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Abstract

We develop a non-singular, self-consistent framework for computing the stress field
and the total elastic energy of a general dislocation microstructure. The expres-
sions are self-consistent in that the driving force defined as the negative derivative
of the total energy with respect to the dislocation position, is equal to the force
produced by stress, through the Peach-Koehler formula. The singularity intrinsic
to the classical continuum theory is removed here by spreading the Burgers vector
isotropically about every point on the dislocation line using a spreading function
characterized by a single parameter a, the spreading radius. A particular form of
the spreading function chosen here leads to simple analytic formulations for stress
produced by straight dislocation segments, segment self and interaction energies,
and forces on the segments. For any value a > 0, the total energy and the stress
remain finite everywhere, including on the dislocation lines themselves. Further-
more, the well-known singular expressions are recovered for a = 0. The value of the
spreading radius a can be selected for numerical convenience, to reduce the stiffness
of the dislocation equations of motion. Alternatively, a can be chosen to match the
atomistic and continuum energies of dislocation configurations.
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1 Introduction

Dislocations are the primary carriers of crystal plasticity and their collective
dynamics define material’s response to a variety of loading conditions, e.g.
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in yield, creep or fatigue. Developed over the past two decades, Dislocation
Dynamics (DD) is a direct approach that attempts to simulate the aggregate
behavior of large dislocation ensembles and holds considerable promise for
uncovering the microscopic origins of crystal strength (Devincre and Kubin,
1997; Schwarz, 1999; Ghoniem and Sun, 1999; Cai et al., 2004a; Bulatov et al.,
2004). However, in the development of this new methodology, several issues
remain unresolved. This contribution addresses and solves the long-standing
problem of singularities intrinsic to the classical continuum theory of dislo-
cations. The singular solutions of the continuum theory are analytical and
simple, at least for an important case of elastic isotropy. However, the energy
and forces can be infinite unless some truncation scheme is applied to avoid
the singularities.

Non-singular treatments of dislocations have been the focus of several theo-
retical studies since the 1960’s. Self-consistency in terms of dislocation theory
is achieved when forces on the dislocations computed two ways are the same.
The first way to compute the force is to take the negative derivative of the
elastic energy with respect to the dislocation position. The second way is to
use the Peach-Koehler formula relating the force to local stress. Various mod-
ifications of the linear isotropic elastic theory have been considered as possi-
ble solutions. A heuristic non-singular approach was first proposed by Brown
(1964) in which the driving force was related to the average stress evaluated
at two points on either side of the dislocation line. Later, Gavazza and Bar-
nett (1976) showed that Brown’s recipe lacked consistency and identified a set
of correction terms needed to make it self-consistent. In the Gavazza-Barnett
approach, only the elastic energy stored in the material outside a tube region
surrounding the dislocation line was included in the driving force calculation.
This solution was later used for Dislocation Dynamics simulations (Schwarz,
1999). Unfortunately, consistency of this elegant solution has been rigorously
demonstrated only in 2D, i.e. for in-plane components of force on a planar
dislocation loop. And while the Gavazza-Barnett solution provided an expres-
sion for the derivatives of the elastic energy stored in a dislocation network,
it didn’t provide an explicit expression for the elastic energy itself.

Here we propose a non-singular and self-consistent treatment applicable to an
arbitrary dislocation arrangement that satisfies the following four conditions.

(1) Our approach provides explicit non-singular expressions for the total elas-
tic energy and stress field of an arbitrary dislocation structure. In the case
of isotropic elasticity, the non-singular solutions are analytic and (nearly)
as simple as the classical singular solutions.

(2) The approach is self-consistent in that the force on a dislocation segment
defined as the negative derivative of energy with respect to the segment
position, is equal to the force obtained by integrating the stress field along
the segment (by the Peach-Koehler formula).
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(3) The solution can be used for straight segments connected at an arbitrary
angle and converges for general curvilinear geometries in the limit when
the segment size becomes infinitesimally small.

(4) The solution has a clear connection to the more fundamental, atomistic
models of dislocations.

None of the previous treatments has fulfilled all four conditions listed above.
The first two conditions point to the desirable mathematical properties that
have been sought after in previous investigations. The third condition ensures
that the new solutions are robust and useable in the DD simulations where the
numerical convergence is all-important. Finally, the fourth condition means
that the modification introduced to transform the classical singular theory
into a non-singular theory, allows a clear physical interpretation.

The modification we propose is to distribute the Burgers vector about every
point on the line: the line now becomes the locus of the centers of the Burgers
vector distributions. Our idea is to find a specific Burgers vector distribution
such that it yields analytical expressions that are as close as possible to the
classical expressions derived within the singular theory. This proposed solution
is conceptually similar to the Peierls-Nabarro model (Peierls, 1940; Nabarro,
1947) and to the standard core model (Lothe, 1992) of dislocations, in which
the Burgers vector is spread out in the glide planes. The difference is that
in our approach the Burgers vector is not distributed over a plane but in all
directions about every point on the line.

The discussion is organized as follows. Section 2 details the issues associated
with the classical singular solutions for the dislocation energies and stress fields
in elastically isotropic solids. Section 3 reviews the previous non-singular treat-
ments and discusses their advantages and drawbacks. Sections 4 and 5 develop
our new isotropic model while section 6 presents numerical results demonstrat-
ing its self-consistency and convergence properties. Section 7 compares our
model with the Gavazza and Barnett (1976) model and demonstrates their re-
lationship. Finally, section 8 gives a summary and discusses new opportunities
this approach offers to dislocation modeling.

2 Problem formulation

The Peach-Koehler formula (Hirth and Lothe, 1982) expresses the driving
force (per unit length) f that local stress σ exerts on a dislocation line,

f = (σ · b)× ξ , (1)

3



where b is the dislocation Burgers vector and ξ is the local tangent (unit
vector) of the dislocation line. For example, if σ is stress at a point on a
dislocation line due to externally applied tractions, then f is the force per unit
length on this point due to the tractions. In a DD simulation, forces caused
by external tractions combine with forces induced by internal stress produced
by the dislocation microstructure.

In a homogenous infinite linear elastic solid, the (internal) stress field of a
dislocation loop can be expressed in terms of a contour integral along the
loop (Mura, 1982),

σij(x) = Cijkl

∮
C

εlnhCpqmnGkp,q(x− x′)bmdx′h , (2)

where Cijkl is the elastic stiffness tensor, Gkp,q = ∂Gkp/∂xq. Here, Gkp(x−x′)
is the Green’s function defined as the displacement in xk-direction at point
x in response to a unit point force in xp-direction applied at point x′. In an
isotropic elastic solid with the shear modulus µ and the Poisson’s ratio ν, the
Green’s function takes the following simple form,

Gij(x− x′) =
1

8πµ

[
δij∂p∂pR− 1

2(1− ν)
∂i∂jR

]
(3)

where ∂i ≡ ∂/∂xi and R = ‖x− x′‖. The stress field of a dislocation loop can
thus be expressed as,

σαβ(x) =
µ

8π

∮
C

∂i∂p∂pR
[
bmεimαdx′β + bmεimβdx′α

]
+

µ

4π(1− ν)

∮
C

bmεimk (∂i∂α∂βR− δαβ∂i∂p∂pR) dx′k. (4)

As the field point x approaches the source point x′ in the above integral, R
approaches zero and some (if not all) components of the stress tensor diverge.
Therefore, the self-force of a dislocation line, i.e. the force due to its own stress
field, diverges too. This singular behavior is an artifact traced to the unrealistic
assumption that the Burgers vector distribution is a delta function. In the
atomistic models that provide more realistic description of the dislocation
core, this problem never arises.

