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Problem M.1 (20’) Plane strain.

Consider an anisotropic elastic medium with elastic stiffness tensor Cjj; under plane strain
deformation. This means that the z-component of the displacement field is zero everywhere.
The displacement fields in z and y directions are also independent of z. Mathematically,
this can be written as,

uz = 0 (1)
U173 = 0 (2)
’U/Q’g =0 (3)

(a) What are the non-zero components of the strain field? What are the non-zero components
of the stress field?

(b) In 2-dimension, the Hooke’s law can be expressed as,
Tij = CijkiCkl (4)

where the indices now only goes from 1 to 2. What is the expression of ¢;j; in terms of Cj57

(c) Suppose the medium is subjected to body force b; (j = 1,2), which is independent of z.
What is the equilibrium condition in terms of the displacement fields w;?

Solution:

(a) Since uz = 0 for all z, then us; = ug2 = uzs = 0. In combination with u; 3 = 0 and
ug3 = 0 we have eg3 = e13 = €23 = 0 and the non-zero components of the strain are e;q, ej2,
and egy. For a generally anisotropic material, all of the stresses can be related to the strains,
thus none of the stresses are necessarily zero. For isotropic material, 013 = 093 = 0. The
non-zero stress components are oi1, 012, 022, 033.



(b) Since whenever k =3 or | =3, e = 0,
045 = UijkiChi for ¢,7,k,1=1,2 (5)
ie.,

Cijkl = Cijkl for ¢,7,k,1=1,2 (6)

(c) The equations of equilibrium can be derived just as in the notes, no change necessary

CijkiUka +b; = 0 (7)

Problem M.2 (10") Green’s function in 2D.

(a) What is the equilibrium equation for the Green’s function G;;(x — x’) in terms of ¢;j,
where x, X' are 2-dimensional vectors? Notice that a point force in 2D corresponds to a line
force in 3D.

(b) Solve the Green’s function in Fourier space, i.e. ¢;;(k). Again k is a 2-dimensional vector.
(c) Solve the Green’s function in real space G;;(x). Express the result in terms of = and 6,

where x1 = xcosf, xo = xsinf. The final result can be expressed in terms of an integral
over a unit circle.

Hint:
00 efikx
/ T dk = —21In |z (up to a constant) (8)
Solution:

(a) We can derive the equilibrium for the Green’s function just as in the notes, however
noting that the vector x is a 2-dimensional vector and the delta function is a 2-dimensional
delta function:

CimnsGlijsm(X —X') + 0p0(x —x') =0

(b) Note that here all of the vectors are 2-dimensional, and thus we only need to take two
dimensional fourier transforms. Define 2-dimensional Fourier transform and its inverse as,

gi;(k) = /_OO exp(—ik - x)G;;(x) dx

[e.e]

1 & )
Gij(x) = m/ exp(—ik - x)g;;(k) dk

1 = /_OO exp(ik - x)d(x) dx

o0

1 oo
i(x) = m/ exp(—ik - x) dk



Plugging in these definitions into the above equilibrium equations gives:

1 0 H? .
0 = ) (Cimnsmgij(k)+5nj) exp(ik - x) dk
1 o0
= 15 | (SCimmeznak®e;(k) + 0,) exp(ik - x) dk
Thus
6nj - Cimnszmzskzgij(k)
= (22)nik’gi;(k)
where

(Zz)ni = Cimns®m~=s
The solution for the Green’s function in 2-dimension is

Gij (k) = (ZZ);_J

(c) Taking the inverse Fourier transform,

1 [ o
Gix) = 5 [ explikx)

- dk

— 00

2m
— / / exp(—ikx cos ) —=2- ()5 — kdkdl
42 k2

(22);;"
= k 0 94k do
87?2/ / exp(—ikx cos ) 7

= (zz) '(—2In |z cosf]) df

& 0
1 27
- i (22);;' In|z cos O] df
1 2T
= —— (22)y '(Inz +1In|cosd|)do
4 J,
= Clnzx+ ®(0)
where
1 2m .
C = i i (zz)ij do
1 27
O(6y) = —— (22);:' In | cos 0|df
4 J, J
r = x|

= (xcosby, xsinby)

(10)



Problem M.3 (30’) Inclusion in 2D.
Consider an elliptic inclusion in the 2D medium that can occupies the area,

2 () =

— — 1 11
< a + b - ( )
Let its eigenstrain be e’{j (i,j = 1,2). Define Eshelby’s tensor S;;; and auxiliary tensor D;j
similarly as in the lecture, but with 7,5, k, 1 =1, 2.

(a) Show that S;ji; and D; ;i are constants inside the inclusion (use anisotropic elasticity).
(b) What is ¢;;; in terms of p and v in isotropic elasticity?

