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Problem M.1 (20’) Plane strain.
Consider an anisotropic elastic medium with elastic stiffness tensor Cijkl under plane strain
deformation. This means that the z-component of the displacement field is zero everywhere.
The displacement fields in x and y directions are also independent of z. Mathematically,
this can be written as,

u3 = 0 (1)

u1,3 = 0 (2)

u2,3 = 0 (3)

(a) What are the non-zero components of the strain field? What are the non-zero components
of the stress field?

(b) In 2-dimension, the Hooke’s law can be expressed as,

σij = cijklekl (4)

where the indices now only goes from 1 to 2. What is the expression of cijkl in terms of Cijkl?

(c) Suppose the medium is subjected to body force bj (j = 1, 2), which is independent of z.
What is the equilibrium condition in terms of the displacement fields uj?

Solution:

(a) Since u3 = 0 for all z, then u3,1 = u3,2 = u3,3 = 0. In combination with u1,3 = 0 and
u2,3 = 0 we have e33 = e13 = e23 = 0 and the non-zero components of the strain are e11, e12,
and e22. For a generally anisotropic material, all of the stresses can be related to the strains,
thus none of the stresses are necessarily zero. For isotropic material, σ13 = σ23 = 0. The
non-zero stress components are σ11, σ12, σ22, σ33.
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(b) Since whenever k = 3 or l = 3, ekl = 0,

σij = Cijklekl for i, j, k, l = 1, 2 (5)

i.e.,

cijkl = Cijkl for i, j, k, l = 1, 2 (6)

(c) The equations of equilibrium can be derived just as in the notes, no change necessary

cijkluk,il + bj = 0 (7)

Problem M.2 (10’) Green’s function in 2D.
(a) What is the equilibrium equation for the Green’s function Gij(x − x′) in terms of cijkl,
where x, x′ are 2-dimensional vectors? Notice that a point force in 2D corresponds to a line
force in 3D.

(b) Solve the Green’s function in Fourier space, i.e. gij(k). Again k is a 2-dimensional vector.

(c) Solve the Green’s function in real space Gij(x). Express the result in terms of x and θ,
where x1 = x cos θ, x2 = x sin θ. The final result can be expressed in terms of an integral
over a unit circle.
Hint: ∫ ∞

−∞

e−ikx

|k|
dk = −2 ln |x| (up to a constant) (8)

Solution:

(a) We can derive the equilibrium for the Green’s function just as in the notes, however
noting that the vector x is a 2-dimensional vector and the delta function is a 2-dimensional
delta function:

cimnsGij,sm(x− x′) + δnjδ(x− x′) = 0

(b) Note that here all of the vectors are 2-dimensional, and thus we only need to take two
dimensional fourier transforms. Define 2-dimensional Fourier transform and its inverse as,

gij(k) =

∫ ∞

−∞
exp(−ik · x)Gij(x) dx

Gij(x) =
1

4π2

∫ ∞

−∞
exp(−ik · x)gij(k) dk

1 =

∫ ∞

−∞
exp(ik · x)δ(x) dx

δ(x) =
1

4π2

∫ ∞

−∞
exp(−ik · x) dk
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Plugging in these definitions into the above equilibrium equations gives:

0 =
1

4π2

∫ ∞

−∞

(
cimns

∂2

∂xs∂xm

gij(k) + δnj

)
exp(ik · x) dk

=
1

4π2

∫ ∞

−∞

(
−cimnszmzsk

2gij(k) + δnj

)
exp(ik · x) dk

Thus

δnj = cimnszmzsk
2gij(k)

= (zz)nik
2gij(k)

where

(zz)ni ≡ cimnszmzs

The solution for the Green’s function in 2-dimension is

gij(k) =
(zz)−1

ij

k2

(c) Taking the inverse Fourier transform,

Gij(x) =
1

4π2

∫ ∞

−∞
exp(−ik · x)

