’s function, Gij(x,x′) = Gij(x − x′)? This turns out to be
possible if the shape of the cavity is an ellipsoid.

The solution can be constructed using Eshelby’s equivalent inclusion method. The idea
is to replace the liquid with an inclusion whose eigenstrain is chosen such that the stress field
inside exactly matches that in the liquid, i.e., σI

ij = −p0δij. This is possible because we know
the stress and strain in both the inclusion and liquid are constant. The required eigenstrain
e∗ij of the equivalent inclusion can be obtained from Eshelby’s tensor Sijkl. Because

σI
ij = σc

ij − σ∗ij = Cijkl(e
c
kl − e∗kl) = Cijkl(Sklmne

∗
mn − e∗kl) (4.2)

Therefore

Cijkl(Sklmn − δkmδln)e∗mn = −p0δij (4.3)
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From this set of six equations we can solve for the six unkown equivalent eigenstrains e∗ij.
Once the eigenstrain is known, the displacements on the void surface S0 can be calculated
from

ui = uc
i = Sijkle

∗
klxj (4.4)

What is the elastic energy inside the matrix? It must be the same as the elastic energy
inside the matrix when in contains the equivalent inclusion, instead of the liquid. The total
elastic energy inside the matrix and the inclusion is,

E = EI + EM = −1

2
σI

ije
∗
ijV0 (4.5)

and the energy in the inclusion is

EI =
1

2
σI

ije
I
ijV0 =

1

2
σI

ij(e
c
ij − e∗ij)V0 (4.6)

Therefore, the energy in the matrix is

EM = E − EI = −1

2
σI

ije
c
ijV0

= −1

2
(−p0δij)Sijkle

∗
klV0

=
1

2
p0Siikle

∗
klV0 (4.7)

4.2 Transformed inhomogeneity

Let us now apply the same idea to solve the transformed inhomogeneity problem. A trans-
formed inhomogeneity is otherwise the same as a transformed inclusion, except that it has
a different elastic constant C

′

ijkl than the matrix. Let us assume that the inhomogeneity is
ellipsoidal in shape and has a volume V0 bounded by a surface S0. Suppose it undergoes
a permanent transformation described by eigenstrain e∗

′
ij . Our problem is to determine the

stresses and strains distribution in the solid as well as its total elastic energy. Notice that
we use superscript ′ to express all properties related to the inhomogeneity.

This problem is more complicated than the liquid-in-void problem in the previous section.
This is because the inhomogeneity is a solid. To replace it with an equivalent inclusion, both
the traction force and the displacement field on the interface S0 should be matched. A
sufficient condition is to match both the elastic stress and the total strain field inside the
transformed in homogeneity and inside the equivalent inclusion.

The stress inside the inhomogeneity is,

σI′

ij = σc′

ij − σ∗
′

ij = C
′

ijkl(e
c′

kl − e∗
′

kl) (4.8)

This should match the stress inside the equivalent inclusion,

σI
ij = σc

ij − σ∗ij = Cijkl(e
c
kl − e∗kl) (4.9)



4.2. TRANSFORMED INHOMOGENEITY 59

C
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S0Cijkl

nout
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S

Figure 4.1: A linear elastic solid with volume V and a transformed inhomgeneity V0, de-
scribed by elastic constant C

′

ijkl and eigenstrain e∗
′

ij . While the problem can be defined when
V0 has a general shape, it can only be solved (elegantly) by Eshelby’s equivalent inclusion
method when V0 is an ellipsoid.

The total strain inside the inhomogeneity is ec′
ij, which must match the total strain side the

equivalent inclusion ec
ij. Therefore,

C
′

ijkl(e
c
kl − e∗

′

kl) = Cijkl(e
c
kl − e∗kl) (4.10)

Because ec
kl = Sklmne

∗
mn, we have,[

(C
′

ijkl − Cijkl)Sklmn + Cijmn

]
e∗mn = C

′

ijkle
∗′
kl (4.11)

from which we can solve for the equivalent e∗mn for the inclusion in terms of the eigenstrain
e∗
′

kl of the transformed inhomogeneity.

The total strain inside the inhomogeneity is the same as the total strain inside the
equivalent inclusion, i.e.,

ec′

ij = ec
ij = Sijkle

∗
kl (4.12)

The stress inside the inhomogeneity is also the same as the stress inside the equivalent
inclusion, i.e.,

σI′

ij = σI
ij = Cijkl(e

c
kl − e∗kl) = (CijklSklmn − Cijmn)e∗mn (4.13)

The elastic energy inside the matrix is the same in both the transformed inhomogeneity
problem and the equivalent inclusion problem, i.e.,

EM = −1

2
σI

ije
c
ijV0 (4.14)



60 CHAPTER 4. ESHELBY’S INHOMOGENEITY

However, the elastic energy inside the transformed inhomogenity (EI′) and that inside the
equivalent inclusion (EI) are not the same. Specifically,

EI′ =
1

2
σI′

ije
I′

ijV0 =
1

2
σI′

ij (e
c′

ij − e∗
′

ij)V0 =
1

2
σI

ij(e
c
ij − e∗

′

ij)V0 (4.15)

whereas,

EI =
1

2
σI

ije
I
ijV0 =

1

2
σI

ij(e
c
ij − e∗ij)V0 (4.16)

Thus, the total energy for the solid with a transformed inhomogeneity is,

E = EI′ + EM = −1

2
σI

ije
∗′
ijV0 (4.17)

whereas the total energy of the equivalent inclusion problem is,

Eeq.inc. = EI + EM = −1

2
σI

ije
∗
ijV0 (4.18)

4.3 Inhomogeneity under uniform applied loads

Let us consider another important inhomogeneity problem where the inhomogeneity has
no eigenstrain by itself. Instead, the solid containing the inhomogeneity is subjected to
external loads. The load is uniform meaning that if the solid were homogeneous (with no
inhomogeneity) the stress strain fields should be uniform throughout the solid. The question
now is, What are the stress and strain fields when the solid does contain the inhomogeneity?
We can solve this problem when the inhomogeneity is an ellipsoid.

Let us construct the stress strain fields inside the solid by superimposing two sets of fields.
First, imagine that the solid containing the inhomogeneity is subjected to a uniform strain
eA

ij, which is the strain throughout the solid under the applied load if the entire solid has
elastic constant Cijkl. The stress field inside the matrix is σA

ij = Cijkle
A
kl while the stress field

inside the inhomogeneity is σA′
ij = C

′

ijkle
A
kl. The equilibrium condition would not be satisfied,

unless a body force Tj = (σA′
ij − σA

ij)ni is applied to the surface S0 of the inhomogeneity.
To obtain the solution of the original problem, this body force must be removed. Thus,

for the second set of elastic fields, imagine that we apply a body force Fj = −Tj on the
surface S0 of the inhomogeneity. The solid is not subjected to external loads in this case.
Let the stress and strain field due to Fj be σc′

ij and ec′
ij. Superimposing these two sets of

fields, the elastic stress field inside the inhomogeneity is,

σI′

ij = σA′

ij + σc′

ij = C
′

ijkl(e
A
kl + ec′

kl) (4.19)

The total strain field inside the inhomogeneity is the same as its elastic strain (since e∗
′

ij = 0),

eI′

ij = eA
ij + ec′

ij (4.20)
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Figure 4.2: A solid containing an inhomogeneity under uniform loads. The total stress strain
fields can be constructed as a superposition of two sets of fields. (a) Let the entire body
have a uniform strain field eA

ij. We need to apply a body force Tj = (σA′
ij − σA

ij)ni on interior
surface S0 to maintain equilibrium. (b) Apply body force Fj = −Tj on S0 to cancel the extra
body force. The resulting stress strain fields are called σc′

ij and ec′
ij. Notice that this problem

has a simple solution only when the inhomogeneity is an ellipsoid.

At the same time, we can construct the stress strain fields of an equivalent inclusion with
eigenstrain e∗ij in a solid under a uniform applied load. The elastic stress field inside the
inclusion is,

σI
ij = σA

ij + σc
ij − σ∗ij = Cijkl(e

A
kl + ec

kl − e∗kl) (4.21)

The total strain field inside the inclusion is,

eA
ij + ec

ij (4.22)

Similar to the problem in the previous section, both the elastic stress and the total strain
have to match between the inhomogeneity and the inclusion problems. Therefore,

C
′

ijkl(e
A
kl + ec′

kl) = Cijkl(e
A
kl + ec

kl − e∗kl) (4.23)

eA
ij + ec′

ij = eA
ij + ec

ij (4.24)

Eq. (4.24) simply leads to ec′
ij = ec

ij. Plug it into Eq. (4.23), we get,

C
′

ijkl(e
A
kl + ec

kl) = Cijkl(e
A
kl + ec

kl − e∗kl) (4.25)[(
C
′

ijkl − Cijkl

)
Sklmn + Cijmn

]
e∗mn = (Cijkl − C

′

ijkl)e
A
kl (4.26)
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Cijkl

V0

S0Cijkl

Cijkl

V0

S0Cijkl

e∗ij

Figure 4.3: An equivalent inclusion problem that gives the same stress and total strain
fields as the inhomogeneity problem in Fig.4.2. The stress strain fields can be constructed
as superpositions of two sets of fields: (a) A homogeneous solid (zero eigenstrain) under
uniform strain eA

ij. (b) A solid containing an inclusion with eigenstrain e∗ij and zero applied
load.

From this we can solve for the equivalent eigenstrain e∗mn. Notice that e∗mn is proportional
to the difference in the elastic constants Cijkl − C

′

ijkl and the applied field eA
kl, as it should.

Once the equivalent eigenstrain is known, the stress and strain fields can be easily obtained.

Now, let us determine the total elastic energy and enthalpy of the inhomogeneity problem.
To compute total elastic energy, we measure the work done during a reversible path that
creates the final configuration. Let system 1 be the solid with inhomogeneity under uniform
strain eA

ij, as shown in Fig. 4.2(a). The elastic energy of this state is,

E1 =
1

2
σA

ije
A
ijVM +

1

2
σA′

ij eA
ijV0 =

1

2
σA

ije
A
ijV +

1

2
(σA′

ij − σA
ij)e

A
ijV0 (4.27)

where VM is the volume of the matrix, V0 is the volume of the inhomogeneity, and V is the
total volume of the solid. In system 1, a body force Tj = (σA′

ij − σA
ij)ni is applied on S0

to maintain equilibrium. We then gradually remove this body force and go to system 2,
whose energy E2 is the desired solution. Let ∆W12 be the work done to the solid during
this transformation, then E = E2 = E1 + ∆W12. Notice that during this transformation,
both the internal force on S0 and the external force on Sext do work. Let these two work
contributions be ∆W int

12 and ∆W ext
12 respectively.

Let us first compute ∆W int
12 . During the transformation from E1 to E2, the body force on

S0 decreases from Tj to 0, so that the average body force is Tj/2. The additional displacement
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on S0 is uc′
j . Thus,

∆W int
12 =

1

2

∫
S0

Tju
c′

j dS

=
1

2

∫
S0

(σA′

ij − σA
ij)niu

c′

j dS

=
1

2
(σA′

ij − σA
ij)

∫
S0

niu
c′

j dS

=
1

2
(σA′

ij − σA
ij)

∫
V0

ec′

ij dV

=
1

2
(σA′

ij − σA
ij)e

c
ijV0 (4.28)

Because the applied load does not change, the factor of 1
2

does not appear in ∆W ext
12 . Let

TA
j = σA

ijni be the traction force on the outer surface Sext, then

∆W ext
12 =

∫
Sext

TA
j uc′

j dS (4.29)

Notice that uc′
j is the displacement field due to body force Fj = −Tj on S0 (see Fig. 4.2(b)).

By Betti’s theorem,

∆W ext
12 =

∫
S0

Fj(u
A
j + uc′

j ) dS (4.30)

where uA
j + uc′

j is the displacement field due to applied force TA
j . Thus,

∆W ext
12 = −

∫
S0

(σA′

ij − σA
ij)ni(u

A
j + uc′

j ) dS

= −(σA′

ij − σA
ij)(e

A
ij + ec

ij)V0 (4.31)

Therefore,

E = E1 + ∆W int
12 + ∆W ext

12

=
1

2
σA

ije
A
ijV +

1

2
(σA′

ij − σA
ij)e

A
ijV0 +

1

2
(σA′

ij − σA
ij)e

c
ijV0 − (σA′

ij − σA
ij)(e

A
ij + ec

ij)V0

=
1

2
σA

ije
A
ijV −

1

2
(σA′

ij − σA
ij)(e

A
ij + ec

ij)V0

=
1

2
σA

ije
A
ijV −

1

2
(σA′

ij − σA
ij)e

I′

ijV0 (4.32)

The enthalpy of the system is obtained by subtracting off the work done by the loading
mechanism from internal energy E, i.e.,

H = E −∆WLM (4.33)
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where

∆WLM =

∫
Sext

TA
j (uA

j + uc′

j ) dS

=

∫
Sext

σA
ijn

ext
i (uA

j + uc′

j ) dS

= σA
ije

A
ijV + ∆W ext

12

= σA
ije

A
ijV − (σA′

ij − σA
ij)e

I′

ijV0

= 2E (4.34)

Therefore,

H = −E

= −1

2
σA

ije
A
ijV +

1

2
(σA′

ij − σA
ij)e

I′

ijV0 (4.35)

The fact that for an elastic medium under applied load, ∆WLM = 2E and H = −E is a
general result that holds for any solid if it is at a state of zero stress everywhere when zero
external stress is applied. For example, this result is used in [10].

