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Fourier integral representation of the Green
function for an anisotropic elastic
half-spacef

By KEvVIN P. WALKER

Engineering Science Software, Inc.,
Smithfield, Rhode Island 02917, U.S.A.

This paper describes the development of a Fourier integral representation of the
Green function for an anisotropic elastic half-space. The representation for an
isotropic material is integrated in closed form and shown to reduce to Mindlin’s
solution. An application of the anisotropic representation is made to deduce the
exact displacement caused by a two-dimensional periodic vertical force distribu-
tion applied to the interior of a half-space with cubic material symmetry.

1. Introduction

Eshelby’s (1957, 1959, 1961) nascent treatment of the displacement produced in
an infinite isotropic medium by ellipsoidal inclusions undergoing stress-free trans-
formation strains (eigenstrains) has stimulated the production of a voluminous
literature on the subject. A keystone ingredient in Eshelby’s treatment of inclu-
sion problems is the elastic Green function for an infinite medium, first deduced
for an isotropic material by Lord Kelvin in 1848. More recent reviews dealing
with eigenstrain distributions in infinite anisotropic media have been given by
Bacon et al. (1979) and Mura (1987). In these references the displacement u; (x)
due to a body force distribution of eigenstrain,

Oern (')
fj (wl) = — Ujimn _—(‘):132 ) (1.1)

is readily accessible in the form:

[fore St an
\%4

where repeated tensor suffixes imply summation from 1 to 3.

In this formula G;; (x, ') are the components of the Green function tensor
which give the displacement in the z;-direction at the field point  due to the
application of a unit point force in the z;-direction at the source point ’; Cjjimn
are the components of the elasticity tensor with respect to the x1, x2, x3 coor-
dinate system; and V' denotes the region over which the body force in equation

1 This paper was produced from the author’s disk by using the TEX typesetting system.
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368 K. P. Walker

(1.1) is non-zero. For materials which exhibit isotropic or hexagonal symmetry
explicit expressions for the Green function tensor components are available (Mura
1987), but the representation for an infinite anisotropic medium is not explicitly
available and it is usually given in the form of a triple Fourier integral (see equa-
tion (3.8)). Even when explicit algebraic expressions for the Green function are
available, it is often convenient to obtain the displacement w; (x) by substituting
the Fourier integral representation of Gy; (x, «’) into equation (1.2). The order of
the Fourier wave vector integrations and the spatial integrations over the volume
V can then be interchanged in any manner that eases their evaluation.

The treatment of inclusion problems in an isotropic half-space has received
some attention in the literature (Mindlin & Cheng 1950; Sneddon 1951; Lin &
Tung 1962; Owen & Mura 1967; Owen 1971 a, b; Chiu 1978; Seo & Mura 1979;
Mura 1987), but the treatment is complicated by the traction-free boundary con-
dition at the surface. This condition has commonly been treated by evaluating
the surface traction on the boundary plane produced by the eigenstrain distribu-
tion in an infinite medium and then applying an equal and opposite traction on
the boundary plane. Early work on the application of surface forces to isotropic
half-spaces was done by Lamé & Clapeyron (1831) and Boussinesq (1885).

The displacement in an isotropic or hexagonal half-space can be obtained by
substituting Mindlin’s (1953) or Pan & Chou’s (1979) expression for Gj; (x, x')
in equation (1.2). For a general anisotropic half-space it would be convenient
to have a Fourier integral representation of G;; (x, ) since this would yield the
displacement from equation (1.2) by simple quadrature. Even for an isotropic half-
space a Fourier integral representation would prove to be convenient by rendering
the Fourier wave vector and spatial integrations as interchangeable items.

In this paper we derive the Fourier integral representation of Giyj (x,x’) for
an anisotropic half-space and show that it is composed of two terms. The first
term is the Green function for an infinite anisotropic medium and is represented
as a triple Fourier integral, while the second term is represented as a quadruple
Fourier integral which accounts for the effect of the traction-free surface. Willis
(1966) and later Barnett & Lothe (1975) obtained Fourier integral representa-
tions of the surface Green function for an anisotropic half-space, which give the
displacement on the surface due to an application of a point force on the surface.
It would be interesting in future work to compare these with the Fourier integral
representation developed in the present paper when the field and source points
lie on the half-space surface.

The present paper is organized on the following lines. A detailed derivation of
the Fourier integral representation is first given in § 2. Since a detailed derivation
of the anisotropic Green function for an elastic half-space may not be of interest
to those researchers who wish only to use the Fourier integral representation,
the relevant formulae have been collected together in §3. In §4 we show that the
quadruple Fourier integral represents the displacement at the field point & due to
the cancellation of the surface traction on the boundary plane of the half-space in
the infinite medium when a unit force is applied at the source point ’. In §5 the
Fourier integral representation of the Green function for an isotropic half-space
is deduced and Mindlin’s solution is recovered by integration. Finally, in §6 we
apply the Fourier integral representation to determine the exact displacement
caused by a two-dimensional periodic vertical force distribution applied to the
interior of an elastic half-space which possesses cubic material symmetry.

Proc. R. Soc. Lond. A (1993)
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Figure 1. Coordinate systems for half-space.

2. Derivation of Fourier integral representation

We consider the determination of the elastic Green function for a semi-infinite
anisotropic medium,

—0<r <00, —oo<ry<oo, x3z>04,

whose coordinate system is shown in figure 1.

If the material is homogeneously anisotropic, then the Green function G;;(x, )
must be invariant with respect to a rigid translation of the field point @ and source
point ' in any plane parallel to the surface 3 = 0, and must therefore depend
on & and &’ in terms of the four-vector & = (1, &2, &3, &4), where

& =z — € = mo — 5, &3 = x3, & = 5. (2.1)

The displacement at = due to a point force f () applied at the point @’ is given
by

u;i (z) = Gi(€) f; (=) . (2.2)
The strain at x is then
. _170Gi;(§) aij(ﬁ)) o
cim(@) = 5 (T522 + ) fy (@), (23)
and the associated stress is
0G;;
0pg(T) = Cpgimeim () = Cpqim“‘a‘gj%fj (‘I’I) ) (2.4)

Proc. R. Soc. Lond. A (1993)



370 K. P. Walker

in which use has been made of the symmetry of Cpgim with respect to interchanges
of its suffixes.