(zz)−1
ij

k2
dk

=
1

4π2

∫ ∞

0

∫ 2π

0

exp(−ikx cos θ)
(zz)−1

ij

k2
k dk dθ

=
1

8π2

∫ ∞

−∞

∫ 2π

0

exp(−ikx cos θ)
(zz)−1

ij

|k|
dk dθ

=
1

8π

∫ 2π

0

(zz)−1
ij (−2 ln |x cos θ|) dθ

= − 1

4π

∫ 2π

0

(zz)−1
ij ln |x cos θ| dθ

= − 1

4π

∫ 2π

0

(zz)−1
ij (ln x + ln | cos θ|) dθ

= C ln x + Φ(θ0) (9)

where

C = − 1

4π

∫ 2π

0

(zz)−1
ij dθ

Φ(θ0) = − 1

4π

∫ 2π

0

(zz)−1
ij ln | cos θ|dθ

x = |x|
x = (x cos θ0, x sin θ0) (10)
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Problem M.3 (30’) Inclusion in 2D.
Consider an elliptic inclusion in the 2D medium that can occupies the area,(x1

a

)2

+
(x2

b

)2

≤ 1 (11)

Let its eigenstrain be e∗ij (i, j = 1, 2). Define Eshelby’s tensor Sijkl and auxiliary tensor Dijkl

similarly as in the lecture, but with i, j, k, l = 1, 2.

(a) Show that Sijkl and Dijkl are constants inside the inclusion (use anisotropic elasticity).

(b) What is cijkl in terms of µ and ν in isotropic elasticity?

(c) Derive the expressions for Sijkl and Dijkl for a circular inclusion in an isotropic medium
(plane strain).

Solution:

(a)

Dijkl(x) =

∫
V0

Gij,kl(x− x′)dV (x′)

=

∫
V0

∂2

∂xk∂xl

[
1

(2π)2

∫
exp [−ik · (x− x′)]

(zz)−1
ij

k2
dk

]
dV (x′)

= − 1

(2π)2

∫
V0

∫
exp [−ik · (x− x′)] (zz)−1

ij zkzl dk dV (x′)

= − 1

(2π)2

∫
exp(−ik · x)(zz)−1

ij zkzlQ(k) dk (12)

where

Q(k) ≡
∫

V0

exp(ik · x′)dV (x′) (13)

Define

λ ≡ (λ1, λ2) = (k1a, k2b) , λ = |λ|
R ≡ (R1, R2) = (x1/a, x2/b) , R = |R|
γ = (k · x)/k = (λ ·R)/k

β = λ/k (14)
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Then

Q(k) ≡
∫

V0

exp(ik · x′)dV (x′)

= ab

∫
|R|≤1

exp(iλ ·R) dR

= ab

∫ 1

0

∫ 2π

0

R exp(iλR cos θ) dθ dR

= 2πab

∫ 1

0

R J0(λR) dR

= 2πab
J1(λ)

λ
(15)

Therefore,

Dijkl(x) = − ab

2π

∫
exp(−ik · x)(zz)−1

ij zkzl
J1(λ)

λ
dk

= − ab

2π

∫ 2π

0

∫ ∞

0

exp(−ikγ)(zz)−1
ij zkzl

J1(kβ)

kβ
k dk dθ

= − ab

2π

∫ 2π

0

(zz)−1
ij zkzlκ(γ) dθ (16)

where

κ(γ) =
1

β

∫ ∞

0

exp(−ikγ)J1(kβ) dk

=
1

β2

[
1− iγ√

β2 − γ2

]
(17)

The derivations in Eq. (16) and (17) are carried out by Mathematica, whose outputs are
given at the end of this solution for reference. Notice that Dijkl(x) is real. Since (zz)−1

ij zkzl

is also real, the imaginary part of κ(γ) can be neglected. Therefore, as long as β > |γ|, we
can write

κ(γ) =
1

β2
(18)

which is independent of γ. Therefore Dijkl(x) is independent of x. β > |γ| is satisfied if x is
within the inclusion. This can be shown by the following. If x is inside the ellipse, then(x1

a

)2

+
(x2

b

)2

= R2
1 + R2

2 < 1 (19)

which means R < 1. Therefore,

|γ| = |λ ·R|/k ≤ |λ| · |R|/k = λR/k < λ/k = β (20)
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(b) The isotropic stiffness tensor for plane strain is

cijkl = λδijδkl + µ(δikδjl + δilδjk)

=
2µν

1− 2ν
δijδkl + µ(δikδjl + δilδjk)

