
Manual 08 for MD++

Tcl Language as MD++ Input

Keonwook Kang and Wei Cai

February 7, 2007

1 Tcl Basics

Tcl (pronounced like “tickle”) stands for “Tool Command Language”. It is a
powerful and popular scripting language that has a very simple grammar. It was
invented by Dr. John Ousterhout then employed by Sun Microsystems.1 You can
find more information and reference materials about Tcl at http://www.tcl.tk/.
MD++ can take Tcl scripts as input files (suffix .tcl), in which we can use if
statements, for loops, and define user procedures, to better control the flow of
our simulations. MD++ understands all Tcl grammar and functions, plus three
additional functions: MD++, MD++ Get and MD++ Set, which we will explain later.
In this section, we give a brief introduction to Tcl through a few examples that
illustrates the most common use of Tcl in MD++. You may skip this section if
you are already familiar with Tcl.

1.1 Hello World !

Tcl is usually installed by default on any Linux system. To check whether you
have Tcl on your computer, type

$ which tclsh

The shell command which prints out the location of the tclsh, the Tcl in-
terpreter. The location is usually

/usr/bin/tclsh

As an example, let us create a simple Tcl script, hello.tcl, which reads,

#!/usr/bin/tclsh
puts "hello, world!!!"
puts "Print special characters: \$, \\, \[, \""

1Dr. Ousterhout is Professor of Computer Science at U. C. Berkeley and member of the
National Academy of Engineering.

1

We can change it to an executable file and run it by typing

$ chmod u+x hello.tcl
$./hello.tcl

You should see the following printout on your screen.

hello, world!!!
Print special characters: $, \, [, "

Usually every line in a Tcl script begins with a command, such as puts, fol-
lowed by the arguments for the command, such as the string to be printed on
the screen. The backslash \ needs to be used if we want to print special char-
acters such as $. Otherwise, Tcl will interprete them differently. For example,
Tcl would replace $x by the value of variable x.

1.2 Variables and numerical calculations

The following file, yis.tcl, illustrates how to set value to a variable and perform
simple calculations.

#!/usr/bin/tclsh
set x 1
set y [expr 1.0/(99+$x)]
set z [expr 1/(99+$x)]
puts "y is $y and z is $z when x=$x."
puts "y is [format %20.13e $y]\

and z is [format %5d $z] when x=$x."

In Tcl, we do not need to declare a variable before we first assign its value. Here
we first set variable x to be 1. To be precise, the value of x is the character
“1” but not the numerical value 1. To perform numerical calculations, we have
to use the expr command, which will interprete $x as the numerical value 1.
The square brackets, [and], are special characters in Tcl. Tcl will execute the
command within the square brackets and replace it with the return value of the
command. In this example, 1.0/(99+$x) is the argument for command expr.
The return value of this command then becomes the second argument of the
command set (the first argument of the command is a new variable y). Run
this script by typing

$ chmod +x yis.tcl
$./yis.tcl

and you should see the following printout on your screen,

y is 0.01 and z is 0 when x=1.
y is 1.0000000000000e-02 and z is 0 when x=1.

2

The command format converts a variable to a string according to the format
specified in its first argument. It is very similar to the sprintf function in
ANSI-C. Notice that the values of y and z are different because the former
is the result of floating point operations and the latter is the result of integer
operations.

1.3 while and for loops

Consider the following script, ysare.tcl.

#!/usr/bin/tclsh
set x 1
while {$x < 100} {

set y [expr 1.0/(99+$x)]
puts "y = [format %20.13e $y] at x = [format %5d $x]"
set x [expr $x + 1]

}

Run this script by

$ chmod +x ysare.tcl
$./ysare.tcl

The output should be

y = 1.0000000000000e-02 at x = 1
y = 9.9009900990099e-03 at x = 2
y = 9.8039215686275e-03 at x = 3

:
:

y = 5.1020408163265e-03 at x = 97
y = 5.0761421319797e-03 at x = 98
y = 5.0505050505051e-03 at x = 99

The while command takes two arguments, each enclosed by a pair of braces {
and }, which are special characters of Tcl. The last line within the while loop
can be replaced by incr x 1. Command incr can only be used to increment
a variable by an integer. We can also replace the while loop by the following
for loop.

#!/usr/bin/tclsh
for {set x 1} {$x < 100} {incr x} {

set y [expr 1.0/(99+$x)]
puts "y = [format %20.13e $y] at x = [format %5d $x]"

}

The for command has four arguments, each enclosed by a pair of braces. The
white spaces between } and the following { are mandatory. If, for example, we
write

3

for {set x 1}{$x < 100} {incr x} {

Then “set x 1}{$x < 100” will be treated as the first argument and the for
loop will not run correctly.