A similar divergent behavior occurs in the expressions for the elastic energy of
dislocations. There are two equivalent ways to express the total elastic energy,
both leading to infinity. On way is to integrate the elastic energy density over
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the entire volume, i.e.,

E =
1

2

∫
d3xSijklσij(x)σkl(x), (5)

where S = C−1 is the elastic compliance tensor. Because the stress field σij(x)
has 1/R singularity on the dislocation line itself, the volume integral obviously
diverges. Another, alternative, expression for the elastic energy is obtained by
transforming the volume integral into a double line integral (de Wit, 1967a,b)

E =− µ

8π

∮
C

∮
C

∂k∂kR bib
′
jdxidx′j −

µ

4π (1− ν)

∮
C

∮
C

∂i∂jR bib
′
jdxkdx′k

+
µ

4π (1− ν)

∮
C

∮
C

∂k∂kR bib
′
idxjdx′j − ν

∮
C

∮
C

∂k∂kR bib
′
jdxjdx′i

 (6)

The total integrand above can be identified with the interaction energy be-
tween two differential dislocation segments dx and dx′. Again, this integral is
unbounded because the integrand diverges as x and x′ approach each other
(R → 0). The divergent behaviors discussed here can result in ill-defined
numerical procedures for computing the energies and forces associated with
dislocations.

3 Earlier attempts to remove the singularities

In this section, we review several earlier attempts to remove (or avoid) the
singularities in the continuum theory of dislocations. No consideration will
be given to the previous work on non-local or gradient elasticity (Gutkin
and Aifantis, 1996, 1997) and finite-strain elasticity (Fedelich, 2004). Rather,
we will discuss only the treatments closely related to the objectives of this
particular study.

Approach I. Since 1960’s, several schemes have been proposed to remove
the singularities from dislocation theory and to define a finite self force on
dislocations. In Hirth and Lothe (1982), a cut-off radius ρ is introduced to
regularize the elastic energy of a dislocation loop. In the double line integral for
the elastic energy (similar to Eq. (6)) the following regularization convention is
used. The integrand is set to zero whenever the distance between the differential
segments dx and dx′ becomes less than ρ. Following this convention, elastic
energy of an arbitrary dislocation loop becomes finite. In principle, the forces
can be defined self-consistently as the negative derivatives of, now finite, energy
with respect to appropriate dislocation configuration variables. In practice,
self-consistency of this approach has not been enforced.
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Fig. 1. To remove singularities from the elastic energy of a dislocation loop, one
convention is to ignore the interaction between differential segments whose distance
from each other is less than ρ. This removes part of the interaction energy between
two neighboring segments i and j sharing a node. Unfortunately, this “distance
cut-off” convention has not been enforced consistently owing to the lack of analytic
expressions for the interaction energy between two hinged segments with “excluded”
length (Hirth and Lothe, 1982).

In numerical calculations, dislocations are often represented by interconnected
straight segments. The elastic energy, E, of so-discretized dislocations is par-
titioned into two sums: a sum of the segment self energies W s

i and a sum of
the interaction energies W int

ij of segments pairs (i and j)

E =
∑

i

W s
i +

∑
i<j

W int
ij . (7)

This standard partitioning of the elastic energy makes the above regularization
convention difficult to implement rigorously. This is because an analytical
expression for W int

ij is available only when the above convention is ignored, i.e.
all points on segments i and j are included in the integral. This inconsistency
does not appear when the segments are well separated, so that even their
closest distance is larger than ρ. However, when this is not the case, e.g. when
two segments share a common node (Fig. 1), the analytical expressions do
not faithfully account for the regularization convention leading to inconsistent
implementations.

Another artifact of the above regularization approach is the following. His-
torically several alternative expressions for the line integral of the dislocation
energy, such as Eq. (6), have been derived (Blin, 1955; de Wit, 1960, 1967a,b)
in which the forms of the integrand differ but the differences vanish when the
integrals are evaluated over an entire dislocation loop. Unfortunately, since the
regularization convention described above effectively cuts open the (otherwise
complete) dislocation loop, it was found that different integrands produce dif-
ferent self-energies of a dislocation loop, even when the same cut-off parameter
ρ is used (Lesar, 2004). To remedy this inconsistency, it was proposed to use a
cut-off parameter ρ that depends both on the dislocation character angle and
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Fig. 2. (a) Because the stress field is anti-symmetric around an infinite straight
dislocation, the average of stress taken at two points at a distances ±ρ from the
line is zero. Consequently, the straight dislocation produces no self-force in Brown’s
approach. Here ξ is the line direction, n is the glide plane normal, m is a unit
vector perpendicular to ξ and n, and b is the Burgers vector. (b) P is a point on
a dislocation loop on a plane with normal vector n. ξ is the local tangent direction
shown here at an angle α with respect to a datum. m is orthogonal to both n
and ξ. In (Brown 1964), the self force f at point P is computed by applying the
Peach-Koehler formula on the averaged stress taken at two points P± ρm.

on the specific form of the integrand used (Lothe and Hirth, 2005).

Approach II. Another approach is offered by Brown (1964) who averts the
singularity by defining the stress as an average of stress evaluated at two points
on the opposite side of and at a short distance ρ away from the line (Fig. 2).
In this convention, the glide component of the force fB on the dislocation at
point P is defined as

fBi (P) mi≡−
1

2
binj

{
σL

ij(P + ρm) + σL
ij(P− ρm)

}
, (8)

where

n=
b× ξ

‖b× ξ‖
(9)

m= ξ × n . (10)

Following this definition, the contribution of a straight dislocation to its self-
force is zero (Fig. 2(a)). For curved dislocations (Fig. 2(b)), Eq. (8) gives rise
to a non-zero self-force.

One limitation of Brown’s approach is that it defines only the glide component
of the Peach-Koehler force, i.e. the projection of the total force on the glide
direction m. At the same time, the remaining component that induces non-
conservative climb motion remains undefined. Furthermore, as was later shown
by Gavazza and Barnett (1976), Brown’s recipe is not self-consistent in that
fB is not the negative derivative of a dislocation energy function. Gavazza and
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Barnett (1976) also showed that corrections to Brown’s force equation could
be added to make it self-consistent.

Approach III. Gavazza and Barnett (1976) derived the following expression,
fGB, for the force on a dislocation line

fGB
i (P) mi≡ fBi (P) mi +

1

r

{
E(α)−

[
F (α) +

∂2F

∂α2

]}
(11)

where r is the local radius of curvature at point P, E is an energy pre-factor of
an infinite straight dislocation with tangent ξ, F is a “tube integral” around
the same dislocation. Both E and F are functions of the angle α between ξ and
a datum (Fig. 2(b)). They arrived at this expression by finding the total elastic
energy of a dislocation loop based on a volume integral similar to Eq. (5), but
excluding from this integral a tubular region around the loop with radius ρ.
The force fGB on a dislocation line is then determined by differentiating the
energy with respect to the line position.

Similar to Brown’s, Gavazza-Barnett approach provides expressions only for
the glide component of force. Another common limitation is that validity of
either method for non-planar dislocation configurations has not been demon-
strated. In principle, both methods require the dislocation line to be smooth,
so that vectors ξ and m can be defined on every point P along the line.
Furthermore, the correction term of Gavazza-Barnett is proportional to 1/r,
which makes it difficult to deal with sharp corners where the radius of line
curvature is zero. 1

Approach IV. Another well-known approach is due to Lothe (1992), who
removes (or weakens) the singularity by spreading the dislocation core over a
finite width on the glide plane. This is not unlike the classical Peierls-Nabarro
model (Peierls, 1940; Nabarro, 1947) in which the spreading function is de-
termined self-consistently, by the balance between the elastic energy in the
bulk and the nonlinear interface energy on the glide plane. While the Peierls-
Nabarro model provided analytical expressions for the stress field and the
energy of an infinite straight dislocation, it did not offer analytical expres-
sions for the energy or forces of the generally curved dislocation lines. Lothe
simplifies the Burgers vector distribution within the core by spreading it uni-
formly in a plane over a fixed width d: this is commonly referred to as the
standard reference core. Lothe shows that the glide force, fL, on a dislocation
line with a standard core of width d = ρ reduces to

1 Although this last point may seem unimportant, it presents a significant limitation
because sharp corners on dislocations appear in a number of physically important
situations, e.g. in cross-slip nodes or junction nodes joining together three or more
dislocation lines.
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fLi (P) mi≡ fBi (P) mi +
1

r
E(α) (12)

where 1
r
E(α) is the same function as in the Gavazza and Barnett expression

(Eq. (11)).