The traction vector at any point & on the surface S surrounding the source
point &’ is
9Gy;(€)
~l~—fj (:l:/) s (25)

where n,(x) is the outwardly directed unit normal vector at @, so that if the
volume V' enclosed by S is in equilibrium we must require that

[ @) as@) + £, (@) =
- s

Using (2.5) and noting that

f1 (@) = £ (@) 80 = 1 (= //ml-«xl 75) 8 (25 — o) dV(@) b

tq(x) = np(x) opg(x) = np(x) Cpgim

we may use Gauss’s divergence theorem to change the surface integral into a
volume integral, and obtain

///{ pqm‘gGg ©) 4 5546 (21— 24) 8 (22 ~x'2)5(x3—xg)} aV (@) =

Since V and f; (x') are arbitrary, we must require that G;;(§) satisfy the inho-
mogeneous equation

0’Gi; (&)
Craim G o

In addition, if the surface of the half-space is traction free, we have t; (1, x2,23) =
0 on the surface z3 = 0, so that from (2.5),

8ng ()

+6jq 6 (x1 — 2}) 6 (w2 — 2b) 6 (z3 — ) = 0. (2.6)

np(x) Cpgim fi (&) = on z3 =0.

Since n = (0,0, —1) from ﬁgure 1, this condition reduces to

Csgim—52—> BG” (&) fi (@) = on x3 = 0. (2.7)
Equation (2.1) can be used to write (2.6) and (2.7) in the form,
Cina T (8) 5 (61) 8 (62)5 (65— €0) =0 29
15kl 5513@ im 1 2 3 4 .
and
Crans OGrm (£1,62,0,&4)
’ 0&3
_ ) 0Grm (515 52’ 0, 54) ) 0Grm (51, §2,0, 54)
= (Cz3k1 9, + Cisk2 96, ) - (29)

Proc. R. Soc. Lond. A (1993)
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We now define the Fourier wave vectors in three- and four-space by the rela-
tions,

K = (Kl,KQ,K3) and K* = (Kl,KQ,Kg,K4). (2.10)
Equation (2.8) may then be multiplied by
exp(iK* - €) d4£ — ol (K1&1+K282+ K383+ Kaéa) déy déo dés déy

and integrated over the four-space to obtain

[ (wklaa(’;’i;”;f)+6zm6<51>6<52>6(53—54>)

x K7 d¢) dgy dés dgy = 0.

Integration by parts severally with respect to &1, &2, &3 and attending to the
limiting condition that the derivative, 0Gy,/0¢;, vanishes at (&1,£2) = +oo and
at €3 — oo gives

a / ) / Cijks OCiom (5317 0.8 el (it KabotKals) qe) de, dy
1=—00 J&a=—00 JE1=0 gj

[e'e) [e}e) o0 (oe] aG m , , ,
B / / / / Ciim 2CE (% £2,€3,€4) . K,
€1=—00 JEg=—00 JE3=0 JE4=0 &

w el (K181+ K282+ K383+Kaéa) d&; d€2 d€3déy

S .
+ bim el (Ka+Ka)ts gy = 0. (2.11)
&3=0

If we write the first and second integrals as I1 and I3, and note from Appendix A
that the last integral is the Heisenberg delta function 64 (K3 + K4), we have

I+ Ip + 6 64 (K3+K4) =0. (2.12)

Now consider the first integral, which may be written as

0Gkm (517&27()’54) ) 0Gm (€1a€2707€4)
/41_—00 /g . /54 ( i1k3 96, + Cizk3 96,

+ Cigy2m (%éf = 64)) ol 16 HGETKAED) gey dgy dey.

The last derivative in the integrand can be written in terms of the first two
derivatives by means of the traction free surface condition in equation (2.9), so
that

8G m ] 707 i
+ (Cioks — Clsa) k (581&52 54)) ol K161+ Ko +Kas) 4y 4, dE,.

The integrals I; and I, may now be integrated by parts and substituted into

Proc. R. Soc. Lond. A (1993)



372 K. P. Walker
equation (2.12), to yield

(o.] (o¢] 0 .
/ / / i{(Ciar3s — Ciska) Ko + Cisti K1} Grm (€1, 2,0, &)
1=—00 JEa=—00 J€4=0
% ol (K161+ K282+ Kaka) dé; dé, déy

—/ / / K1 K;CijtiGrm (£1, 62,63, &)
1=—00 JEa=—00 JE3=0 JE4=0

x el FalitKabot Kot Kake) gy dep dgs dés + Simby (K3 + K1) =0, (2.13)

where the Greek subscript « is summed only over the range o = 1, 2.
On summing over « and [ the braces in the first integral can be written as

Cijk3 K, and if we define Grm (K*) and Fi, (K*) by the relations

Gion (K*) = [ :_oo A:_oo /5 ::0 ;O G (61,6, €5, E4)

x ol (K161+ K282+ K383+ Kaéa) dé1déodésdéy  (2.14)

and
o0

(o0] o0
}?i (K*) = ICZ]]C3KJ/ / Gk’m (§I7§2>O7§4)
f1=—00 Jea=—c0 Jea=0

« el (K1€1+Ka&2+Kaéa) dé; déy déy, (2.15)
then (2.13) can be written as
K K;Cijki Grm (K*) = 8im 64 (K3 + K4) + Fyn (K*) . (2.16)

We now set (; = K;/K, where i = 1,2,3 and K? = K + K3 + K2, so that (2.16)
becomes