We can define

H0 ≡ −1

2
σA

ije
A
ijV (4.36)

as the enthalpy of the solid without the inhomogeneity under applied load. Then

∆H = H −H0

=
1

2
(σA′

ij − σA
ij)e

I′

ijV0

=
1

2
(C

′

ijkl − Cijkl)e
A
ije

I′

ijV0 (4.37)

In the limit of δCijkl ≡ C
′

ijkl − Cijkl very small, then

eI′

ij = eA
ij +O(δCijkl) (4.38)

∆H =
1

2
δCijkle

A
ije

A
klV0 +O(δCijkl)

2 (4.39)

Eshelby calls the expression ∆H = 1
2
δCijkle

A
ije

A
klV0 the Feynman-Hellman theorem.

In the above derivation, the volume V of the solid is assumed to be large enough so that
the image effects at Sext are ignored. When the image effects are accounted for, the above
results can be rewritten as,

∆H =
1

2
(C

′

ijkl − Cijkl)

∫
V0

eA
ije

I′

ij dV (4.40)

where eI′
ij = eA

ij +ec
ij +eim

ij , and eim
ij accounts for the image contribution. Note that the identity

H = −E and the Feynman-Hellman theorem holds independent of the boundary condition
on Sext.



Chapter 5

Cracks I: Energy

5.1 Ellipsoidal void

When the elastic stiffness tensor C ′
ijkl of the inhomogeneity goes to zero, we have a void. The

solution for an ellipsoidal void under uniform load is no different from that of an inhomo-
geneity under uniform load, except that C ′

ijkl = 0 further simplifies some of the expressions.
For example, the total stress inside the void (inhomogeneity) has to be zero. Therefore, the
match between the stress field inside the void (inhomogeneity) and the equivalent inclusion
becomes,

0 = C ′
ijkl(e

A
kl + ec′

kl) = Cijkl(e
A
kl + ec

kl − e∗kl) (5.1)

Hence,

eA
kl + ec

kl − e∗kl = 0 (5.2)

or

−eA
kl = eI

kl = ec
kl − e∗kl (5.3)

−σA
ij = σI

ij = Cijkl(e
c
kl − e∗kl) = Cijkl(Sklmn − δkmδln)e∗mn (5.4)

This means that the total stress inside the equivalent inclusion (when no stress is applied)
must exactly cancel the applied stress. Eq. (5.4) provides a simple relationship between the
applied stress and the equivalent eigenstrain.

The total strain inside the void (inhomogeneity) is

eI′

ij = eA
ij + ec′

ij = eA
ij + ec

ij = e∗ij (5.5)

which is simply the eigenstrain of the equivalent inclusion. This should not be surprising,
because the equivalent inclusion must be under zero stress, so that its total strain must be
equal to its eigenstrain. The (extra) enthalpy of the void is,

∆H =
1

2
(C ′

ijkl − Cijkl)e
A
ije

I′

klV0 = −1

2
σA

ije
∗
ijV0 (5.6)

Notice that from Eq. (5.4), e∗ij can be solved from applied stress σA
ij.
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5.2 Penny-shaped crack

We obtain a crack when one dimension of the ellipsoidal void (a, b, or c) goes to zero. Let
us consider a simple case of penny-shaped crack, which corresponds to the condition: a = b,
c → 0. The Eshelby’s tensor for such geometry in isotropic elasticity has been derived [3].

S1111 = S2222 =
π(13− 8ν)

32(1− ν)

c

a

S3333 = 1− π(1− 2ν)

4(1− ν)

c

a

S1122 = S2211 =
π(8ν − 1)

32(1− ν)

c

a

S1133 = S2233 =
π(2ν − 1)

8(1− ν)

c

a

S3311 = S3322 =
v

1− v

(
1− π(4ν + 1)

8ν

c

a

)
S1212 =

π(7− 8ν)

32(1− ν)

c

a

S3131 = S2323 =
1

2

(
1 +

π(ν − 2)

4(1− ν)

c

a

)
These expressions are valid in the limit of c � a. Let us now apply a tensile load in the
direction normal to the crack surface, i.e. the only non-zero component of the applied stress
is σA

33. As a first step we need to obtain the equivalent eigenstrain e∗ij.

5.2.1 Equivalent eigenstrain

In isotropic elasticity, the elastic stiffness tensor does not mix shear and normal strain com-
ponents. Neither does the Eshelby’s tensor in this case. Therefore, even though we need to
solve 6 equations given by Eq. (5.4), and we already know that all shear eigenstrain compo-
nents must be zero, i.e. e∗12 = e∗23 = e∗31 = 0. We only need to solve the normal eigenstrain
components e∗11, e∗22, e∗33. Plug in the Eshelby’s tensor into Eq. (5.4), we obtain the following
explicit equations.

−σA
11 =

[
− 2µ

1− ν
+

13µπc

16(1− ν)a

]
e∗11 +

[
− 2µν

1− ν
+

(16ν − 1)µπc

16(1− ν)a

]
e∗22 −

(2ν + 1)µπc

4(1− ν)a
e∗33

−σA
22 =

[
− 2µν

1− ν
+

(16ν − 1)µπc

16(1− ν)a

]
e∗11 +

[
− 2µ

1− ν
+

13µπc

16(1− ν)a

]
e∗22 −

(2ν + 1)µπc

4(1− ν)a
e∗33

−σA
33 = −(1 + 2ν)µπc

4(1− ν)a
e∗11 −

(1 + 2ν)µπc

4(1− ν)a
e∗22 −

µπc

2(1− ν)a
e∗33

Notice that σA
11 = σA

22 = 0. To construct a solution that leads to finite σA
33 at c → 0, we need

to let e∗33 →∞ but let e∗33c remain finite. Let e∗11 and e∗22 remain finite. Define

e∗ ≡ lim
c→0

e∗33c (5.7)
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Then

0 = − 2µ

1− ν
e∗11 −

2µν

1− ν
e∗22 −

(2ν + 1)µπ

4(1− ν)a
e∗

0 = − 2µν

1− ν
e∗11 −

2µ

1− ν
e∗22 −

(2ν + 1)µπ

4(1− ν)a
e∗

−σA
33 = − µπ

2(1− ν)a
e∗

Therefore,

e∗ =
2(1− ν)a

µπ
σA

33 (5.8)

e∗11 = e∗22 = −(1 + 2ν)π

8(1 + ν)a
e∗ = −(1 + 2ν)(1− ν)

4(1 + ν)µ
σA

33 (5.9)

Notice that e∗33 = e∗/c � e∗11 = e∗22.

5.2.2 Griffith criteria

The (extra) enthalpy of the crack is

∆H = −1

2
σA

ije
∗
ijV0

= −1

2
σA

33e
∗
33

4π

3
a2c

= −2π

3
σA

33e
∗a2

= −4(1− ν)

3µ
(σA

33)
2a3 (5.10)

The driving force for crack growth from elastic interaction is,

f el
a = −∂∆H

∂a
=

4(1− ν)

µ
(σA

33)
2a2 (5.11)

Therefore, a larger crack has a larger driving force to grow. The elastic driving force for
crack growth is always positive. On the other hand, there are situations where a crack is
stable (stationary) when a finite load is applied. This means there must be other driving
forces that inhibit crack growth. Griffith [10] noticed that when a crack grows, new surfaces
must be created, which increases the total energy. Let the surface energy (per unit area) of
the solid be γ and let the surface area of the penny shaped crack be A, A = 2πa2. Then the
Gibbs free energy of the system is,

∆G = ∆H + Aγ = −4(1− ν)

3µ
(σA

33)
2a3 + 2πγa2 (5.12)

The total driving force for crack growth is,

f tot
a = −∂∆G

∂a
=

4(1− ν)

µ
(σA

33)
2a2 − 4πγa (5.13)
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At the critical condition f tot
a = 0,

σA
33 =

√
πµγ

(1− ν)a
(5.14)

This is the Griffith criteria [10] for crack growth. For a penny shaped crack with a radius a,
it will grow if the applied stress exceeds the value given by Eq. (5.14). The critical condition
can also be written as,

a =
πγµ

(1− ν)(σA
33)

2
(5.15)

This means that under the applied stress σA
33, cracks with radii smaller than Eq. (5.15) are

stable while those with larger radius will grow even larger (eventually propagate through the
solid). The critical value a is usually called the “Griffith crack length”.

Similarly, if we apply a constant shear stress σA
13, at infinity, the critical stress can be

found in the same way as above. The result is

σA
13 =

√
πµγ(2− ν)

2(1− ν)a
(5.16)

5.3 Slit-like crack

Many of the theoretical and experimental works on cracks deal with the 2-dimensional (plane-
strain or plane-stress) problem. A 2-dimensional crack problem in plane-strain can be solved
using Eshelby’s approach by letting one of the dimensions of the ellipsoid go to infinity. In
the following, we will take the limit: c → ∞, b → 0. The result is a slit-like crack with
length 2a, as shown in Fig. 5.1.

2a

Figure 5.1: Slit like crack under uniform tension stress σA
22.
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5.3.1 Equivalent eigenstrain

To solve this problem, we first need to obtain the Eshelby’s tensor in this limit. Let us first
take the limit of c →∞. The resulting Eshelby’s tensor in isotropic elasticity is,

S1111 =
1

2(1− ν)

[
b2 + 2ab

(a + b)2
+ (1− 2ν)

b

a + b

]
S2222 =

1

2(1− ν)

[
a2 + 2ab

(a + b)2
+ (1− 2ν)

a

a + b

]
S1122 =

1

2(1− ν)

[
b2

(a + b)2
− (1− 2ν)

b

a + b

]
S2211 =

1

2(1− ν)

[
a2

(a + b)2
− (1− 2ν)

a

a + b

]
Here we only list the “relevant” components of the Eshelby’s tensor. Since we only apply
σA

22, and shear and normal strain components do not couple to each other (either in the
elastic stiffness tensor or in Eshelby’s tensor), the shear components of eigenstrain must be
zero. Since we are considering a plain strain problem, e∗33 is also zero. Thus, we only need
to solve for e∗11 and e∗22 in terms of σA

22. Similar to the previous section, Eq. (5.4) becomes,

−σA
11 = − (2a2 + ab)µ

(1− ν)(a + b)2
e∗11 −

abµ

(1− ν)(a + b)2
e∗22

−σA
22 = − abµ

(1− ν)(a + b)2
e∗11 −

(ab + 2b2)µ

(1− ν)(a + b)2
e∗22

Take the limit of b → 0 and notice that σA
11 = 0, we have,

0 = − 2µ

1− ν
e∗11 −

bµ

(1− ν)a
e∗22

−σA
22 = − bµ

(1− ν)a
e∗11 −

bµ

(1− ν)a
e∗22

Define e∗ = limb→0 e∗22b, and let e∗11 remain finite as b → 0, we have

0 = − 2µ

1− ν
e∗11 −

µ

(1− ν)a
e∗

−σA
22 = − µ

(1− ν)a
e∗

Therefore,

e∗ =
(1− ν)a

µ
σA

22

e∗11 = − e∗

2a
= −(1− ν)

2µ
σA

22

Notice that e∗22 = e∗/b � e∗11.
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5.3.2 Griffith criteria

The volume of a elliptic cylinder of length c is

V0 = πabc (5.17)

Hence the (extra) enthalpy of the crack is

∆H = −1

2
σA

ije
∗
ijV0

= −1

2
σA

22e
∗
22πabc

= −2π

3
σA

22e
∗ac

= −(1− ν)π

2µ
(σA

22)
2a2c (5.18)

The enthalpy per unit length of crack is

∆H/c = −(1− ν)π

2µ
(σA

22)
2a2 (5.19)

The driving force (per unit length) for the crack growth from elastic interaction is,

f el
a = −∂∆H/c

∂a
=

(1− ν)π

µ
(σA

22)
2a (5.20)

The surface area (per unit length) of a slit-like crack is A/c = 4a. Then the Gibbs free
energy per unit length (along the crack) is,

∆G/c = ∆H/c + Aγ/c = −(1− ν)π

2µ
(σA

22)
2a2 + 4γa (5.21)

The total driving force (per unit length) for crack growth is,

f tot
a = −∂∆G/c

∂a
=

(1− ν)π

µ
(σA

22)
2a− 4γ (5.22)

At the critical condition f tot
a = 0,

σA
22 =

√
4µγ

(1− ν)πa
(5.23)

This is the Griffith criteria [10] for crack growth in plane strain.1 This result can be easily
converted to plain stress condition, which reads,

σA
22 =

√
4µ(1 + ν)γ

πa
=

√
2Eγ

πa
(5.24)

1The original Griffith paper contains a typo making it not in perfect agreement with Eq. (5.23).
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where E = 2µ(1+ ν) is the Young’s modulus. The conversion can be done by expressing the
result in terms of the Kolosov’s constant,

κ =

{
3− 4ν for plane strain
3−ν
1+ν

for plane stress
(5.25)

The elasticity solutions of plane strain and plane stress are the same if the result is expressed
in terms of κ. For example, the critical stress expressed in terms of κ is,

σA
22 =

√
16γµ

a(1 + κ)π
(5.26)

If we apply a constant shear stress σA
12, we can show that the Griffith criteria for critical

stress is (the same as in tension)

σA
12 =

√
16γµ

a(1 + κ)π
(5.27)

In plane stress, this means,

σA
12 =

√
2γE

aπ
(5.28)

5.4 Flat ellipsoidal crack

A flat ellipsoidal crack (a > b, c → 0) is a general situation between the two extreme
cases considered above — penny-shaped and slit-shaped cracks. Studying the flat ellipsoidal
crack would help us answer an important question: Would the crack tend to become more
elongated (become slit-like) or less elongated (close to penny-shaped)?