(c) Derive the expressions for S;ji and D, for a circular inclusion in an isotropic medium
(plane strain).

Solution:
(a)

Dijkl(x) == \/‘/Gij,kl(x_xl)d‘/(X,)

0

N /V axiax, [(271r)2 / exp [—ik - (x — x')] (22“ dk| dV(x)

= —# /V /exp [—@k . (X — x/)] (zz)i_jlzkzl dk dV(X/)

- _(2;)2 / exp(—ik - x)(22);;' 2,21 Q (k) dk 12
where
Q) = [ ek x)av(x) »
Define

A = ) = (kia,kab) , A=Al

R = (Ry,Ry) =(x1/a,25/b), R=|R]

v o= (kex)/b= (AR /K

B o= Ak (14)



Qk) = /v exp(ik - x")dV (x)
= ab exp(zA - R)dR
/|ng1 p( )

1 2m
= ab/ / Rexp(iARcos0)df dR
o Jo

1
= 27rab/ RJy(AR)dR
0
— onap?t) "
A
Therefore,
ab ) 3 T ()
Dyalx) = —av [ exp(-ik-x)(z2); a0 d
ab [* [ ' B Ji(k
B _%/0 /O exp(—ik7)(22);; 2120 lliﬁﬁ ik
ab [? .
- o (ZZ)U 2rz k() dd (16)
2m Jo
where

K(y) = %/Omexp(—ikv)Jl(kﬁ)dk

1 1y
= —|1-—== (17)
& [ v —72]
The derivations in Eq. (16) and (17) are carried out by Mathematica, whose outputs are
given at the end of this solution for reference. Notice that Dz (x) is real. Since (zz)[jlzkzl

is also real, the imaginary part of k() can be neglected. Therefore, as long as 3 > |v|, we
can write

K(y) = g (15)

which is independent of y. Therefore D;;;;(x) is independent of x. 3 > || is satisfied if x is

within the inclusion. This can be shown by the following. If x is inside the ellipse, then
2 2
(ﬂ) + (%) —RIR2<1 (19)
a

which means R < 1. Therefore,

Y= ARk <|A[-[R[/k = AR/k < Ak =3 (20)



(b) The isotropic stiffness tensor for plane strain is

Cijlt = A0ijOr + p(0indji + 0iadjn)

2uv
= o Ot + (8 + i)
2v
- (@%’5’“1 + oot 5“‘*"“)

(c) We have shown that inside an elliptic inclusion of an isotropic medium

G,b 27 .
Diji(x) = ~5- (zz)ijlzkzl
0

1
I

For a circular inclusion, a = b , then 8 = a and D becomes

do

1 2

Dijri(x) = (zz);jlzkzl de

—5 0
Notice that

Cijkt = A0ijOm + (01 + 050k
(ZZ)ij = /Léw -+ ()\ —+ ,LL)ZZ‘ZJ'

_ 1 A p 1 1
(ZZ)U - [ (51] \ T 2/_LZ’LZ]> I (513 2(1 _ V) ZZZ])

Therefore,

1 (1 1
—_ — (5@' — —ZiZj 2Rl d9
21 Jo 1 2(1 —v)

Notice that z; = cos @ and 2 = sinf, D;;i; can be evaluated explicitly. Let us define

Diju(x) =

27
Hkl = / 22l dé
0
and
2T
Jijkl = / ZiRjRR2] do (21)
0
The only non-zero elements of Hy; are Hy; and Hoo, i.e.,
21
Hkl = 5kl/ COS2 0do = 7T6kl
0

Similarly J;jx is non-zero only when all four indices are the same or they come in pairs.

2
3
J1111 = J2222 = / COS48d¢9 = Iﬂ-
0



27 T
2022
Ji122 = Jao11 = J1212 = Jo121 = / cos” fsin” 0 = Z
0

therefore

T
Jijrl = Z(5z’j5k1 + 601 + 6adjk)

Thus
1
Dij = “omn 0ij Hiyy — y) ——Jijui
1
% (51]5kl7r ) (5ij(5kl5ik5jz + 5i15jk))
1
= 0;:0 0;i0k1 — 001 — 05105
16,&(1 )((8 87/) ij Ukl — U500kl ikUjl il ]k:)
1
= 16#(1 — V) ((7 81/)513(5“ (Szkdjl — 5i15jk)
Now,
1
Sijmn = —§Ckan(Diklj + Djkii)
Dirr; can be evaluated by
1
Doy — — _ SIS R WY S
ikkj 16,&(1 — V) ((7 8”)5116516] 5Zk5kj 5Zj5kk)
Note, that now in two dimensions, 05, = 2
1
Dk o= 1) ((7 — 8v)040k; — 6ij — 2045)
B (4 —8v) B
16pu(1 —v) ¥
\ 2uv
1—2v
v
ki 2(1—v) 7
Thus
Simn = =130 + (6 = 8)(Ginim + Syu0im)
iymn 2<1 —IJ) i7Ymn 16(1 —I/) v intjim nVim
v —1 3 —4v
— m&j&mn + m (5zn5jm + 5jn61m)