K2Mzk(€) ékm (K*) = bim 6—}- (K3 + K4) + Fim (K*) , (2.17)
in which
M (€) = Mii(€) = Mk (C1, G2, G3) = CijulG (2.18)

is the Christoffel stiffness tensor. In Gibbs’s dyadic notation equation (2.17) may
be written as

K?M-G =16, (Ks+Ky)+F,
which may be premultiplied by K=2 M ~! to yield
G=K?2M ' (Ié (K3+Ky) +F),
or, in suffix notation,

Gy (%) = M ©) (506, (Ky+ Ka)+ By (K*) (2.19)
ij o) kj 0+ (A3 + Ky kj . .
We now introduce the Heaviside product H(£3)H(&4) into (2.14), so that the
integration in (2.14) runs from —oo to oo for each variable, namely

Gy (k) = [ [ [ [{Gu©HE) HED € e, (2:20)

Proc. R. Soc. Lond. A (1993)
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By the Fourier inversion theorem, (2.20) can be inverted to give
d d*K* 5 *\ —iK*-¢
Gu@HE ) = [ [ [[Grs G e™ s @
—0o0

Gij(§)H (&) H ()
////d4K* 15 (% b4+ (K3 + Ky) + Fiy (K*)> e KL (2.22)

We now have to determine Fj; (K™), which from (2.15), depends on the Green
function evaluated on the surface of the half-space. To this end, it is convenient
to reduce the quadruple Fourier integral containing the Heisenberg delta function
to a triple Fourier integral. By separating out the integral over K, containing this
delta function, we have

Gij(§)H(&3)H(6) = / / / d3K M” (©) o1 (K1&1+ K262+ Ksts)

X / ——dK4 o1 (K3 + Ky) e7iHata

Ki=—00

////d4K* - )Fm (K*)e K74, (2.23)

From equation (A 3) of Appendix A, we can write

or

© 4K | |
/ OO (K + K)o Kaét = olKséapp() — oifoés, (2.24)
Kij=—00 2

so that (2.23) may be written as

(5) 53 54 /// d3K MW ) —i{K1§1+K2§2+K3(§3~§4)}

ks

The triple integral which occurs in the definition of Fj,, (K*) in (2.15) is now
written as

9km (K1, K2, K4)

=/ / / Gom (€1, 62,0, &) H (&) e F1&1HK284Ka80) g, g, dey,
1=—00 J€a=—00 JEg=—00

- (2.26)
where the Heaviside function H (&) has been introduced to allow all the variables
to run from —oo to co. Then (2.15) can be written as

Fim (K*) = iCiji3 K gm (K1, K2, Ky) (2.27)

Proc. R. Soc. Lond. A (1993)
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374 K. P. Walker
and (2.25) becomes

3 M.T1L
Gij (€1, €2, 65, €0) H (&) H(Ea) = / / [ Mg &) et o—e)

d4K* - .
+ //// ) 1Clpgs Kp 9q5 (K1, Ko, Kq) e K76 (2.28)

If we now let {3 — 04 and put H(3 — 04) = 1, then on multiplying both
sides of equation (2.28) by exp {i (L1&1 + Lo + L&)} d&1 dép d€y and integrat-
ing from —oo to oo, we obtain

/ / / Gij (£1,&2,0,&) H (&) et ISt latatlata} qe, qe, dey

o 251550
€3->0

/// {(K1—L1)é1+(K2—L2)éa—(K3+La)és} dé; déy déy

d4K* -
+ lim / / / / )1Ckpq3Kp 045 (K1, Kz, Ky) e Ko

§3—0

/ / / {(Kr-L)&i+(Ka—Lo)ea+(Ka—Laéa} qe, dg, dey. (2.29)

The integrations over {1, &2, &4 in the preceding equation are elementary and
produce the relations

(27)36 (K1 — L1) 6 (Ky — Lo) 6 (K3 + Ly)
and
(2m)38 (K1 — L1) 6 (Ko — Lo) § (K4 — L),

while from (2.26) the left-hand side is identified as g;; (L1, L2, L4), so that on
invoking the sifting properties of the Dirac delta functions, the preceding equation
becomes

9ij (L17 L27 L4) = fij (L17 Lo, L4) + hiq (L17 LZ) 9qj (Ll, Lo, L4) y (230)

where

- Ly Lo —Ly
g 20720712 Jr2or2. 72 /127124 12
VI3+I3+L3 R+ L3+ 13 \JL3+ 13+ 13

(L1, Ly, Ly) =
fig (L, Lz, La) L2+ L3+ L)

(2.31)

Proc. R. Soc. Lond. A (1993)
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and

o dKj3
hiq (L1, La) = lim 1/
1 ( ' 2) 531—’0 Ks=—00 27T(L% + L% + Kg)

< M1 Ly , Lo , K3
VIA+ L3+ K3 \JIA+ L3+ K3 (/L3 + L3 + K3
X (Chigaln + ChagaLa + CiagaKs) e K3t (2.32)

In taking the limits as &3 — 0 we have used the fact that the sine component in

the expression for hiq (L1, L2) gives a finite contribution to the integral, whereas

in the expression for f;; (L1, L2, L4) the contribution from the sine term vanishes

in the limit, and the Dirac delta functions then produce the expression in (2.31).
In Gibbs’s dyadic notation, equation (2.30) may be written as

(I-h)-g=f, oras g=[I-h]"f,
so that on reverting back to suffix notation, we have
9ij (L1, La, La) = [6i% — hag (L1, La)] ™" frj (L1, Lo, La) . (2.33)
Observing from (2.1) that
Gi=m —ay, Se=wmp—ah,  &3— & =x3— a3,

we can now put (2.33) into (2.27), and on noting that (&3,€4) > 04 so that
H(&3) = H (&) = 1, we finally obtain

Gij(£1,62,83,&4) = /// K M” )e—iK'(t—m’)

ik

Fij (K*) = iClpgsKp 945 (K1, K2, Ky) . (2.35)

Equations (2.18) and (2.31)—(2.35) taken together give the Fourier integral
representation of the required Green function. These are collected together in § 3.