Let us consider the case of simple tension: σA
33, with all other components of applied

stress zero. It turns out that, similar to the penny-shaped crack case, as c → 0, we need to
keep

lim
c→0

e∗33c = e∗ (5.29)

constant. The solution is (Mura 1987, p. 244)

e∗ =
(1− ν)b

µE(k)
σA

33 (5.30)

where E(k) is the elliptic integral

E(k) =

∫ π/2

0

√
1− k2 sin2 w dw (5.31)

F (k) =

∫ π/2

0

dw√
1− k2 sin2 w

(5.32)

k =
√

1− b2/a2 (5.33)
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The extra enthalpy is,

∆H = −1

2
σA

33e
∗
33

4π

3
abc

= −2π

3
σA

33e
∗ab

= −2π(1− ν)

3µ

ab2

E(k)
(σA

33)
2 (5.34)

The Gibbs free energy is,

∆G = −2π(1− ν)

3µ

ab2

E(k)
(σA

33)
2 + 2πγab (5.35)

The Griffith critical conditions are,

∂∆G

∂a
= 0 (5.36)

∂∆G

∂b
= 0 (5.37)

If condition Eq. (5.36) is met before (at a lower σA
33) Eq. (5.37) is reached, the crack would

extend along x1 direction and become more elongated. Otherwise, the crack would extend
along x2 direction and become more penny-like.

Using the identities,

dE(k)

dk
=

E(k)− F (k)

k
(5.38)

dF (k)

dk
=

E(k)/(1− k2)− F (k)

k
(5.39)

dk

da
=

b2

a3k
(5.40)

dk

db
= − b

a2k
(5.41)

we obtain,

∂∆G

∂a
= −2

3

b2(1− ν)π(σA
33)

2

µE2(k)

[
1− b2

a2 − b2

(
1− F (k)

E(k)

)]
+ 2πγb (5.42)

∂∆G

∂b
= −2

3

ab(1− ν)π(σA
33)

2

µE(k)

[
2 +

b2

a2 − b2

(
1− F (k)

E(k)

)]
+ 2πγa (5.43)

The two conditions gives rise to the following critical stress expressions.

σA,a
33 =

√
3µγk2E2(k)

b(1− ν) [(−1 + 2k2)E(k) + (1− k2)F (k)]

σA,b
33 =

√
3µγk2E2(k)

b(1− ν) [(1 + k2)E(k)− (1− k2)F (k)]
(5.44)

The crack would grow if the applied stress reaches the lower one of the two. It can be
shown that for a > b (k > 0), σA,b

33 < σA,a
33 (Mura 1987, p.245). This means that the crack

would always grow in the x2 direction until it becomes penny shaped. Applying more stress
components, e.g. σA

31 together with σA
33 could change the situation.



Chapter 6

Cracks II: Driving force

6.1 Crack Opening Displacement

We now consider the elastic fields – displacement, strain and stress – of a slit like crack.
Under a tensile loading stress σA

22, the slit like crack will open up. Let d(x) be defined as the
distance between the crack faces as a function of x. In a purely elastic model, d(±a) = 0,
i.e. the crack tip opening displacement is zero. We can obtain the displacements along the
crack face by considering the equivalent inclusion

uj(x) = e∗ijxj

The displacement in the x direction is zero, and the displacement in the y direction on the
crack face is

u2 = e∗22y

The equivalent inclusion is an ellipse with semi-axes a and b (with b → 0). Thus on the
crack surface, x and y are related by the equation

x2

a2
+

y2

b2
= 1

so the displacement field on the upper surface of the crack at x ∈ [−a, a] is

u2(x) = (e∗22b)
y

b
= e∗

√
1−

(x

a

)2

Therefore

u2(x) =
σA

22a(1− ν)

µ

√
1−

(x

a

)2

=
σA

22(1− ν)

µ

√
a2 − x2

Thus, the crack opening displacement in plane strain is

d(x) = 2
σA

22(1− ν)

µ

√
a2 − x2 (6.1)
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2a

y

x

d(x)

Figure 6.1: Opening displacement d(x) of a slit like crack.

The crack opening displacement in plane stress is

d(x) = 2
σA

22

µ(1 + ν)

√
a2 − x2 (6.2)

With the expression for d(x), we can calculate the enthalpy of the crack by measuring the
work done while opening up the crack, i.e. (in plane stress),

∆H

c
= −1

2

∫ a

−a

d(x)σA
22 dx

= −1

2
σA

222
σA

22(1− ν)

µ

∫ a

−a

√
a2 − x2 dx

=
1− ν

2µ
(σA

22)
2πa2

which is exactly the enthalpy calculated previously.

6.2 Stress Intensity Factors

We now consider the stress field in front of the crack tip. We will determine the nature of
the stress field singularity in front of the crack tip. Let r be the distance to the crack tip.
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We will show that as r → 0, the stress field diverges as σ(r) → 1/
√

r. To measure the
“intensity” of this singularity, the stress intensity factor is defined to be,

KI = lim
r→0

σ(r)
√

2πr (6.3)

The subscript I denotes the mode of the crack. There are three crack opening modes as
shown in Fig. 6.2: tensile (mode I), in-plane shear (mode II), and out-of-plane shear (mode
III).

(a)
(b) (c)

Figure 6.2: Crack opening modes: (a) mode I – tension, (b) mode II – in-plane shear, and
(c) mode III – out-of-plane shear.

In order to determine the stress intensity factors of a slit like crack under tension, the
stress field around the crack must be evaluated. This can be done by the Eshelby’s tensor
outside the equivalent inclusion. Previously we have introduced the auxiliary tensor Dijkl to
relate the constrained displacements inside the inclusion to the eigenstrain. For ellipsoidal
inclusion, Dijkl is a constant. Similarly, we can can define D∞

ijkl as the tensor to relate the
constrained displacements outside the inclusion to the eigenstrain inside the ellipsoid. D∞

ijkl

is no longer a constant but is a function of x. Similarly, we can define a new Eshelby’s tensor
to relate the constrained strain outside the inclusion to the eigenstrain, S∞ijkl. The auxillary
tensor D∞

ijkl for a two dimensional elliptical inclusion (elliptic cylinder) is

D∞
ijkl = − ab

2π

∫ 2π

0

(zz)−1
ij zkzlκ(γ) dθ (6.4)

where

κ(γ) =
1

β2

(
1− |γ|√

γ2 − β2

)
(6.5)

λ = (λ1, λ2) = (k1a, k2b) (6.6)

β = λ/k =
√

a2 cos2 θ + b2 sin2 θ (6.7)

γ = k · x/k (6.8)
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In the following, we derive the stress field on the crack plane, i.e. x = (x, 0), x > a. In this
case (y = 0), κ(γ) can be written as

κ(γ) =
1

a2 cos2 θ + b2 sin2 θ

(
1− |x cos θ|

(x2 − a2) cos2 θ − b2 sin2 θ

)
(6.9)

In isotropic elasticity (zz)−1
ij is known analytically,

(zz)−1
ij =

1

µ

(
δij −

1

2(1− ν)
zizj

)
thus

(zz)−1
ij zkzl =

1

µ

(
δijzkzl −

1

2(1− ν)
zizjzkzl

)
D∞

ijkl can be written in terms of a second order and fourth order tensors Hkl and Jijkl

D∞
ijkl =

1

µ

(
δijHkl −

1

2(1− ν)
Jijkl

)
dθ (6.10)

where

Hkl =

∫ 2π

0

−ab

2π

1

β2
zkzl

(
1− |γ|√

γ2 − β2

)
dθ

Jijkl =

∫ 2π

0

−ab

2π

1

β2
zizjzkzl

(
1− |γ|√

γ2 − β2

)
dθ

All of the components of the above tensors can be written in terms of a few integrals. Define
the integrals

Ik =

∫ 2π

0

cos2k θ

a2 cos2 θ + b2 sin2 θ
dθ

Jk =

∫ 2π

0

cos2k θ

a2 cos2 θ + b2 sin2 θ

1√
p2 − b2 tan2 θ

dθ

Lk = − ab

2π
[Ik − |x|Jk]

where

p =
√

x2 − a2

Then

J1111 = L2

J2222 = L0 − 2L1 + L2

J1122 = J1212 = J1221 = J2112 = L1 − L2

H11 = L1

H22 = L0 − L1
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all other terms are zero. Evaluating the integrals gives

I0 =
2π

ab

I1 =
2π

a2
− 2πb

a3
+O(b2)

I2 =
π

a2
+O(b2)

J0 =
2π

ab|x|
+ +O(b2)

J1 =
2π

a2p
− 2πb

a3|x|
+ +O(b2)

J2 =
π

a2p
+O(b2)

L0 = 0 +O(b2)

L1 = − b

a

(
1− |x|

p

)
+O(b2)

L2 = − b

2a

(
1− |x|

p

)
+O(b2)

The Eshelby’s tensor inside the matrix is

S∞ijkl = −λD∞
ikkjδmn −

µ

2

(
D∞

inmj +D∞
jnmi +D∞

jmni +D∞
imnj

)
and the non-zero terms of the Eshelby’s tensor are

S∞1111 =
3− 2ν

1− ν

∆

2

S∞2222 = S∞1122 = −1− 2ν

1− ν

∆

2

S∞2211 = −1 + 2ν

1− ν

∆

2

S∞1212 = − 1

1− ν

∆

2

where

∆ =
b

a

(
1− |x|√

x2 − a2

)
From previous analysis of a slit like crack under uniform tension using the equivalent eigen-
strain method the eigenstrain was determined to be(

e∗11

e∗22

)
=

(
−1−ν

2µ
1−ν
µ

a
b

)
σA

22
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The constrained stresses can now be written using the stiffness tensor and Eshelby’s tensor(
σc

11

σc
22

)
= CS

(
e∗11

e∗22

)
=

[
C1111 C1122

C2211 C2222

] [
S1111 S1122

S2211 S2222

](
e∗11
e∗22

)
=

[
λ + 2µ λ

λ λ + 2µ

] [
3−2ν
1−ν

∆
2

−1−2ν
1−ν

∆
2

−1+2ν
1−ν

∆
2
−1−2ν

1−ν
∆
2

](
e∗11
e∗22

)
= −

(
1
1

)(
1− |x|√

x2 − a2

)
σA

22

The total stress is(
σtot

11

σtot
22

)
=

(
σc

11

σc
22 + σA

22

)
=

(
−1 + |x|√

x2−a2

|x|√
x2−a2

)
Now define the variable r ≡ x− a as the distance from the crack tip. Then the leading term
of total stress in the limit of r → 0 is

lim
r→0

(
σtot

11

σtot
22

)
=

(
1
1

)√
a

2r
σA

22 (6.11)

Thus, the stress intensity factor, KI is

KI = lim
r→0

σ(r)
√

2πr =
√

πaσA
22 (6.12)

6.3 Another derivation of crack extension force

Using the crack opening displacement d(x) and the stress field σtot
22 (x) in front of the crack tip,

we can recompute the driving force for crack extension using yet another method. Consider
the two dimensional crack under uniform tension σA

22, as shown in Fig. 6.3. Imagine that the
crack half-size extends from a to a + δa. Initially we apply additional traction forces T±

j on
the lower and upper surfaces of the crack in the region of [a, a + δa] and [−a − δa,−a] so
that the shape of the crack remains the same as before. We then slowly remove the traction
forces so that in the end we have a crack with half-size a+δa. The work done by the traction
forces is the change of system enthalpy, i.e. δH = δW . The thermodynamic driving force
on a is f = −(δH/c)/δa. Notice that

T+
j (x) = σj2(x)

T−
j (x) = −σj2(x)

d(x) = u−2 − u+
2 (6.13)

Thus

δH

c
= 2 · 1

2
·
∫ a+δa

a

(T+
j u+

j + T−
j u−j ) dx (6.14)
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a δa

T
_
j

T +j
x

y

T
_
j

T +j

u
_
j

u+j

Figure 6.3: Reversibly opening up the crack by removing the traction force T±
j on the upper

and lower surfaces, during which the surfaces experience a displacement of u±j .