The stress and energy of dislocations with a standard core can be obtained
by convoluting the classical singular expressions with the (uniform) spreading
function. For example, for an infinite straight screw dislocation stretching out
along z-axis, the singular expression for σyz is

σyz =
µb

2πx
. (13)

When the same Burgers vector is spread over the interval x ∈ [−d/2, d/2], the
stress field becomes

σyz =


µb
2πd

ln
(

x+d/2
x−d/2

)
, x > d/2

µb
2πd

ln
(

d/2+x
d/2−x

)
, −d/2 < x < d/2.

(14)

The stress field now has a weaker, logarithmic singularity, but it is integrable
so that the total elastic energy remains finite. While Lothe’s is an appealing
and simple idea, the resulting expressions for the stress field and elastic energy
are much more complicated than the original singular equations and difficult
to use for generally curved dislocations.

4 Isotropic dislocation core distribution

As discussed in the preceding section, both simplicity and singularity of the
classical theory result from an unphysical yet mathematically convenient de-
scription of the dislocation core in which the distribution of the Burgers vector
is described by a delta function. As noted by Lothe (1992), use of distributions
other than the delta-function leads to solutions that are non-singular but con-
siderably more complicated than their singular counterparts. The purpose of
this work is to find a Burgers vector distribution that removes the singularities
but retains the analytical nature of the classical theory and supplies simple
closed form expressions for the stress field and the elastic energy of general
dislocation configurations.

To facilitate our discussion, let us first rewrite Eq. (4) and Eq. (6) in the
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following compact forms,

σαβ(x) =
∮
C

Aαβijklm ∂i∂j∂kR(x− x′) bmdx′l (15)

E =
∮
C

∮
C

Bijklmn ∂i∂jR(x− x′) bmb′ndxkdx′l , (16)

where Aαβijklm and Bijklmn are defined by comparing Eq. (4) and Eq. (6) to
Eq. (15) and Eq. (16), respectively.

The next step is to introduce a Burgers vector density function g(x) that
removes the dislocation singularity by spreading its Burgers vector b around
every point on the line as follows:

b=
∫

g(x)d3x . (17)

This normalization condition ensures that both the magnitude and the direc-
tion of the Burgers vector remain unchanged. For a dislocation loop whose
Burgers vector is spread out according to g(x), its stress field and elastic
energy are,

σ̃αβ(x) =
∮
C

Aαβijklm∂i∂j∂k

[∫
R(x− x′′)gm(x′′ − x′)d3x′′

]
dx′l (18)

Ẽ =
∮
C

∮
C

Bijklmn∂i∂j

[∫ ∫
R(x′′ − x′′′)gm(x− x′′)g′n(x′ − x′′′)d3x′′d3x′′′

]
dxkdx′l .(19)

These expressions reduce to Eq. (15) and Eq. (16) when g(x) = b δ3(x) and
g′(x) = b′ δ3(x), where δ3(x) is the 3D delta function.

This formulation is rather general and can be used to account for various
realistic details of dislocation core structure, e.g. possible splitting of a perfect
dislocation into partial dislocations in FCC crystals. However, our purpose
here is different: we would like to find g(x) such that the resulting non-singular
solutions are simple and closely resemble the singular solutions of the classical
theory. Specifically, consider an isotropic distribution of the form

g(x) = b w̃(x) = b w̃(r) (20)

where r ≡ ‖x‖. Now, define w(x) as the convolution of w̃(x) with itself, i.e.,

w(x) ≡ w̃(x) ∗ w̃(x) ≡
∫

w̃(x− x′)w̃(x′)d3x′ (21)
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Obviously, because w̃(x) is isotropic, w(x) is isotropic as well, i.e. w(x) = w(r).
Defining Ra(x) as the convolution of R(x) with w(x)

Ra(x) ≡ R(x) ∗ w(x) ≡
∫

R(x− x′)w(x′)d3x′ (22)

the energy of the dislocation loop becomes,

Ẽ =
∮
C

∮
C

Bijklmn∂i∂jRa(x− x′)bmb′ndxkdx′l , (23)

Notice that for x = (x, y, z), R(x) =
√

x2 + y2 + z2, so that the spatial deriv-
atives of R follow some simple rules, e.g.,

∂R

∂x
=

x

R
(24)

∂2R

∂x2
=

1

R
− x2

R3
(25)

∂2R

∂x∂y
=−xy

R3
(26)

Suppose we can find a function w(x) such that,

Ra(x) ≡ R(x) ∗ w(x) =
√

R(x)2 + a2 =
√

x2 + y2 + z2 + a2 (27)

where a is an arbitrary constant (core width), then the spatial derivatives of
Ra follow the same simple rules as those of R, e.g.,

∂Ra

∂x
=

x

Ra

(28)

∂2Ra

∂x2
=

1

Ra

− x2

R3
a

(29)

∂2Ra

∂x∂y
=−xy

R3
a

(30)

As long as a > 0, derivatives ∂i∂jRa are non-singular and their expressions
are similar to ∂i∂jR. The energy of a dislocation spread in this specific fashion
is finite while its expression closely resembles that of the classical singular
solution (with a = 0). For example, the energy of a closed loop C the energy
is given by the following double integral

Ens =− µ

8π

∮
C

∮
C

∂k∂kRa bib
′
jdxidx′j −

µ

4π (1− ν)

∮
C

∮
C

∂i∂jRa bib
′
jdxkdx′k
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Fig. 3. (a) Burgers vector distribution function w̃(r) = w̃(x) where r = ‖x‖. (b)
w(r) = w(x) = w̃(x) ∗ w̃(x).

+
µ

4π (1− ν)

∮
C

∮
C

∂k∂kRa bib
′
idxjdx′j − ν

∮
C

∮
C

∂k∂kRa bib
′
jdxjdx′i

(31)

We note that our approach does not share the artifact of the regularization
Approach I described in Section 3, because a closed dislocation loop remains
closed after spreading it out. Therefore, the non-singular dislocation energy
would not change if one were to use a different form of the integrand in the
above expressions (Blin, 1955; de Wit, 1960, 1967a,b).

The function w(x) that leads to Ra =
√

R2 + a2 is (see Appendix A),

w(x) =
15

8πa3[(r/a)2 + 1]7/2
, r = ‖x‖ (32)

Notice that w(x) is the convolution of the Burgers vector distribution function
w̃(x) with itself (Eq. (21)). From Eq. (32), w̃(x) can also be obtained (see
Appendix A). w̃(r) and w(r) are plotted in Fig. 3(a) and (b).