20,i0mn)

(22)



Mathematica:

In[1]:= Assuming[{L>0,R>0}, Integrate[Exp[I*L*R*Cos[Thetal]],{Theta,0,2*Pi}]]
Out[1]= 2 Pi BesselJ[0, L R]
In[2]:= Assuming[ {L>0}, Integrate[ R*BesselJ[O,L*R], {R,0,1}] ]

BesselJ[1, L]

Problem M.4 (20’) Void in 2D.
Consider a 2D isotropic medium (plain strain) containing a circular void with radius a, with
a uniform loading o4

(a) What is the eigenstrain ej; of the equivalent inclusion?

(b) Determine the location in the matrix where the maximum stress o55** is reached. The
stress concentration factor SCF is defined as o3 /04,. Determine SCF for a circular void.

Solution:

(a) To solve this problem, we require the stress inside the inclusion to be zero, ie
A I _ A c *

For a uniform applied stress o4, the equations reduce to

A c * _

Oy + 099 — 05 = 0
c * .
ojp—oy;; = 0
c * .
Olp— 019 = 0

Because the material is isotropic, the shear terms are completely decoupled, thus we can
choose e}, = 0 which means that o}, = 0f, = 0. The problem now becomes a “simple”
problem of two equations and two unknowns (e1; and eg).
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c * ot *
Let us first express the stress oj; — o7; in terms of e},

*

c *
O—Z‘j - Uij = (cijleklmn - Cijmn)emn

1 1 )
Cijkl <Sk:lmn - §5km51n — §5kn61m) Ern

— My 0+ )] | 5B = s Bendin + G| i
- —ﬁ(@j&m + Gianbin + Ginjm)
This allows us to write the two equations of this problem as:
_U2AQ = - il €y — . en
41 —v) 41 —v)
0 — 3, 7 e,

T )
Solving the second equation gives

1

e* — e*
11 3622
Plugging this result into the first equation gives

*
e = o
22 9 22
M

*
ey = —
11 2 02
* *
Now, o7, and o3, can be computed as

o = (A+2p)el; + Aey,
03 = (A+2u)esy + Aejy

which results in

) (4v-1)(1 —-v)
= o %
. (4v —3)(1 —v)
O T o %

(b) The solution can be obtained by computing the jump of the stress over the interface.
Since the stress inside the void is zero, the total jump in the stress should be equal to the
stress at the inside surface of the matrix. The jump in the stress is

([o35]] = 07 = Cija(NN) o T



First, lets write the jump in the constrained field [[oF;]] as

[[crfj]] = —cijkl(nn),;r}lazmnnnl
2w 0ii0k1 + 1(0ikdj1 + 650, L ) L *
= — | —L—0; 10 10| = | Opm — —————nn, Npn
1—9, 7Okl T M\ 0ik051 105k p k 2(1_1/) k Omn 1

*

U 1

The total jump in stress is

[o]] = oij + [log]

*
mn

nmjnmnn} g,
— VvV

v
= {&-méjn — Eéijnmnn — OimMnj — Ojmnnn; + ]
For this problem, we need to compute the SCF which is only dependent on [[9]].

*
nQngnmnn) Orn

v
[[o2]] = O2m02n — 022N m My, — O2mMp Mo — J2mNpNg +
1—v 1—v

v
* * * *
= Oy — =0, NNy — 205, NpNo + ———0, Ny Ny N2
1—-v 1—-v
* *
Because only o7; and o3, are non-zero,

1%
* * * *
[[022“ = 09 — 1— Vamnnmnn - 2022”2”2 + —1 — Vamnnmnnngng

v
* * * * * *
= 05y — :(annml + 059MaMy) — 2059MaNy + :(Ullnml + 059MaMa ) NN

Let n; = cosf and ny = sin 6, the above expression can be greatly simplified,

[o22]] = (4cos’ @ — cos®0) ooy = f(0)os
f(0) = 4cos*d — cos® 0 (23)
Notice that [[9s]] is independent of v.

As shown in the figure, the maximum of f(#) occurs at § = 0, with f(0) = 3. Therefore,
the stress concentration factor is SCF = o3 /o2} = 3.
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Figure 1: Stress jump [[ogs]] as a function of 6. f(6) = [[09]] /o4 = 4 cos* @ — cos® 6.
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