1.4 if and switch flow control

The following script, ysareif.tcl, illustrates how to pass arguments to the
script from the command line, and how to use conditional statements such as
if and which to direct the flow of the program.

#!/usr/bin/tclsh
puts "The name of this script is $argv0"
if {$argc > 0} {

puts "There are $argc arguments to this script."
puts "The argument is : $argv"
set flag $argv

} else {
puts "There are no argument to this script."
puts "Default argument = \"G(radual)\" is used."
set flag "G"

}

switch $flag {
G {

puts "In case of argument = \"G(radual)\","
for {set x 1} {$x < 100} {incr x} {
set y [expr 1.0/(99+$x)]
puts "y = [format %20.13e $y] at x = [format %5d $x]"

}
}
I {

puts "In case of argument = \"I(nstantaneous)\","
for {set x 1} {$x < 100} {incr x} {
set y [expr $x/100.0]
puts "y = [format %20.13e $y] at x = [format %5d $x]"

}
}
default {

puts "No action specified for the given argument"
}

}

You can run the script with argument “G”

$./ysareif.tcl G

4

or with argument “I”

$./ysareif.tcl I

or other (more than one) arguments to see the effects. More tutorial materials
can be found at http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html.

2 Using Tcl in MD++

MD++ will interprete the input file according the Tcl syntax if it has .tcl
as the extension name. In comparison, MD++ will treat the input file as a
regular script file (syntax described in Manuals 01-04) if the extension name is
.script. In a Tcl input file, we can execute an MD++ command by putting
MD++ at the beginning of the line. Tcl will treat the remaining part of the line
as the arguments of the command MD++, which will call MD++ to interprete its
arguments. We can also pass multiple lines of MD++ script as the argument
of the MD++ command, by enclosing them with braces { and }. For example,
the si.script file discussed in Manual 02 can be translated to the following
Tcl file, si.tcl, and MD++ will perform identical operations, i.e. creating a
perfect crystal and visualizing it, when receiving both files as inputs.

-*-shell-script-*-
MD++ setnolog
MD++ setoverwrite
MD++ dirname = runs/si-example

#--
#Create Perfect Lattice Configuration
#
MD++ element0 = Si
MD++ crystalstructure = diamond-cubic
MD++ latticeconst = 5.4309529817532409 #(A) for Si
MD++ {

latticesize = [1 0 0 2
0 1 0 2
0 0 1 3]

}
MD++ makecrystal writecn

#--
#Plot Configuration
#
MD++ atomradius = 0.67 bondradius = 0.3 bondlength = 2.8285
MD++ atomcolor = orange highlightcolor = purple
MD++ bondcolor = red backgroundcolor = white
MD++ plotfreq = 10 rotateangles = \[0 0 0 1.25 \]

5

MD++ openwin alloccolors rotate saverot eval plot
MD++ sleep quit

Because square brackets, [and], are special characters in Tcl syntax, we need
to precede them by backslash, i.e. \[and \], or enclose them by braces, { and
}, before passing them as arguments to the MD++ command. The latest version
of MD++ parses Tcl syntax by default. When the input file has extension name
.script, it automatically creates a temporary .tcl file, which starts with MD++
{ and ends with }, and includes the original .script file in between. MD++
then proceeds to parse the temporary .tcl file.

2.1 Grouping

Tcl allows us to define our own functions (subroutines, or procedures). We can
take advantage of this feature to better organize the MD++ input file. The
syntax for procedure definition is

proc name { args } { body }

Consider the following Tcl input file si2.tcl.

-*-shell-script-*-
#***
Definition of procedures
#***
proc initmd { n } { MD++ {
setnolog
setoverwrite
dirname = runs/si-example-$n
zipfiles = 1 # zip output files
NIC = 200 NNM = 200
#--
Create Perfect Lattice Configuration
#
element0 = Si
crystalstructure = diamond-cubic
latticeconst = 5.430949821 #(A) for Si
latticesize = [1 0 0 2

0 1 0 2
0 0 1 3]

} }

#--
proc openwindow { } { MD++ {
Plot Configuration
#
atomradius = 0.67 bondradius = 0.3 bondlength = 2.8285 #for Si

6

atomcolor = orange highlightcolor = purple
bondcolor = red backgroundcolor = gray70
plotfreq = 10 rotateangles = [0 0 0 1.25]
openwin alloccolors rotate saverot eval plot
} }

#***
Main program starts here
#***
initmd 1
MD++ makecrystal writecn
openwindow
MD++ sleep quit

This input file also asks MD++ to create a perfect Si crystal and visualize it.
The main program is contained in the last 4 lines of this file. The first line will
lead to the creation of the directory runs/si-example-1 because the argument
for command initmd is 1. Using proc allows us to give more structure to the
input file and make it easy to read and manage.