The non-singular stress field σ̃αβ produced by the dislocation at point x is
given by Eq. (18). However, it will be inconsistent to simply plug this stress
into the Peach-Koehler equation to get the local force on another distributed
dislocation centered at point x. When the latter dislocation is spread at point
x according to the same distribution w̃(x), the force at this point is obtained by
a second convolution σ̃αβ(x) with w̃(x). In this case, a more relevant measure
of local stress field is,

σns
αβ(x)≡ σ̃αβ(x) ∗ w̃(x)

=
µ

8π

∮
C

∂i∂p∂pRa

[
bmεimαdx′β + bmεimβdx′α

]
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+
µ

4π(1− ν)

∮
C

bmεimk (∂i∂α∂βRa − δαβ∂i∂p∂pRa) dx′k . (33)

The driving force fns on a dislocation with isotropically distributed dislocation
core centered about a point x is related to this “non-singular” stress σns

αβ(x)
through the Peach-Koehler formula

fns
i (x) = εijk bl ξk σns

jl (x) (34)

The physical interpretation of σns
αβ(x) (apart from its relation with fns) is that

it is the convolution of the stress at field point x with the same function w̃(x)
that defines the spreading of the “source” dislocation core; it is the stress
field to use for computing the Peach-Koehler force on the dislocations. In
other situations, it can be of interest to compute stress σ̃αβ(x) of a “source”
dislocation at field point x that is not convoluted with function w̃(x) for the
second time. Given that function w̃(x) can be well approximated by linear
combinations of functions w(x) (see Appendix A), the above expressions for
σns

αβ(x) can also be used to construct an accurate approximation for σ̃αβ(x). In
any case, when point x is far away from the “source” dislocation (compared
with spread radius a), the difference between σ̃αβ(x) and σns

αβ(x) becomes
vanishingly small.

5 Non-singular stress and energy: analytical results

This section considers several simple dislocation geometries for which close
form analytic solutions can be found. Our primary purpose here is to present
the non-singular solutions and compare them to their counterparts in the
classical theory. All expressions presented below are non-singular for a > 0
and reduce to the classical singular solutions when a → 0. Somewhat more
complicated expressions for the stress field of a straight dislocation segment
are given in Appendix B, both in a coordinate-dependent and in a coordinate-
independent (dyadic) forms. Analytic solutions for the self-energy of a straight
dislocation segment and the interaction energy of two straight dislocation seg-
ments are given in Appendix C, in the coordinate-independent form only.
Suitable for Dislocation Dynamics simulations, these solutions have been im-
plemented into MATLAB and can be downloaded from our website (Cai and
Arsenlis, 2005).

13



5.1 Stress of an infinite straight screw dislocation

For an infinite straight screw dislocation along z axis, with bx = by = 0,
bz = b, the non-singular solution for the stress field is

σns
xz =−µb

2π

y

ρ2
a

(
1 +

a2

ρ2
a

)
(35)

σns
yz =

µb

2π

x

ρ2
a

(
1 +

a2

ρ2
a

)
(36)

σns
xx = σns

yy = σns
zz = σns

xy = 0 . (37)

where ρa =
√

x2 + y2 + a2. In polar coordinates, the only non-zero stress com-
ponent is

σns
θz =

µb

2π

r

ρ2
a

(
1 +

a2

ρ2
a

)
, (38)

where r =
√

x2 + y2. Comparing these solutions to the classical singular so-
lutions, it is immediately apparent that as a → 0 the classical solutions are
recovered.

5.2 Stress of an infinite straight edge dislocation

For an edge dislocation along z axis, with bx = b, by = bz = 0, the non-singular
solution is

σns
xx =− µb

2π(1− ν)

y

ρ2
a

[
1 +

2(x2 + a2)

ρ2
a

]

σns
yy =

µb

2π(1− ν)

y

ρ2
a

[
1− 2(y2 + a2)

ρ2
a

]

σns
zz =− µbν

π(1− ν)

y

ρ2
a

[
1 +

a2

ρ2
a

]

σns
xy =

µb

2π(1− ν)

x

ρ2
a

[
1− 2y2

ρ2
a

]
σns

xz = σns
yz = 0 . (39)

Again, as a → 0, the classical singular solution for the stress field about an
infinite straight edge dislocation is recovered.
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5.3 Circular dislocation loop

In the case of a circular dislocation loop of radius R and Burgers vector b in
the loop plane, the non-singular solution for the loop’s self-energy is

WGL = 2πRµb2

8π

[
2− ν

1− ν

(
ln

8R
a
− 2

)
+

1

2

]
+O

(
a2

R2

)
. (40)

This should be compared with the singular expression Eq. (6-51) of (Hirth and

Lothe, 1982, p.169) obtained using a core cutoff rc, W = 2πR 2−ν
2(1−ν)

µb2

4π

(
ln 4R

rc
− 2

)
.

The driving force for change of the loop radius R (assuming that the loop re-
mains circular) is

fGL
R = −dWGL

dR
= −µb2

4

[
2− ν

1− ν

(
ln

8R
a
− 1

)
+

1

2

]
+O

(
a2

R2

)
(41)

Similarly, for a prismatic dislocation loop of radius R whose Burgers vector b
is perpendicular to the loop plane, the non-singular self-energy is

WPL = 2πR µb2

4π(1− ν)

(
ln

8R
a
− 1

)
+O

(
a2

R2

)
(42)

This should be compared with the singular expression Eq. (6-52) of (Hirth and

Lothe, 1982, p.169) obtained using a core cutoff rc, W = 2πR µb2

4π(1−ν)

(
ln 4R

rc
− 1

)
.

The driving force for changing the loop radius R (in this case by climb) is

fPL
R = −dWPL

dR
= − µb2

2(1− ν)
ln

8R
a

+O
(

a2

R2

)
(43)

6 Self-consistency of the non-singular solutions: numerical results

Self-consistency of our non-singular theory can be shown quite generally fol-
lowing the procedure described on page 107 in Hirth and Lothe (1982). How-
ever, it is also worthwhile to demonstrate self-consistency numerically. To do
so, we calculate the forces two ways, first, as the numerical derivatives of the
energy function and, second, through the Peach-Koehler formula. By showing
that so-computed forces agree with each other, self-consistency is assured with
a bonus of asserting correctness of the numerical implementation of the en-
ergy, stress and force expressions. Such self-consistency can only be expected
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Fig. 4. The Burgers vector is conserved at every point in the dislocation network.
This holds true both for “discretization” nodes (on the left) and for “physical”
nodes, e.g. the nodes connecting three or more dislocation together (on the right).
Following the convention that the line direction ξ always flows out of the node, the
Burgers vector conservation can be written as,

∑
i bi = 0 for every node P in the

dislocation network.

for dislocation configurations in which the Burgers vector is conserved every-
where. In our representation, the degrees of freedom are nodes connected by
straight line segments with a constant Burgers vector along each segment.
As shown in Fig. 4, Burgers vector conservation requires that the sum of the
Burgers vectors at every node must be zero, when the flow directions (sense
vectors ξ) for all the segments connected to this node are defined outward
from the node. We also examine the issue of numerical convergence when a
curved dislocation is represented by increasingly fine segments.