= µ

(
2ν

1− 2ν
δijδkl + δikδjl + δilδjk

)
(c) We have shown that inside an elliptic inclusion of an isotropic medium

Dijkl(x) = − ab

2π

∫ 2π

0

(zz)−1
ij zkzl

1

β2
dθ

For a circular inclusion, a = b , then β = a and D becomes

Dijkl(x) = − 1

2π

∫ 2π

0

(zz)−1
ij zkzl dθ

Notice that

cijkl = λδijδkl + µ(δikδjl + δilδjk)

(zz)ij = µδij + (λ + µ)zizj

(zz)−1
ij =

1

µ

(
δij −

λ + µ

λ + 2µ
zizj

)
=

1

µ

(
δij −

1

2(1− ν)
zizj

)
Therefore,

Dijkl(x) = − 1

2π

∫ 2π

0

1

µ

(
δij −

1

2(1− ν)
zizj

)
zkzl dθ

Notice that z1 = cos θ and z2 = sin θ, Dijkl can be evaluated explicitly. Let us define

Hkl ≡
∫ 2π

0

zkzl dθ

and

Jijkl ≡
∫ 2π

0

zizjzkzl dθ (21)

The only non-zero elements of Hkl are H11 and H22, i.e.,

Hkl = δkl

∫ 2π

0

cos2 θ dθ = πδkl

Similarly Jijkl is non-zero only when all four indices are the same or they come in pairs.

J1111 = J2222 =

∫ 2π

0

cos4 θ dθ =
3π

4
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J1122 = J2211 = J1212 = J2121 =

∫ 2π

0

cos2 θ sin2 θ =
π

4

therefore

Jijkl =
π

4
(δijδkl + δikδjl + δilδjk)

Thus

Dijkl = − 1

2πµ

(
δijHkl −

1

2(1− ν)
Jijkl

)
= − 1

2πµ

(
δijδklπ −

1

2(1− ν)

π

4
(δijδklδikδjl + δilδjk)

)
= − 1

16µ(1− ν)
((8− 8ν)δijδkl − δijδkl − δikδjl − δilδjk)

= − 1

16µ(1− ν)
((7− 8ν)δijδkl − δikδjl − δilδjk)

Now,

Sijmn = −1

2
clkmn(Diklj +Djkli)

= −λDikkjδmn − µ(Dinmj +Djnmi)

Dikkj can be evaluated by

Dikkj = − 1

16µ(1− ν)
((7− 8ν)δikδkj − δikδkj − δijδkk)

Note, that now in two dimensions, δkk = 2

Dikkj = − 1

16µ(1− ν)
((7− 8ν)δijδkj − δij − 2δij)

= − (4− 8ν)

16µ(1− ν)
δij

λ =
2µν

1− 2ν

λDikkj = − ν

2(1− ν)
δij (22)

Thus

Sijmn =
ν

2(1− ν)
δijδmn +

1

16(1− ν)
((6− 8ν)(δinδjm + δjnδim)− 2δijδmn)

=
4ν − 1

8(1− ν)
δijδmn +

3− 4ν

8(1− ν)
(δinδjm + δjnδim)
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Mathematica:

In[1]:= Assuming[{L>0,R>0}, Integrate[Exp[I*L*R*Cos[Theta]],{Theta,0,2*Pi}]]

Out[1]= 2 Pi BesselJ[0, L R]

In[2]:= Assuming[ {L>0}, Integrate[ R*BesselJ[0,L*R], {R,0,1}] ]

BesselJ[1, L]

Out[2]= -------------

L

In[3]:= Assuming[{b>0,g>0}, Integrate[Exp[-I*k*g]*BesselJ[1,k*b],{k,0,Infinity}]]

g

1 - --------------

2 2

Sqrt[-b + g ]

Out[3]= ------------------

b

Problem M.4 (20’) Void in 2D.
Consider a 2D isotropic medium (plain strain) containing a circular void with radius a, with
a uniform loading σA

22.

(a) What is the eigenstrain e∗ij of the equivalent inclusion?

(b) Determine the location in the matrix where the maximum stress σmax
22 is reached. The

stress concentration factor SCF is defined as σmax
22 /σA

22. Determine SCF for a circular void.

Solution:

(a) To solve this problem, we require the stress inside the inclusion to be zero, ie

σA
ij + σI

ij = σA
ij + σc

ij − σ∗ij = 0

For a uniform applied stress σA
22 the equations reduce to

σA
22 + σc

22 − σ∗22 = 0

σc
11 − σ∗11 = 0

σc
12 − σ∗12 = 0

Because the material is isotropic, the shear terms are completely decoupled, thus we can
choose e∗12 = 0 which means that σ∗12 = σc

12 = 0. The problem now becomes a “simple”
problem of two equations and two unknowns (e11 and e22).
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Let us first express the stress σc
ij − σ∗ij in terms of e∗mn.