The overall prefactor of 2 accounts for the simultaneous extension of both sides of the crack.
Notice that Tj is evaluated when the crack half-size is a while d(x) is evaluated when the
crack half-size is a + δa. Thus

δH

c
= −

∫ a+δa

a

T+
2 (x)|a d(x)|a+δa dx

= −
∫ a+δa

a

x√
x2 − a2

σA
22

2σA
22(a− ν)

µ

√
(a + δa)2 − x2 dx

= −2(σA
22)

2(1− ν)

µ

∫ a+δa

a

√
(a + δa)2 − x2x√

x2 − a2
dx

= −2(σA
22)

2(1− ν)

µ

δa(2a + δa)

4
π

In the limit of δa � 1 and keeping only terms linear with δa, we have,

δH

c
= −1− ν

µ
(σA

22)
2πaδa

and the driving force is

f = −δ(∆H/c)

δa
=

1− ν

µ
(σA

22)
2πa (6.15)

which is exactly the same as obtained before.

6.4 J-Integral

In 1951 Eshelby showed that an elastic singularity can be computed using the energy mo-
mentum tensor [11]. In 1968 Rice extended Eshelby’s derivation to include crack driving
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force and called it the J-integral [12]. Because the J-integral is applicable for infinite as well
as finite, homogeneous as well as inhomogeneous, linear as well as non-linear materials, it is
a very powerful method for determining the crack extension force.

The J-integral in its three dimensional form states that the force on an elastic singularity
in the xi direction is

Ji =

∫
S

(wni − Tjuj,i) dS (6.16)

In two dimensions, the J-integral is often written for the x direction (Jx) for a crack along
x direction as

J =

∫
Γ

w dy −T · ∂u

∂x
ds (6.17)

where Γ is a contour line going counter-clockwise from the bottom surface to the top surface
of the crack. The J-integral has the following properties.

1. Ji is the driving force for the singularity along xi direction.

2. Ji is invariant with respect to the shape of surface S or contour Γ as long as it contains
the same singularity.

We will prove these properties in the following.

6.4.1 J-integral as driving force

In order to show that the J-integral is indeed the force on a crack, let us consider a finite
elastic body shown in Fig. 6.4. The body is under constant load T ext

j boundary condition on
part of the surface ST and constant displacement boundary condition on other part of the
surface Su. The total enthalpy of the system is

H = E −
∫

ST

T ext
j uj dS

where

E =

∫
w dV

and w is the strain energy density

w(eij) =

∫ eij

0

σij de′ij

The driving force on the singularity is

fi = −δH

δξi



6.4. J-INTEGRAL 81

S

Su

ST
S0

ξiV0VE

Figure 6.4: A finite solid under constant traction T ext
j condition on ST and constant dis-

placement condition on Su containing a crack tip at ξi. An arbitrary volume inside the solid
V0 contains the crack tip. S0 is the surface of V0. VE is the volume outside V0.

In order to determine fi, we will first compute the change of total enthalpy δH when the
crack tip moves by δξi. Let δw and δuj be the corresponding change of strain energy density
field and displacement field. Then,

δH =

∫
V

δw dV −
∫

ST

T ext
j δuj dS (6.18)

Let us now consider a sub-volume V0 within the solid and the corresponding surface S0. Let
VE = V − V0. The change of elastic energy stored inside VE is

∫
VE

δw dV =

∫
VE

σijδeij dV

=

∫
VE

σijδuj,i dV

=

∫
VE

(σijδuj),i dV

Apply Gauss’s Theorem

∫
VE

δw dV =

∫
ST

T ext
j δuj dS −

∫
S0

Tjδuj dS
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Tj

ξi

uj

Tj+δTj

ξ +δi ξi ξ +δi ξi

u +δj uj

^
Tj+δTj

^ u +δj uj

Figure 6.5: An intermediate state (middle) is introduced to facilitate the derivation of energy
change as the singularity move from ξi (left) to ξi + δξi (right) (see text).

Thus, the enthalpy change for the total system becomes

δH =

∫
VE

δw dV +

∫
V0

δw dV −
∫

ST

T ext
j δuj dS

=

∫
V0

δw dV −
∫

ST

T ext
j δuj dS +

∫
ST

T ext
j δuj dS −

∫
S0

Tjδuj dS

=

∫
V0

δw dV −
∫

S0

Tj δuj dS (6.19)

This means that the driving force for the crack can be computed based on the information
within an arbitrary volume V0 and its surface S0, as long as V0 contains the crack.

Now we wish to convert this equation into a similar form as the J-integral defined above.
The key is to analyze the energy term δE ≡

∫
V0

δw dV in the above equation and to see
how it depends on δξi. Notice that before the motion of the singularity, the traction force
and displacement field on S0 are Tj and uj respectively. After the singularity has moved to
ξi + δξi, they become Tj + δTj and uj + δuj respectively. What we want is δE, the change
of elastic energy stored V0, caused by the singularity motion.

Because energy is a state variable, i.e. it does not depend on how the state is reached,
we can derive δE by imagining that the system goes from the initial state to the final state
through an intermediate state, as shown in Fig. 6.5. In the intermediate state, the singularity
has moved to ξi + δξi, but the traction force and displacement field on S0 are Tj + δT̂j and

uj + δûj, different from the final state. The intermediate state is chosen (i.e. adjusting δT̂j)
such that the elastic fields inside V0 is a simple translation of the fields in the initial state
by δξi, i.e. rigidly following the singularity. This means that



6.4. J-INTEGRAL 83

δT̂j = −∂Tj

∂xi

δξi

= −∂σkj

∂xi

nkδξi

δûj = −∂uj

∂xi

δξi

Let the energy of the initial, intermediate and final state be E1, E2 and E3. Then the energy
change from initial to intermediate state is,

E2 − E1 =

∫
V0

− ∂w

∂xi

δξi dV

The change in energy from intermediate state to final state can be obtained by measuring
the reversible work done on the surface S0. The average tractions in this process is Tj +
1
2
δTj + 1

2
δT̂j. Hence

E3 − E2 =

∫
S0

(
Tj +

1

2
δTj +

1

2
δT̂j

)
(δuj − δûj) dS (6.20)

Neglecting O(δξ2
i ) terms, we have

E3 − E2 =

∫
S0

Tj(δuj − δûj) dS (6.21)

Hence,

δE = E3 − E1

=

∫
V0

− ∂w

∂xi

δξi dV +

∫
S0

Tj(δuj − δûj) dS

δH =

∫
V0

δw dV −
∫

S0

Tjδuj dS

= −
∫

V0

∂w

∂xi

δξi dV +

∫
S0

Tj(δuj − δûj) dS −
∫

S0

Tjδuj dS

= −
∫

V0

∂w

∂xi

δξi dV −
∫

S0

Tjδûj dS

= −
∫

V0

∂w

∂xi

δξi dV +

∫
S0

Tj
∂uj

∂xi

δξi dS

Therefore, the driving force on the singularity is

fi = −δH

δξi

=

∫
V0

∂w

∂xi

dV −
∫

S0

Tj
∂uj

∂xi

dS

=

∫
S0

(wi − Tjuj,i) dS

= Ji
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6.4.2 Invariance of J-integral

Since the driving force on a singularity is unique, the J-integral must be invariant with
respect to the surface S0 on which it is evaluated, as long as S0 always contains the same
singularity. But the invariance of J-integral can also be proved more rigorously. In order to
prove this, we first show that over a closed surface S0 containing no defect, the J-integral is
zero. Recall that

Jk =

∫
V0

∂w

∂xk

dV −
∫

S0

Tj
∂uj

∂xk

dS

The derivative of strain energy density is

∂w

∂xk

=
∂w

∂eij

∂eij

∂xk

= σij
∂eij

∂xk

= σij
∂2uj

∂xk∂xi

=
∂

∂xi

(
σij

∂uj

∂xk

)
The equilibrium condition σij,i = 0 was used in the last step. Thus the J-integral becomes

Jk =

∫
V0

∂

∂xi

(
σij

∂uj

∂xk

)
dV −

∫
S0

Tj
∂uj

∂xk

dS

=

∫
S0

niσij
∂uj

∂xk

− Tj
∂uj

∂xk

dS

= 0

Now consider two contour lines Γ1 and Γ2 around a crack tip in a 2-dimensional problem.
As shown in Fig. 6.6, there exist a complete contour: Γ = Γ1 + B+ − Γ2 + B− that contains
no singularity, so that the J-integral evaluated on Γ is zero, i.e.,

J(Γ) = J(Γ1)− J(Γ2) + J(B+) + J(B−)

Noticing that

J(B+) = J(B−) = 0

since dy = 0 and T = 0 on the crack faces, we have

J(Γ1) = J(Γ2)
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Γ1

Γ2

B+

B−

Figure 6.6: Γ1 and Γ2 are two different contours around the crack tip. Γ = Γ1+B+−Γ2+B−
form a complete contour containing no defects.

hS3

S4

S1

S5

S2

x

y

Figure 6.7: Contours Used to Evaluate The J Integral For Rice’s Example Problem. A slit
like crack in a long slab with fixed displacements at the top and bottom. The dashed lines
S1 ,S2, S3, S4 and S5 form the contour to evaluate the J-integral.
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6.4.3 Applications of J-integral

We now apply the J-integral formula to a few examples and demonstrate how it can facilitate
the calculation of crack extension driving forces.

Example 1. Let us first look at an example considered by Rice [12]. Consider the crack
in a very long solid slab as shown in Fig. 6.7. The top and bottom surface are subjected
to constant displacement boundary conditions and the left and right ends are subjected to
zero surface traction boundary conditions. In this case, the most convenient contour goes
around the out-most boundary of the solid: Γ = S1 + S2 + S3 + S4 + S5. The 2-dimensional
J integral is

J =

∫
w dy − t · ∂u

∂x
dS

Notice that on S2 and S4, dy = 0 and ∂u/∂x = 0. On S1 and S5, w = 0 and ∂u/∂x = 0.
On S3, w = w∞ and and ∂u/∂x = 0. Therefore, the total J-integral becomes,

J = w∞h

Example 2. Consider a contour around a two dimensional crack with a blunt tip. Since J
does not depend on which contour is used, we can shrink the contour all the way to the tip
of the crack such that [12]

J =

∫
Γ

w dy (6.22)

Thus, the J integral can be thought of as the average strain energy density around the crack
tip.

Example 3. For the third application consider a mode-I crack with stress intensity factor
KI as shown in Fig. 6.8. We will derive the relationship between J and KI . Because the
J-integral is invariant with respect to contour shape (as long as it contains the crack tip),
we choose the contour Γ to be a circle of radius r in the limit of r → 0. In this limit, the
leading singular field dominates the J-integral.

The stress fields around this crack can be calculated using isotropic elasticity stress
functions in two dimensions. The leading singular terms are [4]

σrr =
KI√
2πr

(
5

4
cos

θ

2
− 1

4
cos

3θ

2

)
+ . . .

σθθ =
KI√
2πr

(
3

4
cos

θ

2
+

1

4
cos

3θ

2

)
+ . . .

σrθ =
KI√
2πr

(
1

4
sin

θ

2
+

1

4
sin

3θ

2

)
+ . . .
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x

y

r

θ

σ
22
A

Figure 6.8: A model of a crack in 2D. The circle with radius r is the contour Γ used to
evaluate the J-integral

Notice that

σ ∝ 1√
r

e ∝ 1√
r

w ∝ 1

r

Hence the strain energy of the solid should be finite. The stress intensity factor can be
calculated using the leading terms of the stress. The strain energy density is

w =
1

2
(σθθeθθ + σrrerr + 2σrθerθ) (6.23)

and

Tr = σrr

Tθ = σrθ

Thus ∫
Γ

w dy =

∫ π

−π

wr cos θ dθ =
1− 2ν

8µ
K2

I

and ∫
T · ∂u

∂x
dS =

∫ π

−π

T · ∂u

∂x
r dθ = −3− 2ν

8µ
K2

I

Thus the J-integral is

J =
1− ν

2µ
K2

I (6.24)
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Recall that for a slit like double crack with half-width a, the stress intensity factor was
derived previously as KI =

√
πaσA

22. Therefore

J =
1− 2ν

2µ
πa(σA

22)
2 (6.25)

The enthalpy of this crack is

∆H

c
= −1− ν

2µ
π(σA

22)
2a2

and its derivative is the driving force on a

fa = − ∂

∂a

∆H

c
=

1− ν

µ
πa(σA

22)
2

= 2J

fa = 2J because when a increases by δa, both cracks move ahead (in opposite directions) by
δa.