6.1 Forces on the nodes

The total energy Ens of a discretized dislocation configuration is calculated by
summing up the self-energies and the interaction energies of all its segments,
as in Eq. (7). The expressions for the self and interaction energies are given in
Appendix C. Now, the force on node i in the discretized system can be found
as the minus derivative of the total energy with respect to the node position,
i.e.

fns
i = −∂Ens/∂ri . (44)

Alternatively, the force on a node can also be obtained using the virtual force
argument, i.e. by computing appropriate line integrals of the Peach-Koehler
force over the segments connected to the node. For example, consider the
segment r1-r2 in Fig. 5. The coordinate system is defined such that r1 is
at the origin and r2 is a distance L = ‖r2 − r1‖ away on the z-axis. The
contribution from segment r1-r2 to the force on node r2 is equal to the work
of the Peach-Koehler force as the segment sweeps over a triangular shaped
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Fig. 5. Computing driving force on node r2. The contribution from segment r1-r2

is the integral
∫ L
0 f(z)σ(z)dz, where f(z) = z is the weight function.

area due to a virtual displacement of node at r2, i.e.,

fns
2 (1, 2) =

L∫
0

z

L
fns (z) dz (45)

where fns(z) is the Peach-Koehler force per unit length on the segment span-
ning z ∈ [0, L]. The non-singular Peach-Koehler force is defined in Eq. (34).
The total force on a node is then the sum of the partial forces computed in
this manner for each segment that it connects. In Fig. 5, a similar contribution
fns
2 (2, 3) to the driving force on node r2, comes from segment r2-r3. Thus the

total driving force on the node at r2 is,

fns
2 = fns

2 (1, 2) + fns
2 (2, 3) (46)

A compact expression for the contribution of a straight dislocation segment
to the partial forces on the endpoint nodes of another dislocation segment has
been obtained analytically. 2 To conserve space, we do not give these analytical
node force expressions in this paper but make them available in a MATLAB
implementation on the website (Cai and Arsenlis, 2005). The results presented
below were obtained using a Dislocation Dynamics code written in MATLAB also
available from the same website.

6.2 Tests for self-consistency and numerical convergence

Consider a circular dislocation loop with radius R = 10 (in arbitrary units) in
the x-y plane: this geometry has been studied extensively in the literature. Set

2 We would like to point out that in our implementation, the stress field of a finite
straight dislocation segment is generally non-zero on itself. This leads to a non-zero
“self” contribution to the forces on the two end nodes of the segment.
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Fig. 6. (a) A circular glide loop (dashed line) in the x-y plane with Burgers vector
b = [100] is discretized into N = 12 segments (solid line) connecting N nodes (small
open circles). (b) The radial component on nodal force shown here as a function
of node (angular) position along the loop. The straight lines are obtained by stress
integration over the segments and circles are obtained by numerical differentiation.
For every point on the loop, φ marks its orientation angle with respect to x axis.

the Burgers vector b = [100], shear modulus µ = 1, Poisson’s ratio ν = 0.3,
core width parameter a = 0.1 and represent the loop by N nodes connected
by straight segments of equal length, as shown in Fig. 6(a). The force on
each node of the loop is first computed by numerically differentiating the
total energy with respect to the nodal positions. Then, the same nodal forces
are obtained by summing up the contributions from the Peach-Koehler forces
integrated over the segments, as in Eq. (45). Fig. 6(b) shows that the forces
obtained in two different ways agree very well. In fact, the maximum difference
between the two forces is less than 10−3% and attributed to the error in the
(centered) finite difference scheme used to take numerical derivatives of the
total energy. Notice that the discretized geometry contains sharp corners at
every node connecting the neighboring straight segments. Our non-singular
formulation handles this and other similar situations gracefully, whereas the
other existing approaches, e.g. Gavazza and Barnett (1976), require a finite
radius of curvature at the point of force evaluation.

Numerical convergence of the total energy and radial force on the loop is illus-
trated in Fig. 7. Part (a) shows the difference between the loop energy WGL

computed numerically and an analytic solution (Eq. (40)), as a function of
the number of segments N . Part (b) shows the difference between the radial
components of the nodal forces (summed over all N nodes) and the corre-
sponding analytic expression, Eq. (41). The deviation of the numerical results
from the analytic solutions at large N is no more than 10−2% in both cases.
Part of this slight difference is due to the neglect of O(a2/R2) terms in the
analytic solutions Eq. (40) and Eq. (41). To remove this uncertainty, the nu-
merical results are also compared to the (presumably fully converged) energy
and force computed for a very large number of nodes, N = 1200 (Fig. 7).
The deviation from the limit of large N is seen to decay approximately at
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Fig. 7. (a) Elastic energy WGL computed for N = 12, 100, 200, 400, 500, 600 (circle),
where N is the number of straight segments representing a glide dislocation loop of
radius R. The dashed line is the analytic solution Eq. (40) (neglecting the O(a2/R2)
terms). (b) Total radial force summed over all nodes, compared to the analytic
solution for fGL

R = −∂WGL(R)
∂R given in Eq. (41)(dashed line). (c) (Crosses) The

relative deviation of WGL computed for N = 12, 100, 200, 400, 500, 600, from the
converged numerical value (N = 1200). (Circles) The relative deviation of fGL

R as a
function of the number of nodes N .

a rate of N−2. We would like to note that for the finest discretizations, e.g.
N = 600 and N = 1200, the segment length is about the same as or even
smaller than the core width parameter a. Our non-singular theory remains
robust for arbitrarily short segments connected at sharp corners.

7 Comparison with a previous model

The difference between this non-singular model and the previous models lies
in their different treatments of the dislocation core. Lothe (1992) selected a
uniform Burgers vector distribution; Gavazza and Barnett (1976) excluded a
tubular region from total energy calculation; and the actual atomic character
of the Burgers vector in a real crystal may correspond to yet another Burg-
ers vector distribution. Obviously, different core models can lead to different
energy and forces for the same dislocation configuration. Here we intend to
show, by comparison to another model, that two continuum approaches based
on two different core models can be reconciled by adding an appropriate line
energy integral. To avoid possible unwanted effects of non-self-consistent treat-
ment we choose to compare our non-singular self-consistent model with the
non-singular self-consistent model of Gavazza and Barnett (1976).

Consider two self-consistent elasticity models that rely on two different treat-
ments of the dislocation core. Let E1

el(C, a) be the elastic energy of a disloca-
tion loop C given by model 1 with a regularization parameter a. Let E2

el(C, a)
be the elastic energy of the same loop given by model 2. We now intend to
show that, under certain conditions to be specified later, the difference be-
tween E1

el(C, a) and E2
el(C, a) can be subsumed into a line integral along the
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dislocation loop, i.e.,

E2
el(C, a)− E1

el(C, a) ≈
∫
C

E2−1
core(θ, a)dl (47)

where E2−1
core(θ, a) is an energy difference per unit length of the dislocation. This

function can depend on the local character angle θ and on the core parameter
a. Notice that because dislocation segments have long range interactions, both
E1

el(C, a) and E2
el(C, a) necessarily involve double line integrals over C, such

as in Eq. (31). Therefore, Eq. (47) is a non-trivial statement, insisting that
the difference between two double line integrals can be well approximated by
a single line integral. This limits the range of admissible differences between
the predictions of two self-consistent models.

Since Eq. (47) should hold for different dislocation configurations, we should
be able to compute the core energy difference by comparing the energies of
very simple dislocation configurations. Then, the same core energy function
should be able to account for the energy and force differences predicted by the
two models in more complex dislocation configurations. As a demonstration,
we first obtain the core energy difference function between the Gavazza and
Barnett (1976) model and the present model. The simplest structure to extract
core energy differences is a dipole of infinitely long parallel dislocations with
opposite Burgers vectors. In the isotropic elasticity, the stress and strain fields
of edge and screw components of a dislocation dipole do not mix, so that
the dipole energy is simply the sum of the energies of its edge and screw
components.

In the Gavazza-Barnett model (model 1), the energy (per unit length) of a
screw dislocation dipole with Burgers vector b is,

E1
s.d. =

µb2

2π

[
ln
R
a

+O
(

a

R

)]
(48)

where R is the distance between two dislocations of the dipole. Here, without
loss of generality, we have chosen the tube radius ρ to be the same as our
core width a. The energy (per unit length) of an edge dislocation dipole with
Burgers vector b parallel to the separation vector of the two dislocations is,

E1
e.d. =

µb2

2π(1− ν)

[
ln
R
a
− 1− 2ν

4(1− ν)
+O

(
a

R

)]
(49)

Now in the present model (model 2), the energy of the screw dislocation dipole
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is,

E2
s.d. =

µb2

2π

[
ln
R
a

+
1

2
+O

(
a2

R2

)]
(50)

The energy of the edge dislocation dipole is,

E2
e.d. =

µb2

2π(1− ν)

[
ln
R
a

+O
(

a2

R2

)]
(51)

The energy difference between the two models for a dislocation dipole with an
arbitrary character angle θ is,

(
E2

s.d. − E1
s.d.