)Fk] (K*)e K¢ (2.34)

where

3. Collected formulae for Green’s function representation

In this section we gather together the formulae required to represent the Fourier
integral form of the Green function for an anisotropic elastic half-space.

The components of the elasticity tensor Cj;; are first evaluated with respect
to the global coordinate system x1, 3, x3 shown in figure 1. With the definitions

K Ky K3
VE}+ K3+ K3 \[K? + K3+ K} \/K}+ K} + K3
(3.1)

C = (C1a<2ac3) = (

Proc. R. Soc. Lond. A (1993)



376 K. P. Walker

and
n=( ) K Ky — Ky
=Mm,n2,n3) = ) )
VE? + K3+ K} \JK? + K3+ K} \/K? + K3 + K}
(3.2)
the inverse of the Christoffel stiffness tensor is computed in component form as
Mt () = My ' (G, G, G3) = (Cijm) (3:3)

We then form the tensor components

;! (1,2, ms)

(K, Ko, Ky) =
Ty (K, Kz, Ka) K+ K2+ K?

(3.4)

and

/Oo dK3 (C1>C27C3)

and compute the inverse tensor components

hql (Kl,Kz) = lim i

Ckpl?) Kp e_iK3§3, (3.5)
&3—0

9qj (K1, K2, K4) = [0 — ha (K1, K2)] ' fi; (K1, Ko, K1) . (3.6)
The tensor components
Fl; (K*) = 1Ckpg3Kp 9qj (K1, K2, K4) (3.7)

are then evaluated and substituted into the Fourier integral representation of the
Green function tensor to give the component form:

- [/ 25N s
+////d“K:

K’=K!+K; + K2 K = (Ki,K K3),
K* = (K1, K2, K3,Ky4), &= (x1— 2,22 — T3, 73,253) .

The first triple Fourier integral in this representation is the Green function for
the infinite medium, while the quadruple Fourier integral represents the effect due
to the surface of the half-space, and where it is understood that since the Green
function is real, only the real part of equation (3.8) is to be taken. The triple
integral representing the Green function for an infinite medium has a singularity
at « = ', but the quadruple integral, which represents the effect of the surface,
has no singularities within the region occupied by the elastic half-space.

The integrands in the Fourier integral representation are related to those used
in Mura’s book, Micromechanics of defects in solids (1987), by the relationship

M () Ny (K)

KZ ~ D(K)’ (3.9)

L) gy (e, (38)

where

Proc. R. Soc. Lond. A (1993)



Anisotropic half-space Green function 377

where

Ny (K) = Yeiss€jmn Mo () Mig (K } (310)

D (K) = geirt €jmnMij (K) Mg (K) Min (K)
are the cofactors and determinant, respectively, of the matrix components
My, (K) = Ciji K; K,
with €,,; being the components of the permutation tensor.
4. Contribution to Green’s function from the surface
We may now examine the quadruple Fourier integral. Since this represents

the eﬁect of the surface, we expect that it vanishes when zf = & — oo, but
x3 — xh = &3 — &4 remains finite (see figure 1). To show this, we write the effect

of the surface as
o=/, / [

Inserting (2.26) and (2.27) into this integral gives

4 g* -
////d K4 ) e K 10K,

X ///Gpm (041, a2, 0, Oé4) H(a4) ei (Krea+Kz0a+Kq04) dOzl dOzz dOz4. (4.2)

)Fim (K*)e iK™¢, (4.1)

On separating the integration over Ky, this can be written as

3
/ / /d K M,C (©) (—i(Krt1+KatatKats) iCigps K

x///Gpm (a1, 2,0, a4) H(oz4)ei (Ki01+K202) 40y dag day

X/OO dK4 1K4(Ot4—§4). (4.3)

Kq4=—c0 271'

The integral over K, is the Dirac delta function 6 (aq — &4), and invoking its
sifting properties gives

/// d3K M’CZ )e—i(K1§1+K2€2+K3§3) iCiqp?)Kq

x / / Giom (1, 02,0, £4) H(€4) € K101+K202) 4o day.  (4.4)

The integral in (4.4) can be rearranged into a physically more revealing form

Proc. R. Soc. Lond. A (1993)
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as follows. First, make the change of variables a; = &1 — (1, ag = £2 — (2, and
set H(&4) =1, so that

/// d3K Mk:z 1Cqu3K // Gpm (&1 — B1,&2 — B2,0,&4)

x e L E1BIHK2Ba+KsEs) 43, 4By, (4.5)

By the reciprocity theorem in Appendix B, the position vectors  and =’ of the
field and source points can be interchanged in the Green function provided the
suffixes are transposed. Thus, from (2.1), we may write

Gin(€1,62,63,61) = Grpo(—€1, =62, €4, 63), }
ka(§17 627 637 64) = Gmk(_élv _527 543 63)7

so that on performing the required interchanges on £ in the integral on the right-
hand side of (4.5) and transposing the suffixes we obtain

/// d3K M 1Cqu3K //ka — B1,—& — 2,0, &3)

x e L EK1BHK Pt Ksa) 4B 48, (4.7)

Using the preceding reciprocity theorem again on the Green function inside the
integral, namely

Gpk (—€1 — B1, —&2 — (2,0,83) = Gip (&1 + B1, &2 + B2, 3,0), (4.8)

and introducing the change in variables,

(4.6)

xll,lel'—/@h .27/2/=$,2—,82,
together with the use of equation (2.1), allows the surface Green function to be
expressed in the form

/! i
Gy (& / dzy dafy Gip (z1 — 21, m2 — 25, 3, 0)

3
/// ?27TK Mo ) iCligp3 Ky ei{Kl(xi'—z'l)+K2(’”/2/_ml2)_K3wé}, (4.9)

where the order of the space and wave vector integrations has been changed.