Although in the examples considered above, the materials are always linear elastic, the
J-integral is also applicable to non-linear elastic materials. Because we may use a non-linear
elastic material as a model for a elasto-plastic material (provided our load always increase
monotonically, i.e. do not unload), J-integral has been applied to elasto-plastic material as
well.



Chapter 7

Dislocations

7.1 Introduction

The idea of a dislocation was originally introduced by mathematician Volterra in 1907 [13].
In his paper, Volterra introduced several types of “dislocations” by the displacement of a
cut cylinder. The types of dislocations proposed by Volterra cover the class of modern
elasticity models of dislocations and disclinations. However, the importance of Volterra’s
dislocations in elasticity were not appreciated until 1934, when three scientists, Taylor,
Orowan and Polanyi independently proposed that dislocations are responsible for crystal
plasticity [14]. They postulated that these types of defects could exist in crystals and that
their motion under stress (much lower than previous theoretical predictions) can explain the
actual yield stress of metals. Dislocations remained a theoretical model until the 1950’s, when
it was first observed in experiments. The most common method of observing dislocations is
Transmission Electron Microscopy (TEM) [15].

shear stress  τ

A

(a) (b)

Figure 7.1: (a) A perfect crystal consisting of a periodic array of atoms subject to external
loading. (b) The crystal has undergone permanent shear deformation. The upper half of the
crystal has slipped to the right by one lattice vector with respect to the lower half.

To see how dislocations could explain the low yield stress of metals, let us first consider
the theoretical strength of a perfect crystal against plastic shear deformation [15]. Let τ
be the shear stress needed to cause the spontaneous shearing of all the bonds across the

89
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plane A, such that the upper half crystal is shifted to the right by x with respect to the
lower half. Because of the periodicity of the crystal structure, τ is a periodic function of x
with periodicity b, see Fig. 7.1(b). The simplest model (see Section 7.7) would give us the
expression,

τ(x) =
µb

2πa
sin

2πx

b
(7.1)

The maximum of function τ(x) gives us the theoretical critical shear stress,

τth =
µb

2πa
(7.2)

This is the stress under which the crystal is unstable against spontaneous shear deformation
shown in Fig. 7.1(b). Using various models of τ(x), the theoretical critical shear stress is
found to be between µ/3 and µ/30, which is more than 3 orders of magnitudes higher than
the experimentally measured yield stress in real crystals. The yield stress is the stress at
which macroscopic plastic deformation is observed.

The apparent discrepancy between theory and experiments can be resolved by noticing
that crystals are not perfect, as shown in Fig. 7.1(a), but contain defects such as dislocations,
which can move and introduce plastic deformation at much lower stress than τth. A model
of edge dislocation is shown in Fig. 7.2. Imagine that only part of the atoms above plane
A has slipped with respect to those below the plane by a lattice vector b. The area over
which the slip has occurred is shown in the dashed line in Fig. 7.2. The configuration is
equivalent to inserting an extra half plane of atoms inside the crystal (plus the surface step
on the left side of the crystal). The boundary line between the slipped and un-slipped area
is a dislocation, and is represented by the ⊥ symbol. It represents a dislocation line going
perpendicular to the paper. Notice that the local bonding environment inside the crystal is
close to that in a perfect crystal except near the dislocation line. If the dislocation moves to
the right and travels across the entire crystal, we will end up at the same configuration as
in Fig. 7.1(b). Because the dislocation can move at much lower stress than τth, this explains
why the crystal has much lower yield stress than τth.

A

Figure 7.2: An end-on view of an edge dislocation ⊥. It is the boundary between slipped
(dashed line) and un-slipped area of plane A.
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Before constructing a continuum model for dislocations, let us first introduce a few rules
and terminology that will facilitate the discussion of dislocations. Consider a case where the
material below a surface S has slipped with respect to the material above S by b, as shown in
Fig. 7.3. The boundary L of surface S is then a dislocation line. The slip vector b is related
to the Burgers vector of the dislocation. To rigorously define the Burgers vector, we need
to introduce the notion of the Burgers circuit. Imagine that we draw closed circuits (loops)
inside the crystal before the dislocation is introduced. After introducing the dislocation,
the circuit will no longer be closed if it encloses the dislocation line L. (The circuit will
remain closed if it does not enclose the dislocation line L.) Choose a positive direction ξ for
dislocation line L, and define the direction of the Burgers circuit with respect to ξ according
to the right-hand rule. The vector that connects the starting point S and ending point E of
the open Burgers circuit is the Burgers vector. In this case, the Burgers vector is exactly b.

L

E

ξ

S

Figure 7.3: The direction of the Burgers circuit is defined through the dislocation line direc-
tion ξ according to the right-hand rule. The vector b connecting the starting point S and
ending point E of the Burgers circuit is the Burgers vector.

From this definition, we see that the Burgers vector b is only defined with respect to
a dislocation line direction ξ. If the line direction of a dislocation is reversed, the Burgers
vector should also be reversed (i.e −b). This can be illustrated with the following example.
Consider a dislocation dipole, i.e. two parallel infinite straight dislocations with opposite
Burgers vectors. This dipole is exactly the same as two parallel dislocations with the same
Burgers vector but opposite line directions, as shown in Fig. 7.4. Thus the two dislocations
may also be regarded as opposite sides of the same (elongated) dislocation loop, as the length
of the loop goes to infinity.

Let us now apply the Burgers circuit analysis to the dislocation in Fig. 7.2. As shown
in Fig. 7.5, if we let the dislocation line direction ξ point out of the plane, then according
to the right-hand rule, the Burgers circuit goes counter-clockwise. In this case, the Burgers
vector b is one lattice spacing pointing to the right. If we choose the line direction to point
into the plane, then the Burgers vector would point to the left.

Since the Burgers vector is constant along a dislocation loop, but the line direction may
vary, the angle between the two may change over the loop. This angle is called the character
angle θ. When b and ξ are parallel, the dislocation is called screw (θ = 0◦) and when they are
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ξ ξ ξ

ξ

b b b b

Figure 7.4: Equivalent representations of a dislocation dipole.

A

b

ξ

Figure 7.5: Burger’s circuit around an edge dislocation. Choose the line direction to point out
of the plane. According to the right-hand rule, the Burgers circuit goes counter-clockwise.
In this case the Burgers vector b points to the right.

perpendicular it is called edge (θ = 90◦). Anything in between is called a mixed dislocation.

7.2 Dislocation’s effects on mechanical properties

Dislocations are responsible for plastic deformation in crystals (e.g. metals and semicon-
ductors). The stress strain curve of a crystal is linear up to the yield stress. At the yield
stress, a large number of dislocations are able to move and the material deforms plastically.
The total length of dislocations generally multiplies significantly during plastic deformation.
Therefore, continued deformation of the material usually requires higher stress because dis-
locations themselves start to act as barriers to the motion of other dislocations. The plastic
strain rate is related to the mobile dislocation density through the well known Orowan’s law,

ε̇pl = ρbv (7.3)

where ρ is the mobile dislocation density (in unit of m−2), b is the Burgers vector, and v is
the average dislocation velocity. Orowan’s law can be proven using Betti’s theorem.
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Some stress-strain curves for body-centered-cubic (BCC) metal Molybdenum under uni-
axial tension at a constant strain rate are shown in Fig. 7.6. The behavior at T = 493◦K
shows a typical 3-stage behavior. Immediately after yield, there is stage I in which the
plastic deformation proceeds easily without significant increase of applied stress. In stage
I, dislocations are mostly gliding on parallel planes and their mutual interaction is weak.
However, at higher deformation, the crystal enters stage II with the characteristic of a much
higher but constant slope, i.e. hardening rate. This is because dislocations on several non-
parallel slip planes have been activated and they started to block each other’s motion. The
dislocations start to form dense entangled structures. The total dislocation density keeps
increasing during stage II. Eventually, the crystal enters stage III in which the hardening rate
deviates from a constant due to recovery mechanisms that start to annihilate dislocations in
the dense network.

stage I stage II
stage III

Molybdenum

yield stress

yield stress

Figure 7.6: Tensile stress strain curve for Molybdenum at two temperatures [16]. The
behavior at T = 493◦K exhibits a typical 3-stage behavior after initial yield (see text). The
tensile axis A and strain rate ε̇ are given in the inset. 1kp/mm2=9.8MPa.

Dislocations also play an important role in fracture, due to their interactions with cracks.
For example, in ductile materials, a crack tip can nucleate many dislocations that shield and
blunt the crack tip. This results in a higher critical strain energy release rate Jc for crack
advancement and hence higher fracture toughness. A snapshot from Molecular Dynamics
simulation of crack motion is shown in Fig. 7.7. A large number of dislocations are nucleated
at the crack tip. Dislocations can also initiate fracture. In the fatigue process [18], the
material is under cyclic loading. Dislocations keep multiplying during the cyclic loading
and can form dense pile-up structures with very high local stresses that can lead to crack
nucleation even in ductile materials.
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Figure 7.7: Snapshot of Molecular Dynamics simulation of dislocation nucleation in front of
a crack tip [17].

7.3 Elastic fields of a dislocation loop

We now derive the elastic displacement and stress fields of a dislocation loop. Consider a
dislocation loop L that is formed by displacing the lower side of surface S by b with respect
to the upper side, as shown in Fig. 7.8. Notice that we have chosen the surface normal n of
S and the line sense ξ of L to be consistent with the right-hand rule. To be more precise
about the operation that introduces the dislocation, let us imagine that an infinitesimally
thin layer of material around surface S is removed, so that the remaining material has two
internal surfaces: S+ and S−. The lower surface is S+ with normal vector n+ = n and
the upper surface is S− with normal vector n− = −n. The dislocation is introduced by
displacing the surface S+ by b with respect to S− and then gluing the two surfaces together.
If this creates a gap or an overlap, then material must be added or removed to eliminate it.

Figure 7.8: Continuum model of a dislocation. Imagine that a thin layer of material around
surface S is removed, creating two internal surfaces S+ and S−. The dislocation is introduced
by displacing S+ by b with respect to S−.

The elastic fields of this dislocation loop in a homogeneous infinite medium can be solved
analytically by modeling this configuration as an equivalent inclusion. The inclusion occupies
the space between S+ and S−. Let h be the separation between S+ and S−, i.e. the thickness
of the inclusion. Then the equivalent eigenstrain to model the dislocation loop is,

e∗ij = −nibj + njbi

2h
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Now, in the limit as the separation h goes to zero the eigenstrain becomes

e∗ij = −nibj + njbi

2
δ(S− x)

Where δ(S− x) is a shorthand notation for

δ(S− x) ≡
∫

S

δ(x− x′) dS(x′)

i.e., δ(S− x) is zero when x is not on S and infinite when it is. Therefore,∫
V

δ(S− x′) dV (x′) =

∫
S

dS(x′)

Now, the eigenstress associated with the inclusion is

σ∗ij = −Cijmnnmbnδ(S− x)

The constrained displacement field is

uc
i(x) =

∫
S

Fj(x
′)Gij(x− x′) dS(x′)

=

∫
S

σ∗jknkGij(x− x′) dS(x′)

= −
∫

V

σ∗jkGij,k(x− x′) dV (x′)

=

∫
V

Cjkmnbmnnδ(S− x)Gij,k(x− x′) dV (x′) (7.4)

=

∫
S

CjkmnbmnnGij,k(x− x′) dS(x′)

This is the Volterra’s formula for displacement field of a dislocation loop. The constrained
field is the displacement field everywhere in the solid, both in the inclusion and the matrix.
It contains both elastic and plastic components. If one wishes to write down the elastic
displacement gradients (to compute stress) everywhere in the solid, it is

uelastic
i,j (x) =

∫
S

CklmnbmnnGik,lj(x− x′) dS(x′) + binjδ(S− x)

The second term is to account for the removal of the plastic distortions (i.e., the eigenstrain).
The stress follows from Hooke’s Law:

σij(x) =

∫
S

CijklCpqrsbrnsGkp,ql(x− x′) dS(x′) + Cijklbknlδ(S− x)

Suppose we wish to compute the stress of a continuous distribution of dislocations using
Volterra’s formula (for example, see section 7.6), where every point on the original Volterra’s
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dislocation is spread out according to a distribution function w(x), then the stress would
just be a convolution of the original stress field with the distribution function, as in,

σ̃ij(x) = σij(x) ∗ w(x) ≡
∫

V

σij(x
′′) w(x− x′′) dV (x′′)

The resulting stress field becomes

σ̃ij(x) =

∫
V

w(x− x′′)