)
cos2 θ +

(
E2

e.d. − E1
e.d.

)
sin2 θ = 2E2−1

core(θ, a) +O
(

a

R

)
where,

E2−1
core(θ, a)≡ cos2 θ · µb2

8π
+ sin2 θ · µb2(1− 2ν)

16π(1− ν)2
(52)

Therefore, the energy difference between two models for an arbitrary disloca-
tion dipole (with character angle θ and separation R) can be described by the
core energy function, Eq. (52), up to the order of O(a/R). This indicates the
range of applicability of Eq. (47).

To test whether this core energy function also applies to dislocation structures
other than the dipoles, consider a circular glide dislocation loop of radius R.
By integrating the above core energy function over the loop, the net core
energy difference between two models for this loop would be,

2π∫
0

E2−1
core(θ, a)R dθ = πR

[
µb2

8π
+

µb2(1− 2ν)

16π(1− ν)2

]
(53)

In fact, the elastic energy of this loop by the Gavazza-Barnett model is,

E1
GL = 2πRµb2

8π

[
2− ν

1− ν

(
ln

8R
a
− 2

)
+
−1 + 2ν

4(1− ν)2

]
+O

(
a

R

)
(54)

while the elastic energy of the same loop by the present model is,

E2
GL = 2πRµb2

8π

[
2− ν

1− ν

(
ln

8R
a
− 2

)
+

1

2

]
+O

(
a2

R2

)
(55)
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Fig. 8. The radial component of the self-force per unit length on a glide loop with
radius R = 10 and regularization parameter a = 0.1 (µ = 1, ν = 0.3). Angle φ
specifies the orientation of a point on the loop with respect to x-axis. The thin solid
line: f2(φ), the force predicted by the present model. The dashed line: f1(φ), the
force predicted by the Gavazza-Barnett model. The thick solid line: f2−1

core (φ), the
force difference due to core energy differences predicted by Eq. (56). The circles: the
prediction of our model plus the core energy contribution, i.e., f1(φ) + f2−1

core (φ).

The difference between the E2
GL and E1

GL is exactly given by Eq. (53), up to
order of O(a/R). This agreement confirms that a line energy function exists
that matches dislocation total energies obtained within the Gavazza-Barnett
model and within our non-singular model.

The core energy difference introduces a difference in the force on the glide
loop,

f 2−1
core (φ) =

1

R

[
E2−1

core(φ + π/2, a) +
∂2

∂φ2
E2−1

core(φ + π/2, a)

]
(56)

where (R, φ) is the polar coordinate of a point on the dislocation loop (it is
assumed here that the Burgers vector direction is along x-axis, defining the
local character angle at every point on the loop as θ = φ + π/2). As shown
in Fig. 8, f 2−1

core accurately accounts for the difference between self-forces along
the dislocation loop, as predicted by two models. These results demonstrate
consistency between the Gavazza and Barnett (1976) model and the present
model, upon the introduction of a core energy function Eq. (52).

The challenge of reconciling our isotropic dislocation core model with more
realistic atomic descriptions of dislocations is that the atomic cores are not
limited by the assumptions of linear elasticity. However, because the atomistic
models are self-consistent by their very nature, we can attempt to account for
the difference by a core energy that depends on the local character angle of
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the dislocation (Cai et al., 2004b). Note that the energy of a given dislocation
configuration is defined by the interatomic interactions alone with no reference
to any core parameters. On the other hand, the energy defined in our non-
singular model depends explicitly on the core width parameter a. Hence, to
meaningfully match the atomistic and the non-local elastic predictions for the
total energy, the core energy function and the core width parameter a must
be specified simultaneously. Even then, consistency is not guaranteed because
certain features of the dislocation core in a non-linear and discrete atomistic
model cannot be accounted for within continuum linear elasticity.

An accurate way to determine the dislocation core energy is to compute the en-
ergy of a dislocation dipole in an atomistic model subject to periodic boundary
conditions and to compare the result with the energy of the same configura-
tion predicted by the continuum elasticity theory (Cai et al., 2001, 2003). In
principle, the core width parameter a in the elastic model can take any value,
as long as the core energy is so adjusted that, when added to the elastic en-
ergy, it matches the total energy in the atomistic simulation. The choice of
the regularization parameter a affects the (artificial) partitioning of the total
energy between the “core” energy and “elastic” energy. While a and the core
energy term may be arbitrarily chosen to match simple dipole configurations,
an arbitrary pair may not necessarily describe the energy of more complex
geometries very well. A prudent choice for a is a few Burgers vectors, a typical
spread of a dislocation core in an atomistic model. The corresponding core en-
ergy function required to match the energy of an atomistic model is typically
positive for all character angles.

8 Summary

We presented a self-consistent non-singular theory of dislocations. By allowing
the dislocation core to spread according to a carefully chosen isotropic distrib-
ution function, non-singular analytic expressions for energy, stress, and forces
on the dislocations are obtained. The expressions retain most of the analytic
structure of the classical expressions for these quantities but remove the singu-
larity. Our non-singular theory is shown to be self-consistent in that the forces
computed from the Peach-Koehler equation and by taking the derivatives of
the total energy, agree with each other. Our approach is demonstrated to be
consistent with a previous non-singular model, through the introduction of
a core energy function. In the same manner, this analytical elasticity theory
could be reconciled with more realistic atomistic models of dislocations.

Our method is numerically stable and robust. It is applicable to arbitrary 3-
dimensional dislocation configurations and has been successfully implemented
in two Dislocation Dynamics codes. At the same time, the method remains nu-
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merically stable and convergent even when dislocations are represented by very
fine line segments. This latter property opens the door to accurate continuum
calculations with very high resolution, directly comparable to the atomistic
models.
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A Distribution function w̃(r) and w(r)

First, we prove that Ra(x) ≡ R(x) ∗ w(x) = [R2(x) + a2]1/2 when

w(x) =
15

8πa3[(r/a)2 + 1]7/2
. (A.1)

Taking Laplacian ∇2 twice on both sides of the equation R(x)∗w(x) = Ra(x),
we obtain

∇2[∇2R(x)] ∗ w(x) = ∇2[∇2Ra(x)] (A.2)

Because

∇2[∇2R(x)] =∇2
[

2

R

]
= −8πδ3(x) (A.3)

∇2[∇2Ra(x)] =∇2

[
2

Ra

+
a2

R3
a

]
= −15a4

R7
a

(A.4)

we arrive at

w(x) =
15a4

8πR7
a

=
15a4

8π(r2 + a2)7/2
(A.5)

This proves Eq. (A.1). Obviously, w(x) → δ3(x) in the limit a → 0,.

Given w(x), w̃(x) can be obtained numerically by Fourier Transform. Specif-
ically, let W (k) and W̃ (k) be the Fourier transforms of w(x) and w̃(x), re-

spectively. Then W̃ (k) =
√

W (k). Obtained by an inverse Fourier Transform,

the numerical result for w̃(x) is plotted in Fig. 3(a).

That the single convolution function w̃(x) is not available in an analytic form is
not a limitation when it comes to computing forces on dislocation lines. This
is because we intentionally constructed the theory so that what enters the
relevant expressions is the double convolution function w(x) that is available
in an analytic form. However, if a true (not smeared) stress in a material point
is of interest, e.g. for computing the effect of dislocations on a point defect
or a grain boundary, we offer the following approximate but “practically”
acceptable solution for the single convolution function w̃(x).
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Fig. B.1. A coordinate system for deriving the stress field of a straight dislocation
segment.