The displacement at the field point & due to the applied force f at &’ arising
from the surface effect is then expressed as a Faltung representation (Sneddon
1951) of equation (4.1) in the form

up () = Gim(€) fm

= // dz! dafy Gip (71 — 27, 22 — 29, 23,0) t, (2] — 2,25 — x5, 2%),  (4.10)

Proc. R. Soc. Lond. A (1993)
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where

1 / 1 / /
tp (2] — @, 35 — 25, 73)

3
B /// o= M )lciqp?»Kq et 1K1 (o} —o1 )+ Ka(og ) ~Kazs } ¢

d3KM i
iqpd (930”/// )eK( ) Jm

x4 =0
[0G, (x" — x )}
= L3 | 7™ &5 5, fmv (411)
] Oxy 210
in which G%; (" — «’) is the Green function for the infinite medium. But
aGOO !
[_.@_éfw_.ﬂ} —0 when x5 =& — o0 (4.12)
Zq z=0

so that G (&) — 0 when & — oo as expected.

From (2.5) it is evident that the expression for ¢, (z] — z, 25 — x5, x%) in (4 11)
therefore represents the surface traction at the point (2, z5) on the surface 24§ = 0
due to the applied point force at ' in the infinite medium, but with 1ts sign
reversed.

Thus, the displacement at x due to a point force at @’ is determined by
the superposition of two deformations. The first is that due to the application
of the point force in an infinite medium. On the surface 2§ = 0, the surface
traction in the infinite medium due to the applied point force at @’ is given
by —tp (¢ — ), x4 — x4, x5). If we cut the infinite medium at z4§ = 0 and re-
verse the surface traction (i.e. we apply +tp (2] — 2,25 — x5, 25) to the sur-
face), the second additional displacement due to the reversed surface traction
is given by equation (4.10), in which the office of the half-space Green function
Grp (z1 — 2,29 — x5, 23,0) is to give the displacement at the field point & due
to distributed tractions at «” on the surface 2§ = 0. This method of generating
the Green function for finite media was suggested by Eshelby (1961), and was
used by Owen & Mura (1967), Owen (1971 a,b), and Seo & Mura (1979) to ob-
tain the displacement due to eigenstrain distributions in an isotropic half-space
using Mindlin’s explicit representation of the half-space Green function, while
Chiu (1978) essentially used the Fourier integral representation of the half-space
surface Green function.

5. Mindlin’s solution for an isotropic half-space

In this section we give the Fourier integral representation of the Green function
for an isotropic half-space and demonstrate that on integration Mindlin’s explicit
algebraic expression is recovered.

The triple Fourier integral in the half-space representation corresponds to the
Green function for an infinite medium. For an isotropic medium we then recover
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Kelvin’s solution (Mura 1987),

Gy (x—a') =

1 (ot

S S—" Y T
167u(1 — )R, {( V)i + R?

where R} = (z1 — 2})? + (22 — 24)® + (x3 — 4).
The quadruple Fourier integral in (3.8) requires the evaluation of the compo-
nents Fi; (K*). The elasticity tensor components are given by

2uv
1_“—21/ 6ijOkt + 1 (Oikdj1 + bubjk) , (5.2)

where p is the Lamé shear modulus and v is Poisson’s ratio. From this relation
the inverse Christoffel tensor components are

by GG

Cijki =

—1 —
When these relations are substituted into (3.5) we obtain, on integration,
1 o1 —2v
hpq (K1, K3) = 56pq +1 =0 (83pBq — 6341%) (5.4)
where
K K
B = (51,02, 03) = —, ——,0]. (5.5)
VEI+ K3 \JK? + K3
The components [0pq — hpq]_l are given by
apq (K1, K2) = [bpq — hpq (K1, Kp)] ™!
2(1 —2v)?
= 206pq + T3 _ 4 (BpBq + b3pbsq)
A1 -v)(1-2v)
1 3 4 (838 — 6343p) - (5.6)

It is of interest to note that for an isotropic material the real parts of hp, and ay,
are symmetric, while the imaginary parts are antisymmetric.

The tensor components Fj; (K*) are then obtained by substituting (5.2), (5.3)
and (5.6) into the relation

Mlj_l (77177727773)
K?+ K3+ K}’

and the quadruple Fourier integral to be evaluated for an isotropic material is

d4K* Kyaq (K1, K2) My, (C)M‘l( )
S q lj —iK*-¢
G iC, . .
=1 kpq3//// Kl K2 1(2) (l<2 1(2 K4) ¢ (5 8)

ij (K*) = ickpq3 Kp Qql (Kla K2) (5.7)

The integration of this relation may now be demonstrated for the component
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Table 1. Components fij, hi; and a;; for an isotropic material

(1-20)KZ+2(1-v)(K2+K2)

= ) (K24 K21 K2)?

fip=— K1 Ko

T T ou-n) (K2 +K2+K2)’
KK

fiz= o

2u(1-v)(K2+K2+K2)*
f21=f12
(1—2v)K3+2(1-v)(K;+KZ)
2u(1—v) (K2+K2+K2)*
KoK4
2p(1—v) (K24 K2+ K2)?

faz2 =

faz =
f31=f13

f3z2 = f23
(1-2v)K2+2(1—v) (KZ+K3)
2p(1—v) (K24 K24+ K2)°

faz=

1
h11 =75
h12=0
Bra = —i Kqp(1-2v)
= V) (K24+K2)'?
hg1 =0
1
h22 =75
hoa = Ko(1-2v)
B o (k21 K2) 2
hay = Ky (1-2v)
s1=i v(K2+K2)?
oy — Ko (1-2v)
82 4(1 v)(K2+K2)'/?
1
hss =73

2{4K?(1-v)2+KZ(3-4v)}
(3—4v)(K2+K2)

2K; Ko(1—-2v)2

(3-4v)(K2+K32)

4K1(1—v)(1—2v)

(3—av)(K2+K2)/?