∫
S

CijklCpqrsbrnsGkp,ql(x
′′ − x′) dS(x′) dV (x′′)

+

∫
V

Cijklbknlw(x− x′′)δ(S− x′′) dV (x′′)

=

∫
S

CijklCpqrsbrnsG
a
kp,ql(x− x′) dS(x′) +

∫
S

Cijklbknlw(x− x′) dS(x′)

where Ga
kp,ql(x − x′) ≡ Gkp,ql(x − x′) ∗ w(x) ≡

∫
V

w(x − x′′)Gkp,ql(x
′′ − x′) dV (x′′) and the

Burgers vector is assumed to be a constant over surface S. Notice that the second term on the
right hand side corresponds to the eigenstress of an inclusion, whose eigenstrain distribution
is,

e∗ij(x) = −binj + bjni

2

∫
S

w(x− x′)dS(x′) (7.5)

So that the stress field of this continuously distributed dislocation is,

σ̃ij(x) =

∫
S

CijklCpqrsbrnsG
a
kp,ql(x− x′) dS(x′)− Cijkle

∗
kl(x) (7.6)
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Volterra’s Formula for General Eigenstrain

In the above, Volterra’s was derived for dislocations with a constant
Burger’s vector b on the slip plane S. However, Volterra’s formula has
the same form as above even if b is a non-uniform function of x in the slip
plane. To show this, let’s consider an inclusion as in Chapter 2, but now
with a non-uniform eigenstrain distribution. The eigenstrain is assumed
to be function of position in the inclusion. The displacement formula is
then

ui(x) =

∫
S

Fj(x
′)Gij(x− x′) dS(x′) +

∫
V

bj(x
′)Gij(x− x′) dV (x′)

where Fj and bj are surface traction and body forces such that, if they were
applied to the elastic medium, the total displacement of the body is zero
everywhere (in this case, the stress field would be minus the eigenstress
σ∗ij). Therefore, Fj is simply related to the eigenstress by Fj = −σ∗jknk

and equilibrium condition gives −σ∗jk,k + bj = 0. Therefore,

ui(x) = −
∫

S

σ∗jk(x
′)nk(x

′)Gij(x− x′) dS(x′)

+

∫
V

bj(x
′)Gij(x− x′) dV (x′)

=

∫
V

[−σ∗jk(x
′)Gij,k(x− x′)− σ∗jk,k(x

′)Gij(x− x′)

+bj(x
′)Gij(x− x′)] dV (x′)

= −
∫

V

σ∗jk(x
′)Gij,k(x− x′) dV (x′) (7.7)

Now, let the thickness of the eigenstrain go to zero as before, but let the
Burgers vector be a function of x, i.e.,

e∗ij(x) = −nibj(x) + njbi(x)

2
δ(S− x)

and substituting this into the Eq. (7.7) we get

ui(x) =

∫
V

Cjkmnbm(x′)nnδ(S
′ − x′)Gij,k(x− x′) dV (x′)

which reduces to

ui(x) =

∫
S

Cjkmnbm(x′)nnGij,k(x− x′) dS(x′) (7.8)

which is exactly Volterra’s formula as previously stated earlier. Thus,
Volterra’s formula holds for any eigenstrain that is arbitrarily distributed
over a surface S (so that it can be used to model a crack as well). However,
Mura’s formula, which will be derived shortly, only holds for uniform
eigenstrains on surface S.
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If we assume that b is a constant, then the displacement gradients, strains, and stresses
can all be written as line integrals around L. The elastic displacement gradients can be
written as

uelastic
i,j =

∫
S

[CklmnbmnnGik,lj(x− x′) + binjδ(x− x′)] dS(x′)

=

∫
S

[CklmnGik,lj(x− x′) + δimδjnδ(x− x′)] bmnn dS(x′)

Using the equilibrium of the Green’s function from Chapter 1

δ(x− x′)δim = −CmlpqGpi,ql(x− x′) = −CklmnGki,ln(x− x′)

the elastic displacement gradients become

uelastic
i,j =

∫
S

[CklmnGik,lj(x− x′)− δjnCklmnGki,ln(x− x′)] bmnn dS(x′)

=

∫
S

Cklmnbm [nnGik,lj(x− x′)− njGik,ln(x− x′)] dS(x′) (7.9)

The Stoke’s Theorem,∮
L

fvh dL =

∫
S

εihkf,ink dS (7.10)

can be re-written as,∮
L

fvhεjnh dL =

∫
S

εihkεjnhf,ink dS =

∫
S

(δkjδin − δknδij)f,ink dS =

∫
S

(njf,n − nnfj) dS

So that the displacement gradients becomes

uelastic
i,j =

∮
L

εjnhCklmnbmvhGik,l(x− x′) dS(x′) (7.11)

In this last step there were two sign changes that cancel each other — one for turning (njfn−
nnfj) into −(nnfj−njfn) (where f = Gik,l) and the other for turning ∂/∂x′nGik,l(x−x′) into
−Gik,ln(x − x′). Notice that in changing the surface integral to a line integral, the surface
delta function has completely disappeared and the displacement gradients are continuous
everywhere. If the contribution from the surface delta function was originally ignored in the
surface integral, this would not be the case. The stress field is

σij = Cijkl

∮
L

εlnhCpqmnbmvh(x
′)Gkp,q(x− x′) dL(x′) (7.12)

Eq. (7.12) is called Mura’s formula. vh is the unit vector along the local line direction, i.e.
it is the same vector as ξ and we will use them interchangeably. Note that the above line
integral forms of the stress field and displacement gradients are meaningful only when they
are evaluated around a complete loop. Since any function that gives zero integral around a
closed loop L can be added to these formulas without changing the final result, the stress
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field of a finite dislocation segment is not unique. This mathematical argument agrees with
the physical model of a dislocation because dislocations in crystalline solids cannot end inside
a crystal (although they can terminate at the crystal surface).

For numerical simulations, dislocation lines are usually represented by a connected set
of straight dislocations segments, as shown in Fig. 7.9. The stress field from each segment
only has physical meaning when they are summed over the entire loop. The stress field of
a straight dislocation segment can be obtained analytically in isotropic elasticity, i.e. there
exist a function σseg

ij (x(1),x(2),b(12)), where x(1) and x(2) are two end points of the segment

and b(12) is the Burgers vector. The stress field of the dislocation loop shown in Fig. 7.9 can
then be obtained by summing over the stress fields of individual segments,

σLoop
ij =

N∑
n=1

σseg
ij (x(n),x(n+1),b) , x(N+1) ≡ x(1) (7.13)

b
ξ

x1

x2

x3

xN

xN-1

...

Figure 7.9: A dislocation loop with line direction ξ and Burgers vector b is represented by
N straight dislocation segments.

7.4 Self energy of a dislocation loop

In the previous section the elastic fields of stress and strain of a dislocation loop were reduced
to line integrals. We have shown that mathematically, this can be done but we should also
expect this because of the line structure of the dislocation. From this physical argument, we
should also expect that the self energy of, and interaction energies between, dislocations can
be written as line integrals. However, the actual realization of these formulas will prove to
be much more difficult. To see why this causes problems, lets attempt to calculate the self
energy of a dislocation loop.

Now that we have the stress and strain field of a dislocation loop, the self energy can be
evaluated in a very straight forward method by integrating the strain energy density over
the volume of the crystal.

E =

∫
V

w dV
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where

w(eij) =
1

2
σijeij

for linear elastic materials. However, a more elegant and arguably easier method is to use
the work method. This method measures the amount of reversible work done when creating
a dislocation loop. Both methods will give the same result. However, the energy of a
dislocation loop obtained from linear elasticity theory is in fact singular (infinite), unless a
certain truncation scheme is applied. The singularity problem will be discussed in Section 7.6.
For now let us simply ignore the singularity.

Imagine that we create the dislocation loop shown in Fig. 7.8 by applying traction forces
F+

j and F−
j on S+ and S− and very slowly displace S+ with respect to S− by b. The traction

forces can be written in terms of the stress field,

F+
j = σkjn

+
k

F−
j = σkjn

−
k

Let the displacements on S+ and S− be u+
j and u−j . We have

u+
j − u−j = bj (7.14)

The work done to create the dislocation loop is

W =
1

2

∫
S+

F+
j u+

j dS +
1

2

∫
S−

F−
j u−j dS

=
1

2

∫
S

σkjn
+
k (u+

j − u−j ) dS

=
1

2

∫
S

σkjnkbj dS (7.15)

This is the same as the self energy E of the dislocation loop. Substituting in Mura’s formula
for the stress, we have,

E =
1

2

∫
S

∮
L

binj(x)CijklεlnhCpqmnbmvh(x
′)Gkp,q(x− x′) dL(x′) dS(x) (7.16)

A first reaction would be to use Stoke’s theorem on this integral, but that gives back both a
line integral and a surface integral which will not reduce further. In fact, no one has been able
to reduce this formula to a line integral in its present form for general anisotropic materials.
For isotropic material, substituting the analytic expression for the Green’s function, the
equation for the self energy can be reduced to

E =

∮
L

∮
L

µ

16π
bibjR,pp dxi dx′j +

µ

8π(1− ν)
εiklεjmnbkbmR,ij dxl dx′n (7.17)

and the interaction energy between two dislocation loops is (in vector form) [19]

W12 = − µ

2π

∮
L1

∮
L2

(b1 × b2) · ( dL1 × dL2)

R

+
µ

4π

∮
L1

∮
L2

(b1 · dL1)(b2 · dL2)

R

+
µ

4π

∮
L1

∮
L2

(b1 × dL1) · ∇∇R · (b2 × dL2) (7.18)
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Full derivations of these equations can be found in [19]. For anisotropic elastic medium,
while Eq. (7.16) has not been reduced to a double line integral, Lothe [20] has reduced the
interaction energy to following integral form,

E =
1

8π2

∮
L1

∮
L2

dL(x) dL(x′)
1

R

∫ 2π

0

b1(ξ1 ×m, ξ2 ×m)p,mb2 dφ (7.19)

where (a,b)p,m ≡ (a,b) − (a,m)(m,m)−1(m,b), (a,b)jk ≡ aiCijklbl, m is a unit vector
perpendicular to R ≡ x′−x, and φ specifies the angle between m and an arbitrary reference
direction in the plane perpendicular to R. The reader is directed to Lothe’s 1982 paper [20]
for a complete explanation of this equation which is to long to reproduce here.

7.5 Force on a dislocation

In order to determine the force exerted on a dislocation line, let us first look at the virtual
displacement of a dislocation loop. Consider the dislocation L with line direction v as shown
in Fig. 7.10. Notice that v and ξ mean the same thing and we will use them interchangeably.
Let the loop move by a small amount δr(x), with δr(x) · v(x) = 0 because a line moving
along itself has no physical consequence. Let the change of energy be δE. If δE can be
expressed in the form of

δE = −
∮

L

f(x) · δr(x) dL(x) (7.20)

then f(x) is the line force (per unit length) on L. Because δr(x) · v(x) = 0, if f(x) is along
v(x), it contributes zero to δE. This means that we may add this function to any solution
f(x) of Eq. (7.20) and we obtain yet another solution. For uniqueness, we will enforce the
intuitive constraint that f(x) · v(x) = 0.

The energy of a set of N dislocation loops can be written as the sum of the loop self
energies and the interaction energies between the loops,

E =
N∑

i=1

Ei +
N∑

i=1

N∑
j=i+1

Wij (7.21)

Let us consider the force on loop 1. We need to calculate the variation of the total energy
with respect to the virtual displacement of the loop, δr1(x), i.e.,

f1 = − δE

δr1(x)
= − δE1

δr1(x)
−

N∑
j=2

W1j

δr1(x)
(7.22)

The first term of this equation is divergent, since the self energy is singular (we will deal
with this problem in Section 7.6). The second term is the force do to the interaction energy
between the dislocations.

For brevity, let us consider a system with only two dislocations, so that we only have one
interaction term,

W12 =

∫
S1

σ
(2)
ij (x)n

(1)
i b

(1)
j dS(x)
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dL

δS

δr

Figure 7.10: Virtual shape change of a dislocation loop.