The following expression fits the numerically computed w̃(x) shown in Fig. 3(a),
with a relative error not exceeding 2× 10−3,

w̃ =
15

8π
×
[

1−m

a3
1 (r2/a2

1 + 1)
7/2

+
m

a3
2 (r2/a2

2 + 1)
7/2

,

]
(A.6)

where a1 = 0.9038a, a2 = 0.5451a and m = 0.6575. This function is made up
of two functions of the same form as the double convolution function w(x)
but with two different (smaller) widths a1 and a2. Furthermore, to maintain
normalization, the two component functions are weighted with factors 1 −
m and m, respectively. In addition to being nearly exact numerically, this
function is convenient to use because the convolution of the singular stress
expression with function w(x) is available for arbitrary a (Appendix B). To
compute the singly convoluted stress at a point x, all one needs to do is to
compute the non-singular stress σns at point x twice using two different values
of a and then sum them up with their weights.

B Stress field of a straight dislocation segment

B.1 A coordinate-dependent form

Following Hirth and Lothe (1982, p.133), let us choose a coordinate system
such that the dislocation segment lies on z axis, from z′ = z1 to z′ = z2, as
shown in Fig. B.1. Stress at point x can be now obtained by taking the integral
in Eq. (33) along z-axis from z1 to z2. The result for σns

αβ will be expressed as
the difference between the values of the indefinite integral taken at z1 and z2,

σns
αβ = σns

αβ(z′ = z2)− σns
αβ(z′ = z1) (B.1)

Defining
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σ0≡
µ

4π(1− ν)
(B.2)

λ≡ z′ − z (B.3)

the stress components are,

σns
xx

σ0
=

bxy

Ra(Ra + λ)

[
1 +

x2 + a2

(Ra)
2 +

x2 + a2

Ra(Ra + λ)

]
+

byx

Ra(Ra + λ)

[
1− x2 + a2

(Ra)
2 − x2 + a2

Ra(Ra + λ)

]
σns

yy

σ0
=

−bxy

Ra(Ra + λ)

[
1− y2 + a2

(Ra)
2 − y2 + a2

Ra(Ra + λ)

]
− byx

Ra(Ra + λ)

[
1 +

y2 + a2

(Ra)
2 +

y2 + a2

Ra(Ra + λ)

]
σns

zz

σ0
= bx

{
2νy

Ra(Ra + λ)

[
1 +

a2/2
(Ra)

2 +
a2/2

Ra(Ra + λ)

]
+

yλ

(Ra)
3

}
−by

{
2νx

Ra(Ra + λ)

[
1 +

a2/2
(Ra)

2 +
a2/2

Ra(Ra + λ)

]
+

xλ

(Ra)
3

}
σns

xy

σ0
=

−bxx

Ra(Ra + λ)

[
1− y2

(Ra)
2 −

y2

Ra(Ra + λ)

]
+

byy

Ra(Ra + λ)

[
1− x2

(Ra)
2 −

x2

Ra(Ra + λ)

]
σns

xz

σ0
=− bxxy

(Ra)
3 + by

[
− ν

Ra
+

x2

(Ra)
3 + (1− ν)

a2/2
(Ra)

3

]
+

bz(1− ν)y
Ra(Ra + λ)

[
1 +

a2/2
(Ra)

2 +
a2/2

Ra(Ra + λ)

]
σns

yz

σ0
= bx

[
ν

Ra
− y2

(Ra)
3 − (1− ν)

a2/2
(Ra)

3

]
+ by

xy

(Ra)
3 −

bz(1− ν)x
Ra(Ra + λ)

[
1 +

a2/2
(Ra)

2 +
a2/2

Ra(Ra + λ)

]
(B.4)

Because the stress can be expressed in several equivalent forms, we will refer to
these expressions as form 1. In the limit a → 0, Ra → R, and the expressions
above reduce to those given in Hirth and Lothe (1982, p.134). Please note that
the above expression cannot be obtained simply by replacing R by Ra in the
singular expressions in Hirth and Lothe (1982). For example, there are several
terms with a2 in the numerator which might easily be missed if one takes such
a naive approach.

The above expressions (form 1) should be used when the field point is to the
right of the segment, i.e. z1 < z2 < z. If, on the other hand, the field point is
to the left of the segment, i.e. z < z1 < z2, then λ < 0. If, furthermore, the
field point is collinear with the segment, i.e. x = y = 0, then R+λ = 0. In the
original singular expressions with a = 0, form 1 is not well behaved numerically
in this case, because it contains terms with R + λ in the denominator. On the
other hand, the stress field itself should be well behaved, since the field point
does not overlap with the dislocation segment. The solution is to switch to
different stress expressions (form 2) that are well behaved in the z < z1 < z2

regime.

When a > 0, this problem never turns up since Ra + λ will always be greater
than zero. However, it is still a good practice to use form 2 when z < z1 < z2

to preserve the numerical accuracy by avoiding the subtraction of two large
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numbers to get a small number. Form 2 of the stress expressions is given
below.

σns
xx

σ0
=

−bxy

Ra(Ra − λ)

[
1 +

x2 + a2

(Ra)
2 +

x2 + a2

Ra(Ra − λ)

]
− byx

Ra(Ra − λ)

[
1− x2 + a2

(Ra)
2 − x2 + a2

Ra(Ra − λ)

]
σns

yy

σ0
= bx

yλ

ρ2
aRa

[
1− 2(y2 + a2)

ρ2
a

− y2 + a2

(Ra)
2

]
+ by

xλ

ρ2
aRa

[
1 +

2(y2 + a2)
ρ2

a

+
y2 + a2

(Ra)
2

]
σns

zz

σ0
= bx

{
−2νy

Ra(Ra − λ)

[
1 +

a2/2
(Ra)

2 +
a2/2

Ra(Ra − λ)

]
+

yλ

(Ra)
3

}
−by

{
−2νx

Ra(Ra − λ)

[
1 +

a2/2
(Ra)

2 +
a2/2

Ra(Ra − λ)

]
+

xλ

(Ra)
3

}
σns

xy

σ0
=

bxx

Ra(Ra − λ)

[
1− y2

(Ra)
2 −

y2

Ra(Ra − λ)

]
− byy

Ra(Ra − λ)

[
1− x2

(Ra)
2 −

x2

Ra(Ra − λ)

]
σns

xz

σ0
=− bxxy

(Ra)
3 + by

[
− ν

Ra
+

x2

(Ra)
3 + (1− ν)

a2/2
(Ra)

3

]
− bz(1− ν)y

Ra(Ra − λ)

[
1 +

a2/2
(Ra)

2 +
a2/2

Ra(Ra − λ)

]
σns

yz

σ0
=
[

ν

Ra
− y2

(Ra)
3 − (1− ν)

a2/2
(Ra)

3

]
+ by

xy

(Ra)
3 +

bz(1− ν)x
Ra(Ra − λ)

[
1 +

a2/2
(Ra)

2 +
a2/2

Ra(Ra − λ)

]
(B.5)

When the field point is between two end points of the segment, i.e., z1 ≤ z ≤
z2, the following form 3 should be used.