2K Ko (1—2v)2

(3—-4v)(K2+K32)

2{4KZ(1-1)2+K}(3-4v)}
(3—4u)(K§+K§)
4Ko(1—v)(1—2v)

ag3 = —i —(3—41/)(K%+K§)1/2

all =

a12 =

a13 = —i

a21 =

a2 =

4K (1—v)(1-2v)

agy =i
(3—av)(K24+K2)"/?
. 4Ko(1—v)(1—2v
age =i

(3—av)(K2+K2)'/?

8 1—1/)2

@33 = T34y

G35 (£). We first integrate with respect to K7 and K by introducing the cylin-
drical coordinates

Ki=rcos, Ky=rsinf, dK;dK;=rdrdd,

which reduces equation (5.8) to the form,

// dKs dK4 —1(K3&3+K48a)
—00

00 2 . .
X / / rdrdfeirreost+iasing) o (. Ko K,), (5.9)
=0.J60=0
where
1
r, K3, Ky) =
R e
Al orK3K, (1-2v) 2rK3K3v(1-2v)® 4r3KZv(1-2v)
(3 —4v) p(1—v)(3—4v) p(3—4v)
KK (2-v)(1-2v) | 208K3(1-20)  4r5 (1—w)(1 - 2v)
p(l=v)(3—4v) p(3—4v) p(3—4v)
iy AK3K; (1-v)(1—2v)  8r°K3(1-v)* 4r’K3K,v
p(3—4v) p(3—4v) p(3—4v)
4r?K3K2 (2—-v)(1—2v)  8riK;(2—v)(1—v) N 4ri Ky (1 —v) (5.10)
(3 —4v) (3 —4v) pB—4v) |J
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Now put & = pcos ¢, &2 = gsin¢. Then

* =¢34+ and exp{—ir(& cosf+ Eysind)} = exp{—irpcos (0 — ¢)}.
(5.11)
The integration over  produces the result 27.Jy (or), so that Gi; (€) is obtained
in the form of a zero-order Hankel transform (Sneddon 1951) of the Fourier
transform of the function Q (r, K3, K4), namely

K. 0
GS, (¢ / /d 3dK4 o (Ka€s+Kata) /_OTJO (or) Q (r, K3, K4) dr.  (5.12)

The integrations over K3 and K4 may now be performed by means of the

relation
00 KP e K¢ ONP [m(ré+1)e™"¢
T dK = (i=) {2 1
/K:_oo (r2 + K2)? ax (1 35) { 2r3 ’ (5.13)

and we obtain
1 o0
S - —r(€3+€4)
G35 (8) om0 (1—0) /T:OdTJO (or)e

X {(8’/2 —12v + 5) + (3 —4v)(&+ &)+ 253547“2] . (5.14)

On integration this relation yields the surface component of the Green function
in the form

Gis (€) = 1/[16mu (1 —v)]

82 — 120 +5  (3—4v) (&3 +&4)% — 26364 66384 (63 +&4)°
X { 7 + I + I ,  (5.15)

where R} = 0%+ (& 4+ &)° = €3+ &%+ (& + €4)°. When G (@ — 2) and G55 (£)
are added we obtain Mindlin’s solution (Mura 1987) for the component Gss (£).

On the surface of the half-space the Green function component Gss (§), ob-
tained by adding the 33-component of (5.1) and (5.15) and setting & = 0, is
obtained in the form

Gs3 (€1,£2,0,84) = (1 —v)/2ruR + & /AT pR?, (5.16)

where R? = ¢ + €2 + ¢2. Tt is interesting to note that this expression can also
be obtained from the inverse Fourier transform of equation (2.26). The required
inverse transform is

Gij (€1, 62,0, ) = ///dlﬁ dKz dKy gij (K1, Ky, Ky) e~ i K16+ Kagat Kaga)

(5.17)
From table 1 the component g3s3 = agkfr3 can be inserted into the preceding
triple integral and integrated using the method indicated earlier in this section
to yield equation (5.16) directly.
The tensor components f;;, h;j and a;; required for the computation of Fj; (K*)
in equation (5.7) and defined in equations (3.4), (3.5) and (5.6), are given for an
isotropic medium in table 1.
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6. Periodic force distribution in a cubic half-space

In the final section we now use the Fourier integral representation to determine
the displacement produced in a half-space when a periodic vertical force distri-
bution is applied at a distance & = x4 below its surface. Results are obtained
for a material which possesses cubic material symmetry. It is assumed that the
cubic crystallographic axes coincide with the global axes x1,x2,x3, so that the
components of the elasticity and Christoffel stiffness tensors may be evaluated in
their simplest form.

The vertical force distribution applied at a distance x5 below the surface is
assumed to be given by

p(z1,%2) = pocos (21/A) (z1 + x2) (6.1)

where )\ is the wavelength of the periodic distribution. This generates a vertical
displacement in the half-space given by the real part of the expression,

o0
uz (z) = po/ Gi3 (€1, €2, &3, €4) €7 L@1H22) 4! Az, (6.2)

—0o0

where L = 27/ is the wavenumber.
When the relation for G;; (€) from (3.8) is substituted into (6.2), the vertical
displacement can be written as the sum

us (@) = ug® (x) + uf (x), (6.3)

where the term u$° (x) represents the displacement caused b 5y the application of
the force distribution p (z}, x5) in the infinite medium and w3 () is the displace-
ment due to the presence of the surface.