Note that σ
(2)
ij (x) is invariant with respect to δr(x) since the virtual motion is only for

dislocation 1. Therefore, the only change of W12 is induced by the change of the integration
area S1, i.e.,

δW12 =

∫
δS1

σ
(2)
ij (x)n

(1)
i b

(1)
j dS(x) (7.23)

and

nδS = δr× v dL

ni dS = εimnδrmvn dL

Thus

δW12 =

∮
L

σ
(2)
ij (x)b

(1)
j εimnδrm(x)v(1)

n (x) dL(x)

= −
∮

L

[σ
(2)
ij (x)b

(1)
j εinmv(1)

n (x)]δrm(x) dL(x)

which leads us to the self force

fm(x) = εinmσ
(2)
ij (x)b

(1)
j v(1)

n (x) (7.24)

This is often written in the vector form as

f = (σ · b)× ξ (7.25)

This is called the Peach-Koehler formula. Even though we have pictured σ
(2)
ij to be the

stress due to another dislocation loop, it could come from any stress source and the resulting
force can be obtained from the Peach-Koehler formula in the same way. The total force
on the dislocation should also include the effect of the stress field on itself. However, this
contribution is infinite, unless some truncation scheme is applied (see Section 7.6).
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7.6 Non-singular dislocation model

In the previous discussions we have introduced a model for a dislocation that has both a stress
singularity and a self energy singularity. The nature of this singularity presents problem to
define self forces on the dislocation. While several approaches have been proposed to define
a finite self-force on dislocations, in this section we will discuss the model proposed in [21]
which is relatively easy to explain. This model removes the singularity for dislocations while
maintaining the simplest analytic expressions for the stress, energy and force formulas. It
lets each point on the dislocation line become the center of a distribution of dislocations
which spreads out the dislocation core. Let the spreading (distribution) function be w̃(x).
Recall that the stress field of a dislocation loop according the Mura’s formula (singular) is

σαβ(x) =

∮
L

CαβklεlnhCpqmnbmvn(x′)Gkp,q(x− x′) dL(x′) (7.26)

In the non-singular theory, the stress field should be the convolution of the above expression
with w̃(x), i.e.,

σ̃ns
αβ(x) = σαβ(x) ∗ w̃(x)

=

∮
L

∫
CαβklεlnhCpqmnbmvn(x′)Gkp,q(x− x′)w̃(x′′ − x′) dL(x′) dx′′

However, to compute the force on the spread-out dislocation line, what is relevant is
not the stress at a single point x, but the stress field convoluted with a spreading function
centered at x. Both the stress source point x′ and the field point x are spread out because
they are both points on the dislocation line. Therefore, the more relevant stress field is,

σns
αβ(x) = w̃(x) ∗ σαβ(x) ∗ w̃(x)

Define

w(x) = w̃(x) ∗ w̃(x)

The nonsingular stress field becomes

σns
αβ(x) = σαβ(x) ∗ w(x)

In isotropic elasticity the Green’s function is expressible in terms of third derivatives of
R ≡ |x− x′|. For example, Mura’s formula for the singular stress field is

σns
αβ(x) =

µ

8π

∮
L

∂i∂p∂pR
[
bmεimα dx′β + bmεimβ dx′α

]
+

µ

4(1− ν)

∮
L

bmεimk(∂i∂α∂βR− δαβ∂i∂p∂pR) dx′k (7.27)

If we choose

w(x) =
15a4

8π(|x|2 + a2)7/2
(7.28)
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then

R ∗ w(x) = Ra ≡
√

R2 + a2 (7.29)

Therefore,

σns
αβ(x) =

µ

8π

∮
L

∂i∂p∂pRa

[
bmεimα dx′β + bmεimβ dx′α

]
+

µ

4(1− ν)

∮
L

bmεimk(∂i∂α∂βRa − δαβ∂i∂p∂pRa) dx′k (7.30)

This completely removes the singularity from the stress field. Because the spatial deriva-
tives of Ra and R are very similar, the analytic structures of the original singular theory is
maintained in the non-singular theory. For example the stress field of a straight dislocation
segment in isotropic elasticity can be obtained and the results are very similar to the original
(singular) expressions.

Following the same derivation as before, the self energy of a dislocation loop now becomes,

E =

∮
L

∮
L

µ

16π
bibjRa,pp dxi dx′j +

µ

8π(1− ν)
εiklεjmnbkbmRa,ij dxl dx′n (7.31)

and the interaction energy is (in vector form) [19]

W12 = − µ

4π

∮
L1

∮
L2

(b1 × b2) · ( dL1 × dL2)∇2Ra

+
µ

8π

∮
L1

∮
L2

(b1 · dL1)(b2 · dL2)∇2Ra

+
µ

4π

∮
L1

∮
L2

(b1 × dL1) · ∇∇Ra · (b2 × dL2) (7.32)

The self energy is now finite and the stress field is smooth and finite everywhere (including on
the dislocation line itself). The Peach-Koehler formula can now be safely applied to obtain
the self force on the dislocation without ambiguity. The total force on the dislocation can be
simply obtained from the Peach-Koehler formula using the total stress field, from Eq. (7.30),
on the dislocation itself.

7.7 Peierls-Nabarro model

The displacement jump as introduced in Volterra’s singular dislocation model is a discontin-
uous function on the slip plane. For example, consider an infinite straight dislocation along
the z-axis and let the cut plane S be the x < 0 portion of the x-z plane. Let u− and u+ be
the displacement field on S− and S+, i.e. the upper and lower side of surface S, respectively,
similar to Fig. 7.8. Define [[u]] ≡ u+ − u− as the displacement jump across the cut plane.
In Volterra’s model, [[u]] is a step function, as shown in Fig. 7.11. If the dislocation line
direction is chosen to be along the positive z-axis (out of plane), then the Burgers vector of
this dislocation is b.
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We can define the derivative of [[u]](x) as the dislocation core density ρ(x). In this case,
ρ(x) is a delta function, i.e. ρ(x) = bδ(x), as shown in Fig.7.11. The concentrated Burgers
vector distribution is responsible for the singularity we experienced earlier. However, in a
real crystal, no such singularity exists and we cannot define the position of a dislocation
more accurately than the lattice spacing between atoms. Therefore, a more realistic model
would be to let the core density be a spread-out smooth function of x, as shown in Fig. 7.12.

−b

x

[[u]]

x

ρ

b

Figure 7.11: Displacement jump [[u]](x) and dislocation core distribution ρ(x) = d[[u]](x)/dx
for a Volterra’s dislocation.

−b

x

[[u]]

x

ρ

b

Figure 7.12: Displacement jump [[u]](x) and dislocation core distribution ρ(x) = d[[u]](x)/dx
for a more realistic model which allows dislocation core to spread out.

To obtain the actual spreading function ρ(x), the strategy is to obtain the total energy
Etot as a functional of ρ(x) and find the ρ(x) that minimizes Etot. Obviously, Etot should
include the elastic energy contribution. The elastic energy of a dislocation can be evaluated
by finding the reversible work done while creating the dislocation. The elastic energy for an



106 CHAPTER 7. DISLOCATIONS

infinite straight dislocation is

Eel =
1

2

∫ ∞

−∞
(T+ · u+ −T− · u−) dx

=
1

2

∫ ∞

−∞
(σ · n) · [[u]](x) dx

=
1

2

∫ ∞

−∞
σxy(x)[[u]](x) dx

For an edge Volterra’s dislocation

σxy =
µb

2π(1− ν)

x(x2 − y2)

(x2 + y2)2

On the plane y = 0

σxy =
µb

2π(1− ν)

1

x
(7.33)

For this dislocation the displacement jump is

[[u]](x) =

{
−b x < 0
0 x > 0

The energy is

Eel = −1

2

∫ 0

−∞

µb2

2π(1− ν)

1

x
dx (7.34)

which is infinite. However, for a dislocation with core density ρ(x) other than a delta function,
the stress field is the convolution of Eq. (7.33) with ρ(x), i.e.,

σxy(x) =
µ

2π(1− ν)

∫ ∞

−∞

ρ(x′)

x− x′
dx′

The corresponding elastic energy is

Eel =
1

2

∫ ∞

−∞
σxy(x) [[u]](x) dx

=
µ

4π(1− ν)

∫ ∞

−∞

∫ ∞

−∞

ρ(x′) [[u]](x)

x− x′
dx dx′

= − µ

4π(1− ν)

∫ ∞

−∞

∫ ∞

−∞
ρ(x)ρ(x′) ln |x− x′| dx dx′ + C

where C is a constant from integration by parts, which is independent of the shape of
[[u]](x) as long as the boundary conditions at x = ±∞ are fixed. This solution is for edge
dislocations. The solution for screw dislocations only differs by a constant and the general
solution can be written as

Eel = −K

∫ ∞

−∞

∫ ∞

−∞
ρ(x)ρ(x′) ln |x− x′| dx dx′ + C
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where

K =

{ µ
4π

screw
µ

4π(1−ν)
edge

As the function ρ(x) becomes more widely distributed (subjected to the normalization con-
dition

∫∞
−∞ ρ(x)dx = b), the elastic energy Eel becomes smaller. If the elastic energy is the

only contribution to the total energy, the dislocation would spread out completely (in the
end there will be no dislocation to speak of). In reality, the dislocation core is stabilized
by the non-linear interfacial misfit energy between the two surfaces S+ and S−. This misfit
energy is also called the generalized stacking fault energy γ. Due to the periodic nature of
the crystal structure, γ is a periodic function of [[u]]. The simplest model for γ(·) is,

γ(u) = U0 sin

(
2πu

b

)
and the corresponding misfit energy would be

Es =

∫ ∞

−∞
γ([[u]](x)) dx

Therefore the total energy the dislocation is

Etot = −K

∫ ∞

−∞

∫ ∞

−∞
ρ(x)ρ(x′) ln |x− x′| dx dx′ +

∫ ∞

−∞
γ([[u]](x)) dx + C

The function that minimizes Etot describes the physical shape of the dislocation core. The
minimizing function [[u]](x) satisfies the condition

0 =
δEtot

δ[[u]]

= 2K

∫ ∞

−∞

ρ(x′)

x− x′
dx′ +

dγ

d[[u]]

More explicitly,

−2K

∫ ∞

−∞

d[[u]]/ dx

x− x′

∣∣∣∣
x=x′

dx′ =
U0π

b
sin

(
2π[[u]]

b

)
The analytic solution to this differential-integral equation was given by Rudolf Peierls as

[[u]](x) =
b

π
arctan

(
x

ξ

)
− b

2
(7.35)

where

ξ =
Kb2

U0π
(7.36)

ξ is called the half width of the dislocation core. We notice that the core half-width ξ repre-
sents the competition between the elastic stiffness K (which tends to spread the dislocations
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out) and the non-linear misfit potential U0(which tends to localize the dislocation core). The
dislocation distribution function ρ(x) is

ρ(x) =
b

π

ξ

x2 + ξ2
(7.37)

and the stress field along the x-axis (y = 0) becomes

σxy(x) =
µb

2π(1− ν)

x

x2 + ξ2
(7.38)

When an external stress field is applied, the optimal dislocation shape should minimize the
Gibb’s free energy, which also includes the negative of the work done by the external stress.

∆G = −K

∫ ∞

−∞

∫ ∞

−∞
ρ(x)ρ(x′) ln |x−x′| dx dx′+

∫ ∞

−∞
γ([[u]](x)) dx−

∫ ∞

−∞
σA

xy(x)[[u]](x) dx+C

This model can be generalized to model the nucleation of a dislocation dipole (in 1D) or a
dislocation loop (in 2D).



Appendix A

Exercise Problems

A.1 Index Notation and Gauss’s Theorem

Problem 1.1 (10’) Index notation.

(a) Show that εmkqεnkq = 2δmn.

(b) Consider a rank-two tensor pij = aδij + bzizj, where z is a unit vector (zizi = 1). Find
the inverse qij of pij, which is defined through qijpjk = δik.
[ Hint: suppose qij also has the form of qij = cδij + dzizj. ]

Problem 1.2 (10’) Tensor symmetry.

Any second rank tensor Aij can be decomposed into its symmetric and antisymmetric parts

Aij = A(ij) + A[ij]

where

A(ij) =
1

2
(Aij + Aji)

is the symmetric part and

A[ij] =
1

2
(Aij − Aji)

is the antisymmetric part.

(a) Show that if Aij is a symmetric tensor, and Bij is an arbitrary tensor, then,

AijBij = AijB(ij) (A.1)

(b) Show that if Aij is an antisymmetric tensor, then

Aijaiaj = 0

109
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Problem 1.3 (10’) Gauss’s Theorem.

(a) For a elastic body V with surface S in equilibrium under surface traction Ti and zero
body force (bi = 0), show that∫

S

TiuidS =

∫
V

σijeijdV

where ui, σij, eij are displacement, stress and strain fields.
[ Hint: Use the result in Problem 1.2. ]

(b) Show that the average stress in the elastic body under zero body force is,

σij =
1

2V

∫
S

(Ti xj + Tj xi)dS

A.2 Elasticity in one and two dimensions

Problem 2.1 (10’) Elastic constants.
The elastic stiffness tensor for the isotropic medium is Cijkl = λδijδkl + µ(δikδjl + δilδjk).
Determine the compliance tensor, Sijkl, which is the inverse of Cijkl, i.e.,

CijklSklmn =
1

2
(δimδjn + δinδjm) (A.2)

[ Hint: assume that Sijkl has the form αδijδkl + β (δikδjl + δilδjk). ]

Problem 2.2 (10’) 1D elasticity.
Determine the displacement, strain and stress field of a long rod of length L standing ver-
tically in a gravitational field g. Assume the rod is an isotropic elastic medium with shear
modulus µ and Poisson’s ratio ν.