σns
xx

σ0
=− bxyλ

ρ2
aRa

[
1 +

2(x2 + a2)
ρ2

a

+
x2 + a2

(Ra)
2

]
− byxλ

ρ2
aRa

[
1− 2(x2 + a2)

ρ2
a

− x2 + a2

(Ra)
2

]
σns

yy

σ0
=

bxyλ

ρ2
aRa

[
1− 2(y2 + a2)

ρ2
a

− y2 + a2

(Ra)
2

]
+

byxλ

ρ2
aRa

[
1 +

2(y2 + a2)
ρ2

a

+
y2 + a2

(Ra)
2

]
σns

zz

σ0
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{
−2νyλ

ρ2
aRa

[
1 +

a2

ρ2
a

+
a2/2
(Ra)

2

]
+

yλ

(Ra)
3

}
− by

{
−2νxλ

ρ2
aRa

[
1 +

a2

ρ2
a

+
a2/2
(Ra)

2

]
+

xλ

(Ra)
3

}
σns

xy

σ0
=

bxxλ

ρ2
aRa

[
1− 2y2

ρ2
a

− y2

(Ra)
2

]
− byyλ

ρ2
aRa

[
1− 2x2

ρ2
a

− x2

(Ra)
2

]
σns

xz

σ0
=− bxxy

(Ra)
3 + by

[
− ν

Ra
+

x2

(Ra)
3 + (1− ν)

a2/2
(Ra)

3

]
− bz(1− ν)yλ

ρ2
aRa

[
1 +

a2

ρ2
a

+
a2/2
(Ra)

2

]
σns

yz

σ0
= bx

[
ν

Ra
− y2

(Ra)
3 − (1− ν)

a2/2
(Ra)

3

]
+ by

xy

(Ra)
3 +

bz(1− ν)xλ

ρ2
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[
1 +

a2

ρ2
a

+
a2/2
(Ra)

2

]
(B.6)

Here ρa ≡
√

x2 + y2 + a2 and Ra =
√

x2 + y2 + z2 + a2.

All three forms above are very similar to the original expressions given in
Hirth and Lothe (1982). Hence, modifications required to implement the non-
singular expressions in place of the singular solutions, are minor.
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B.2 A coordinate-independent form

Consider a straight dislocation segment with two ends x1 and x2 and the
Burgers vector b. The stress field of this segment at point x is,

σns
ij (x) =

µ

8π

x2∫
x1

∂l∂p∂pRabk(εilkdx′j + εjlkdx′i)

+
µ

4π (1− ν)

x2∫
x1

bkεlkm(∂l∂i∂jRa − δij∂l∂p∂pRa)dx′m (B.7)

where

Ra =
√

(xk − x′k) (xk − x′k) + a2 (B.8)

The result of this integral can be written as,

σns (x) =T (x− x2)−T (x− x1) (B.9)

where function T is defined as,

T (R)

To

= [(R× b) · t] [A1 (R⊗R) + A2 (t⊗R + R⊗ t) + A3 (t⊗ t) + A4I]

+A5 [(R× b)⊗ t + t⊗ (R× b)] + A6 [(t× b)⊗R + R⊗ (t× b)]

+A7 [(t× b)⊗ t + t⊗ (t× b)] (B.10)

with

To =
µ

4π (1− ν)
(B.11)

t=
x2 − x1

‖x2 − x1‖
(B.12)

A1 =−
R · t

[
3 (Ra)

2 − (R · t)2
]

(
(Ra)

2 − (R · t)2
)2

(Ra)
3

(B.13)

A2 =
1

(Ra)
3 − (R · t) A1 (B.14)

A6 =− R · t(
(Ra)

2 − (R · t)2
)
Ra

(B.15)

A3 =− R · t
(Ra)

3 + A6 + (R · t)2 A1 (B.16)
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A4 = A6 + a2A1 (B.17)

A5 = (ν − 1) A6 −
a2 (1− ν)

2
A1 (B.18)

A7 =
ν

Ra

− (R · t) A6 −
a2 (1− ν)

2
A2 (B.19)

and I is the identity tensor.

C Expressions for self-energies and interaction energies of straight
segments

Consider two straight dislocation segments: one segments with its ends at x1

to x2 and with Burgers vector b and another one with its ends at x3 to x4 and
with Burgers vector b′. The interaction energy between the two dislocation
segments is,

W ns =− µ

8π

x4∫
x3

x2∫
x1

∂k∂kRa bib
′
jdxidx′j −

µ

4π (1− ν)

x4∫
x3

x2∫
x1

∂i∂jRa bib
′
jdxkdx′k

+
µ

4π (1− ν)

 x4∫
x3

x2∫
x1

∂k∂kRa bib
′
idxjdx′j − ν

x4∫
x3

x2∫
x1

∂k∂kRa bib
′
jdxjdx′i



Interaction energy between two non-parallel segments
When the two segments are not parallel, their interaction energy can be writ-
ten as,

W ns
12 = W ns (x4 − x2) + W ns (x3 − x1)−W ns (x4 − x1)−W ns (x3 − x2)

(C.1)

The function W (·) is defined as,

W ns (R)

Wo

= (A1 − A′
2)R · v′ ln [Ra + R · t′] + A′

3R · u ln [Ra + R · t′]

+ (A1 − A2)R · v ln [Ra + R · t] + A3R · u ln [Ra + R · t] + A4Ra

+
(A1 − A5)

[
2 (R · u)2 + (u · u) a2

]
√

(u · u) a2 + (R · u)2
tan−1

(1 + t · t′) Ra + R · (t + t′)√
(u · u) a2 + (R · u)2


(C.2)

where
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t=
x2 − x1

‖x2 − x1‖
(C.3)

t′ =
x4 − x3

‖x4 − x3‖
(C.4)

u= t× t′ (C.5)

v =u× t (C.6)

v′ = t′ × u (C.7)

Ra =
√

R ·R + a2 (C.8)

Wo =
µ

4π (1− ν) (u · u)
(C.9)

A1 = (1− ν) (b · t) (b′ · t′) + 2ν (b′ · t) (b · t′) (C.10)

A2 = [(b · b′) + (b · t) (b′ · t)] (t · t′) (C.11)

A′
2 = [(b · b′) + (b · t′) (b′ · t′)] (t · t′) (C.12)

A′
3 = [(b · u) (b′ · v′) + (b′ · u) (b · v′)] t · t′

u · u
(C.13)

A3 = [(b · u) (b′ · v) + (b′ · u) (b · v)]
t · t′

u · u
(C.14)

A4 = [(b · t) (b′ · v) + (b · t′) (b′ · v′)] (t · t′) (C.15)

A5 = 2 [(b× u) · (b′ × u)]
t · t′

u · u
(C.16)

Interaction energy between two parallel segments
When the two segments are parallel, i.e. t = t′, function W ns(R) = W ns

‖ (R)
becomes,

W ns
‖ (R)

Wo

= {(b · t) (b′ ·R) + (b ·R) (b′ · t) (C.17)

− [(2− ν) (b · t) (b′ · t) + b · b′]R · t} ln [Ra + R · t] (C.18)

+ [(1− ν) (b · t) (b′ · t) + b · b′] Ra (C.19)

− [b ·R− (R · t) (b · t)] [b′ ·R− (R · t) (b′ · t)]
(Ra)

2 − (R · t)2 Ra (C.20)

+
a2 [(1 + ν) (b · t) (b′ · t)− 2 (b · b′)]

2
(
(Ra)

2 − (R · t)2
) Ra (C.21)

where

Wo =
µ

4π (1− ν)
(C.22)
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Self-energy of a dislocation segment
The self-energy of a dislocation segment can be obtained from the solution
for the interaction energy of two parallel segments. Since the theory is non-
singular, the energy remains finite even when b = b′, x4 = x2, and x3 = x1,
leading to the following expression for the self-energy

W ns
self = W ns

‖ (0)−W ns
‖ (x2 − x1)

=
µ

4π (1− ν)

{[
b · b− ν (b · t)2

]
L ln

[
La + L

a

]
− 3− ν

2
(b · t)2 (La − a)

}
(C.23)

where

L = ‖x2 − x1‖ (C.24)

La =
√

L2 + a2 (C.25)
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