The term involving K, in the quadruple Fourier integral in (5.8) can be removed
from the integrand by operating on the Fourier integral with 0/0z,, namely

PK* ag (K1, Ko) M (¢) Mt (n) K
s q 4] —iK*-¢
ng (6) Ckpq3 amp//// K2+K2—|—K3)(K2+K2+K4)e '

(6.4)
The use of (3.9) then allows the displacement components to be written in the
respective forms:

3 2 / H / /

and

uj (@) = — Ockpq33 /dxld ////((i;lr{*

o Gat (K1, Ko) Noy, (K1, Ko, K3) Nig (K1, K2, —Ka) _ixcrg —iL(a}+0)
D (K1, Ks, K3) D (K1, Ko, —Ky) '
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The integrations over zj and zf are elementary and give
(2m)26 (K1 — L) & (Ko — L),
and the sifting properties of the Dirac delta functions then yield

uP () = po e~ iL(z1+2) Bs3 (le _ xéD (6.7)
and
* 0 —i T
u§ (&) = — po Chpgs aqt (L, L) Bfs (a) . {e Heten) ggy (973)}, (6.8)
P
where

oo dK N;; (L,L,K ;
&y (x) = / Ny (L, L, K) o iKz (6.9)

" Jk=— 2n D(L,L,K)
and &@}; (z) denotes the complex conjugate of &;; ().

The cofactor components N;; (K) and the determinant D (K) are required in
(6.9) for the particular case in which K7 = K3 = L, and when they are expressed
in ascending powers of K, we obtain (cf. Mura 1987)

L,L,K) =1+ 0K?+ pK* + aKS,
Nu (L, L, K) = 2(2p% + B)L* + (4° + 30 + ) L°K* + (1 + B) K*
Nia (L, L, K) = = 2u(A+ p)L* — (A + p)(u + p*) L2 K2,

D (
(
(
N3 (L, LK) = = (A+ p)(2u+ p*) LK — p(A + p) LK,
Noy (L, L, K
(
(
(
(
(

) = N2 (L, L, K), (6.10)
Noz (L, L,K) = Ny; (L, L, K)
Noz (L, L,K) = Ni3 (L, L, K) ,
N3i (L, L,K) = Ni3 (L, L, K),
N3y (L, L,K) = Ni3 (L, L, K)
N33 (L, L, K) = (4% + 46 + ) L* + 2(21> + B)L*K? + > K,

where
7 =205 (2 + 1) (2X + dp + p¥),
6 =14 {/\(12;ﬂ + 10pp" + 3p*2) + 244 + 22020 + Spp*? + 3

p =22 {3+ 2u%) + (2p + ) (B + )}, (6.11)

a=pP(A+ 2+ "),

B=pA+p+p), v=p @ +2p+u7),

A=ci2, p=cu, M =ci1—Cci2— 2cu, J
with the two-dimensional array of elastic constants cpq defined by the Voigt con-

vention c1; = Ch111, c12 = Ci122, c44 = Cio12. The parameter A\ now represents
an elastic modulus component.

The determinant D (L, L, K) in (6.10) can be factored into the product

D(L, L, K) = o K* + a*L2)(K? + b2L2)(K? + L?), (6.12)
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where
x\1/2
o= (2_/““_/‘) , (6.13)
7

p o [AU3) + Cpt ) (4 + 1) +w}1/2 (6.14)
2p(A + 24 + p¥) ’

o [ A+ 3p) + (2t %) (4 + ) —w]m (6.15)
20X + 2 + p) ’ '

) 1/2
w = [ { N8 +3p") + 8% + 6™ + 2 H3A+ 6+ 7} . (6.16)

The tensor components ®;; (z) in (6.9) then involve integrals of the type

I ( )_/oo er—iKm ﬁ
P oo (K2 + a?L2) (K2 + b2L2)(K2 1 2L2) 2n

SRR
~ 215 ' oz a(a? — b?)(a? — ¢?)

e—bLm e—cLa:

b(b? — a?)(b? — ?) + c(2 = a?)(® — b2) } , (6.17)

+

and if we write the explicit dependence of the cofactor components on the powers
of K in (6.10) in the form

Nl] (L7L5K07K17K2,K37K4) ENZ] (L7L7K)7 (618)
it follows that
Qsij (CE) = Nz'j [L,L, Io(m), Il(a:),Ig(a:),Ig(x),I4(x)] /a. (6.19)

The tensor components in (6.10) may be substituted into (3.5) to give

hq (L, L) = lim i

o0 dK3 Ny (L, L, K _
/ 3 Nok ( 3) Clopis 2p(K(3) e K3¢3

620" Jxaeoo 27 D (L, L, K3)
. . 0
= lim (1 (Cruz + Craiz) L — Chais ——) Dk (€3), (6.20)
§3—0 03

where the vector z = (21, 22, 23) = (L, L, K3). For cubic anisotropy the elasticity
tensor components are given by

Cijkt = Nijbp1 + 1 (Gikbj1 + 6:6jk) + 1" 6:767L0 Lk, (6.21)

in which the capital letters imply that the summation convention for repeated
suffixes is temporarily suspended. The tensor components

Qql (L7L) = [6111 - hql (L’L)]_l

are then obtained by inversion of the 3 x 3 matrix.
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The matrix representation of equation (6.20) gives

4 0  his
h(L,L)=1{ 0 T hs |, (6.22)

1
hs1  hs1 3

where
. [T(a+b+c)+ Aabe + Xabce(ab + be + ac)
h13 = —1 s (623)
2u(A+2p + p*)abe(a+b)(b+c)(a+c)
[E(a+b+c)+ Yabe + Nabe(ab + be + ac)
hsy = — , (6.24)
2N+ 2 + p*)abe(a+ b)(b+ ¢)(a + )
and
I'= —2\2p + p"), A= M+ (2p + p*)?,
E=—Qutp)A+4p+p*), T =" — p(dp+p%), (6.25)
Y =pA+2p+p¥), 02 = M.
The matrix [I — k] is now easily inverted and we obtain
1 2 — 8hishsi 8hi3hs1 4hi3
a (L, L) = m 8h13h31 2— 8h13h31 4h13 (626)
— O3l 4h3; 4hg; 2

The real part of equation (6.3) together with equations (6.7)—(6.26) then gives
the exact displacement produced in the cubic half-space by the two-dimensional
periodic force distribution. It is of interest to note that for an isotropic material
the tensors h and a are hermitian, with the properties

hpq (K1, K2) = hgy, (K1, K2) = hep (— K1, —K2) (6.27)
and

apq (K1, K2) = ag, (K1, K3) = agp (K1, —K3), (6.28)
where the asterisks denote the complex conjugate function. The hermitian prop-
erties do not hold for a general anisotropic material, as may be observed from
equations (6.22)—(6.26); the real parts of h and a are still symmetric, but the
imaginary parts are no longer antisymmetric.