σc
ij − σ∗ij = (cijklSklmn − cijmn)e∗mn

= cijkl

(
Sklmn −

1

2
δkmδln −

1

2
δknδlm

)
e∗mn

= [λδijδkl + µ(δikδjl + δilδjk)]

[
4ν − 1

8(1− ν)
δklδmn −

1

8(1− ν)
(δkmδln + δknδlm)

]
e∗mn

= − µ

4(1− ν)
(δijδmn + δimδjn + δinδjm)e∗mn

This allows us to write the two equations of this problem as:

−σA
22 = − 3µ

4(1− ν)
e∗22 −

µ

4(1− ν)
e∗11

0 = − 3µ

4(1− ν)
e∗11 −

µ

4(1− ν)
e∗22

Solving the second equation gives

e∗11 = −1

3
e∗22

Plugging this result into the first equation gives

e∗22 =
3

2

1− ν

µ
σA

22

e∗11 = −1

2

1− ν

µ
σA

22

Now, σ∗11 and σ∗22 can be computed as

σ∗11 = (λ + 2µ)e∗11 + λe∗22

σ∗22 = (λ + 2µ)e∗22 + λe∗11

which results in

σ∗11 =
(4ν − 1)(1− ν)

1− 2ν
σA

22

σ∗22 =
(4ν − 3)(1− ν)

1− 2ν
σA

22

(b) The solution can be obtained by computing the jump of the stress over the interface.
Since the stress inside the void is zero, the total jump in the stress should be equal to the
stress at the inside surface of the matrix. The jump in the stress is

[[σij]] = σ∗ij − cijkl(nn)−1
kmσ∗mnnnnl
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First, lets write the jump in the constrained field [[σc
ij]] as

[[σc
ij]] = −cijkl(nn)−1

kmσ∗mnnnnl

= −
[

2µν

1− 2ν
δijδkl + µ(δikδjl + δilδjk)

]
1

µ

[
δkm − 1

2(1− ν)
nknm

]
σ∗mnnnnl

= −
[

ν

1− ν
δijnmnn + δimnnnj + δjmnnni −

1

1− ν
ninjnmnn

]
σ∗mn

The total jump in stress is

[[σij]] = σ∗ij + [[σc
ij]]

=

[
δimδjn −

ν

1− ν
δijnmnn − δimnnnj − δjmnnni +

1

1− ν
ninjnmnn

]
σ∗mn

For this problem, we need to compute the SCF which is only dependent on [[σ22]].

[[σ22]] =

(
δ2mδ2n −

ν

1− ν
δ22nmnn − δ2mnnn2 − δ2mnnn2 +

1

1− ν
n2n2nmnn

)
σ∗mn

= σ∗22 −
ν

1− ν
σ∗mnnmnn − 2σ∗2nnnn2 +

1

1− ν
σ∗mnnmnnn2n2

Because only σ∗11 and σ∗22 are non-zero,

[[σ22]] = σ∗22 −
ν

1− ν
σ∗mnnmnn − 2σ∗22n2n2 +

1

1− ν
σ∗mnnmnnn2n2

= σ∗22 −
ν

1− ν
(σ∗11n1n1 + σ∗22n2n2)− 2σ∗22n2n2 +

1

1− ν
(σ∗11n1n1 + σ∗22n2n2)n2n2

Let n1 = cos θ and n2 = sin θ, the above expression can be greatly simplified,

[[σ22]] =
(
4 cos4 θ − cos2 θ

)
σA

22 = f(θ)σA
22

f(θ) ≡ 4 cos4 θ − cos2 θ (23)

Notice that [[σ22]] is independent of ν.
As shown in the figure, the maximum of f(θ) occurs at θ = 0, with f(0) = 3. Therefore,

the stress concentration factor is SCF = σmax
22 /σA

22 = 3.
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Figure 1: Stress jump [[σ22]] as a function of θ. f(θ) = [[σ22]]/σ
A
22 = 4 cos4 θ − cos2 θ.
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