L
g

Figure A.1: A rod of length L standing vertically in a gravitational field g.

Problem 2.3 (10’) 2D elaticity.
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Lets look at equilibrium in 2-D elasticity using x-y cartesian coordinates under zero body
force. Assume the 2-d body is in a state of plane stress, i.e.,

σzx = σzy = σzz = 0

which corresponds to a free standing thin film. The equilibrium equations reduce to

σxx,x + σyx,y = 0 (A.3)

σyy,y + σxy,x = 0 (A.4)

And the compatability equations reduce to

exx,yy − 2exy,xy + eyy,xx = 0 (A.5)

One popular method to solve such problems is to introduce the Airy’s stress function φ such
that,

σxx = φ,yy (A.6)

σyy = φ,xx (A.7)

σxy = −φ,xy (A.8)

(a) Show that this particular choice of stress function automatically satisfies equilibrium.

(b) Assuming that Hooke’s Law is of the form

exx =
σxx

E
− νσyy

E
(A.9)

eyy =
σyy

E
− νσxx

E
(A.10)

exy =
σxy(1 + ν)

E
(A.11)

show that the compatability equation reduces to

φ,xxxx + 2φ,xxyy + φ,yyyy = 0 (A.12)

This is the biharmonic equation, which is often written as ∇4φ = 0.

(c) What is the relation between E and the shear modulus µ and Poisson’s ration ν?

(d) Note that the solution of Eq.(A.12) does not depend on elastic constants. Let’s use
this solution to solve a very simple stress problem. Consider a square of length a under
hydrostatic pressure P . What are the stress components inside the box? (guess!) What is
the stress function φ?
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P

a

Figure A.2: A square of length a under hydrostatic pressure P .

A.3 Elastic Green Function

Problem 3.1 (10’) Numerical calculation of Green’s function.
(a) Write a Matlab program that returns Cijkl given C11, C12, and C44 of an anisotropic
elastic medium with cubic symmetry.

(b) Write a Matlab program that computes (zz)ij and (zz)−1
ij given Cijkl and zi. The elastic

constants of Silicon are C11 = 161.6GPa, C12 = 81.6GPa, C44 = 60.3GPa. What are the
values for all components of gij(k) for k = [112] (k in unit of µm−1)?

(c) Write a Matlab program that computes Gij(x) given Cijkl and x. What are the values
for all components of Gij(x) for x = [112] (x in unit of µm)? Plot G33(x, y) on plane z = 1.

Include a print out of your source code in your report. You may feel free to use other
softwares (e.g. Mathematica) instead of Matlab if you prefer to do so.

Problem 3.2 (10’) Reciprocal Theorem.
Use Betti’s theorem (under zero body force),∫

S

t(1) · u(2)dS =

∫
S

t(2) · u(1)dS (A.13)

to show that, the volume change of an isotropic medium with Young’s modulus E and
Possion’s ratio ν under surface traction t(1) is,

δV1 =

∫
S

1− 2ν

E
xit

(1)
i dS (A.14)

Notice that the traction force satisfies,∫
S

t
(1)
i dS = 0 (A.15)∫

S

εijkxjt
(1)
k dS = 0 (A.16)
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[ Hint: use auxiliary solution σ
(2)
ij = δij, i.e. the medium under unit hydrostatic tension. ]

Problem 3.3 (10’) Contact problem.
Consider a semi-infinite isotropic elastic medium filling the half space x3 ≥ 0. Let the shear
modulus be µ and Poisson’s ratio be ν. The Green’s function for the half space is Gh

ij(x,x′).
If the force is only applied to the surface, i.e. x′3 = 0, then the Green’s function can be
written as,

Gh
ij(x,x′) = Gh

ij(x− x′) (A.17)

Introduce function F (x) = x3 ln(x3 + R) − R where R = |x|. Then the surface Green’s
function can be expressed as (when the surface force is applied at x′ = 0),

Gh
ij(x) =

1

4πµ

[
δij∇2R− ∂i∂jR− (−1)δi3(1− 2ν)∂i∂jF

]
(A.18)

(a) What is the explicit form of Gh
33(x), i.e. the normal displacement in response to a normal

surface force? What is the normal displacement Gh
33(x, y) on the surface (x3 = 0)?

(b) Consider a spherical indentor with radius of curvature ρ punching on the surface along
the x3 axis. Let a be the radius of the contact area. The indentor is much stiffer than the
substrate so that we can assume the substrate conforms to the shape of the indentor in the
contact area, i.e.,

u3(x, y) = d− x2 + y2

2ρ
(A.19)

where d is the maximum displacement on the surface and r ≡
√

x2 + y2. Let the total
indenting force be F . What is the pressure distribution on the surface p(x, y)?
[ Hint: try the form p(x, y) = B

√
1− (x/a)2 − (y/a)2 and determine B in terms of F . Show

that p(x, y) indeed gives rise to displacement according to Eq. (A.19). ]

(c) What is the expression for the contact radius a in terms of indenting force F and indentor
radius of curvature ρ?

(d) What is the expression for the maximum displacement d in terms of indenting force F
and indentor radius of curvature ρ?

Note: you may find the following identity useful,∫
x′2+y′2≤1

√
1− x′2 − y′2 dx′dy′√
(x− x′)2 + (y − y′)2

=
π2

2

(
1− x2 + y2

2

)
(A.20)

A.4 Eshelby’s Inclusion I

Problem 4.1 (15’) Spherical inclusion.
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(a) Derive the expressions for the auxiliary tensorDijkl for a spherical inclusion in an isotropic
medium with shear modulus µ and Poisson’s ratio ν.
[ Hint: many components of Dijkl are zero, unless there are repeated indices. ]

(b) Derive the corresponding expressions for Eshelby’s tensor Sijkl.

Problem 4.2 (15’) Dilation field.

The “constrained” dilation of a transformed inclusion (not necessarily ellipsoidal) is,

uc
i,i =

∫
S0

σ∗kjnk(x
′)Gij,i(x− x′)dS(x′)

= −
∫

V0

σ∗kjGij,ik(x− x′)dV (x′) (A.21)

(a) Show that if e∗ij = εδij (pure dilational eigenstrain), then in isotropic elasticity the
constrained dilation is constant inside the inclusion and independent of inclusion shape.

(b) What is uc
i,i inside the inclusion in terms of ε?

Hint: The Green’s function Gij(x) can be expressed in terms of second derivatives of R = |x|.

Gij(x) =
1

8πµ

[
δij∇2R− 1

2(1− ν)
∂i∂jR

]
(A.22)

Notice that

∇2R =
2

R
(A.23)

∇2 1

R
= −4πδ(x) (A.24)

A.5 Eshelby’s Inclusion II

Problem 5.1 (15’) Use work method to derive the energy inside the inclusion EI and inside
the matrix EM for an ellipsoidal inclusion in an infinite matrix. Follow the Eshelby’s 4 steps
to construct the inclusion.

(a) What are the forces applied to the inclusion and to the matrix in all 4 steps?

(b) What are the work done to the inclusion and to the matrix in all 4 steps?

(c) What is the elastic energy inside the inclusion EI , and what is the elastic energy inside
the matrix EM at the end of step 4?
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Problem 5.2 (15’) Spherical inclusion. The Eshelby’s tensor of a spherical inclusion inside
an infinite medium is (see Lecture Note 2),

Sijkl =
5ν − 1

15(1− ν)
δijδkl +

4− 5ν

15(1− ν)
(δikδjl + δilδjk) (A.25)

Consider a spherical inclusion of radius R with a pure shear eigenstrain e∗12 = ε (other
components of e∗ij = 0).

(a) What is the total elastic energy of the system E as a function of R?

(b) Now apply a uniform stress field σA
12 = τ to the solid (other stress components are zero).

What is the total elastic energy E(R)?

(c) What is the enthalpy of the system H(R)? What is the driving force for inclusion growth,
i.e. f(R) = −dH(R)/dR?

[ Hint: Consider the solid has a finite but very large volume V . The external stress is applied
at the external surface. Volume V is so large that the Eshelby’s solution in infinite solid
remains valid. ]

A.6 Cracks

Problem 6.1 (15’) Plane strain and plain stress equivalence.
Let the elastic stiffness tensor of a homogeneous solid be Cijkl and its inverse (compliance
tensor) be Sijkl. In the plane strain problem, e13 = e23 = e33 = 0. Let the 2-dimensional
elastic stiffness tensor be cijkl, i.e.,

σij = cijklekl for i, j, k, l, = 1, 2 (plane strain) (A.26)

Obviously, cijkl = Cijkl for i, j, k, l = 1, 2.
For a plain stress problem, σ13 = σ23 = σ33 = 0. Let the 2-dimensional elastic compliance

tensor be s̃ijkl, i.e.,

eij = s̃ijklσkl for i, j, k, l, = 1, 2 (A.27)

Obviously, s̃ijkl = Sijkl for i, j, k, l = 1, 2. The inverse of s̃ijkl (in 2-dimension) is the effective
elastic stiffness tensor in plain stress, c̃ijkl.

(a) For isotropic elasticity, write down the explicit expression for cijkl and c̃ijkl.

(b) The Kolosov’s constant is defined as

κ =

{
3− 4ν for plane strain
3−ν
1+ν

for plane stress
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Express cijkl and c̃ijkl in terms of µ and κ. (They should have the same expression now.)

Problem 6.2 (15’) Mode II crack
(a) Derive the eigenstrain of equivalent inclusion for a slit-like crack (width 2a) under uniform
shear σA

12 in plane strain.

(b) Derive the stress distribution in front of the crack tip. What is the stress intensity factor
KII = limr→0 σ12(r)

√
2πr, where r = x− a is the distance from the crack tip?



Bibliography

[1] W. M. Lai, D. Rubin and E. Krempl, Introduction to Continuum Mechanics,
(Butterworth-Heinemann, 1999).

[2] L. D. Landau and E. M. Lifshits, Theory of Elasticity, 2nd English ed., (Pergamon
Press, Oxford, 1970).

[3] T. Mura, Micromechanics of Defects in Solids, 2nd rev. ed. (Kluwer Academic Publish-
ers, 1991).

[4] J. R. Barber, Elasticity, 2nd ed. (Kluwer Academic Publishers, 2002).

[5] L. Challis and L. Sheard, The Green of Green Functions, Physics Today, Dec. 2003.

[6] J. D. Eshelby, Elastic Inclusions and Inhomogeneities, in Progress in Solid Mechanics,
2, ed. IN. Sneddon and R. Hill, (North-Holland, Amsterdam, 1961) pp. 89-140.

[7] D. M. Barnett, ME340B Lecture Notes, Micromechanics of Solids, Stanford University,
2003-2004.

[8] S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous
Materials, 2nd rev. ed., Elsevier Science B.V., 1999

[9] G. Colonetti, Per una teoria generale delle coazioni elastiche, Atti R. Acad. Sci. Torino:
Cl. Sci. fis. mat. natur., 56, 188-198, (1921).

[10] A. A. Griffith, The Pheomena of Rupture and Flow in Solids, Philos. Trans. Royal Soc.
London, A, 221, 163-198 (1921).

[11] J. D. Eshelby, The Force on Elastic Singularity, Philos. Trans. Roy. Soc. London A,
244, 87 (1951).

[12] J. R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Con-
centration by Notches and Cracks, J. Appl. Mech. 35, 379 (1968).

[13] V. Volterra, Annal. Sci. Ec. Norm. Super., 24, 401 (1907).

[14] G. I. Taylor, Mechanism of plastic deformation of crystals, Proc. Roy. Soc. A145, 362
(1934).

117



118 BIBLIOGRAPHY

[15] D. Hull and D. J. Bacon, Introduction to Dislocations, 4th ed. (Butterworth-Heinemann,
Oxford, 2001).

[16] A. Luft and L. Kaun, Electron microscopic investigation of the dislocation structure in
molybdenum single crystals deformed in tension at 293 and 493◦K, Phys. Stat. Solidi,
37, 781 (1970).

[17] F. F. Abraham et al., J. Mech. Phys. Solids, 45, 1461 (1997); V. V. Bulatov, F. F. Abra-
ham, L. Kubin, B. Devincre, S. Yip, Connecting atomistic and mesoscale simulations
of crystal plasticity, Nature 391, 669 (1998).

[18] S. Suresh, Fatigue of Materials, (Cambridge University Press, 1998).

[19] J. P. Hirth and J. Lothe, Theory of Dislocations, (Wiely, New York, 1982).

[20] J. Lothe, Dislocations in Anisotropic Media: The Interaction Energy, Philos. Mag A,
46, 177 (1982).

[21] W. Cai, A. Arsenlis, C. R. Weinberger, V. V. Bulatov, A non-singluar continuum theory
of dislocations, J. Mech. Phys. Solids (2005), to be published.