A consistency check on the preceding equations can be achieved by computing
the vertical displacement on the surface of an isotropic half-space when the peri-
odic force distribution is also applied on the surface. For an isotropic half-space
we may put p* =0 and A = 2ur /(1 — 2v) into the preceding equations. The ten-
sors h and a then reduce to the forms given in table 1 with K1 = Ko = L, and
the constants in (6.13)(6.15) reduce to a = b = ¢ = /2. On the surface of the
half-space the vertical displacement due to the force distribution in (6.1) applied

on the surface, when calculated from (6.3), (6.7) and (6.8) with z3 = x5 = 0,
then reduces to

1—v

us (371;372) = Em

where A\ = 27/L now refers to the wavelength of the force distribution. This

2
Apo cos Tﬂ (z1 + z2), (6.29)
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result is in conformity with that obtained by substituting (5.16) into (6.2) and
putting &3 = €4 = 0.

7. Summary

A Fourier integral representation of the Green function for an anisotropic elastic
half-space has been developed. For an isotropic material the Fourier integrals
can be evaluated in closed form and are shown to yield Mindlin’s expression for
the Green function. The anisotropic Green function is then used to deduce an
exact representation for the vertical displacement in a half-space possessing cubic
material symmetry when a two-dimensional periodic vertical force distribution is
applied in its interior.

A quadruple Fourier integral is the natural representation for a Green function
which depends on the four-vector &, and is useful when interchanges of the integra-
tion order simplifies the algebraic result, as demonstrated in §6. It is not useful,
however, for extracting numerical results. In the case of an infinite medium, the
triple Fourier integral representation (the first integral in (3.8)) can be reduced
to a single contour integral (Mura 1987) which can be evaluated either by numer-
ical quadrature, or by means of Cauchy’s residue theorem, as the sum of Stroh
matrices (Malén 1971).

A referee has pointed out that bgf expressing the half-space Green function
in equation (3.8) as G;; = G}y + Gy and then representing G;gj as the Faltung
integral in (4.10), that a double Fourier transform of the surface Green function
Grp (1 — @, x2 — x5, x3,0) enables it to be expressed in terms of the infinite
medium Green function and its first derivatives. An inverse double Fourier trans-
form then yields the surface Green function which can be substituted into the
Faltung representation to yield ij as a double integral.

Other methods of reduction are also possible. If we write

5 (K1, Ko, ) = o DELIGE) C
!prJ( 1, 2"7“') »/K'=—OO 2 D(K17K29K) ¢ ,

(7.1)

then ij in equation (6.4) may be expressed as
0 [[dKdK
S 1 2
S (&) = — — s (KL K
ng (&) Ckpq3 awp_/oo/ (27‘()2 Qql ( 1, 2)

X W’Lk (K1> KZ, 63) WZ; (Kl) KZ, &4) e_i(K1£1+K2£2)$ (72)

where ¥y, (K1, Ky, x) will be similar in form to equation (6.19), but the integral
in (6.17) will now contain parameters a, b, ¢ which depend on K; and K.

Other alternative reductions of the quadruple Fourier integral to lower order
integral representations can also be effected by expressing the integration over
K, K, K3 in spherical polar coordinates.

This work was supported by the United States Department of Energy under Grant no. DE-
FG02-92ER14247. Dr Oscar P. Manley served as contract monitor.
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Appendix A. Heisenberg delta transformation

The Heisenberg delta function (cf. Sneddon (1951) & Schwinger (1958)) is the
Fourier transform of the Heaviside step function, namely

5. (K3 +a) = / {7 H(ws)} €57 da, (A1)

This definition is 27 times the quantity defined in the references, since we have
associated the factor 27 with the wave vector integrations rather than with the
spatial integrations. From the references cited,

6+ (K3) = mé (K3) — 1/(iK3), (A2)
and by the Fourier inversion theorem, the inverse of (A1) is
; K.
61075 F (5) — / % 6, (K3 + o) K373, (A3)

Appendix B. Green function reciprocity

From the definition of the Green function the displacement at the field point x
due to a point force f (') at the source point &’ can be written in the equivalent
forms,

ui (z) = Gij(z, x') f; (z) and u; (&) = Gji(z, ) fi (') . (B1)

On multiplying these relations by f; (x) and f; (x) respectively, we obtain the
equivalent scalar representations,

S (@, @) = Gij(x, @) fi () fj (&) = Gjo(@, @) fi («) f (@) . (B2)

We now integrate with respect to  and &’ over a volume V which contains both
the field and source points to arrive at

// dV (@ // v (z &) f; (z) f; ()
// av (2 // AV (2/) Gji (2,) f; (@) f; (@) (B3)

Since « and ' are dummy integration variables we can interchange them in
the double volume integral on the right-hand side and rearrange the equation to
obtain

// av (z // AV (&) {Gy; (@, @) — Gy (@)} fi (=) f; (&) =0.  (B4)

Because V and f (2/) can be arbitrarily chosen we see that the Green function
is subject to the restriction that

G,‘j (.’L‘, .’L'I) = Gﬁ' (m/, m) . (B 5)
Moreover, since
Gij (z,2') = G (x — ) + ij (z,z') and GPY (x—a') = G3 (' — ),
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we also find that

G% (z,2') = G]Si (', z), (B6)
so that the field and source points can be exchanged in both the full half-space
Green function G;; (x, ') and in G;-gj (x, ") provided the tensor suffixes are trans-
posed.
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