2.2 MD++ Get and MD++ Set

MD++ Get retrieves the value of an MD++ variable and pass it to Tcl, and
MD++ Set allows Tcl to assign the value of an MD++ variable. For example,

puts "totalsteps = [MD++ Get totalsteps]

prints the value of MD++ variable totalsteps on the screen (which is not
possible to do within the original script file). To assign value to the variable
totalsteps, we can write, e.g.

MD++ Set totalsteps 1000

We can also do the same thing by writting

MD++ totalsteps = 1000

Hence there is some redundancy here. We can also specify the individual value
of an array by, e.g.,

MD++ Set EPOT IND(10) 0.1

or

MD++ EPOT IND(10) = 0.1

7

We can also reference individual elements of an array in MD++ Get in the
same way. With MD++ Get we can retrieve internal variables of MD++, such
as potential energy EPOT, without having to grep the A.log file. The following
Tcl file (si-bulk.tcl) performs the calculations needed to compute the bulk
modulus (see Manual 03) and prints out the potential energy as a function of
the lattice constant. The results are printed out to the screen by a user-defined
function MD++ PrintVar, which uses MD++ Get to fetch the value of the variable
of interest.

-*-shell-script-*-
#***
Definition of procedures
#***
proc initmd { } { MD++ {
setnolog
setoverwrite
dirname = runs/si-example
zipfiles = 1 # zip output files
#
NIC = 200 NNM = 200
#--
Create Perfect Lattice Configuration
#
element0 = Si
crystalstructure = diamond-cubic
latticeconst = 5.430949821 #(A) for Si
latticesize = [1 0 0 4

0 1 0 4
0 0 1 4]

} }

proc MD++_PrintVar { name {unit \?} {fmt %11.4e} } {
puts "$name\t= [format $fmt [MD++_Get $name]] (in $unit)"

}

#***
Main program starts here
#***
initmd
MD++ makecrystal writecn

MD++ saveH

for {set x 997} {$x <= 1003} {incr x} {
set y [expr $x/1000.0]
MD++ restoreH input = \[$y \] scaleH

8

1.015 1.02 1.025 1.03 1.035

x 10
4

−2370.55

−2370.5

−2370.45

−2370.4

−2370.35

−2370.3

−2370.25

Simul. box volume (Angstrom3)

E
to

t (
eV

)
data point
data fit

Figure 1: Potential energy Epot vs. simulation box volume Ω. Data points are
fitted to a parabola to compute bulk modulus B.

MD++ eval
MD++_PrintVar OMEGA "A^3" "%21.14e"
MD++_PrintVar EPOT "eV" "%21.14e"

}

MD++ quit

Every MD++ variable that was bound to a string (by bindvar in md.cpp) can
be fetched by MD++ Get. Some widely used variables are: number of atoms
NP, simulation box volume OMEGA, potential energy EPOT, kinetic energy KATOM,
instantaneous temperature Tinst, pressure PRESSURE, current iteration step
curstep, total internal stress (Virial + kinetic term) TSTRESS xx, TSTRESS yy,
TSTRESS zz, TSTRESS xy, TSTRESS xz, TSTRESS yz, etc.. The Tcl file above can
be run with SW potential by typing

$ bin/sw gpp scripts/Examples/Tcl/si-bulk.tcl

Results like the following will be printed on the screen.

OMEGA = 1.03445152348275e+04 (in A^3)
EPOT = -2.37028099055573e+03 (in eV)

The for loop creates 7 different configurations and asks MD++ to evaluate the
potential energy. The data points, (OMEGA, EPOT), can be fitted to a parabola as
shown in figure 1. The bulk modulus of B = 108.1 GPa can be obtained from
the second derivative of the curve. MD++ command saveH saves the current
box matrix H to storage, i.e. H0 := H. restoreH performs H := H0. scaleH
multiplies the constant specified by input to every components of H, which is
equivalent to give a uniform strain to the entire simulation box.

9

2.3 Writing data file

Instead of printing the results to the screen, it is usually more convenient to
save the results in a data file in your favorite format. This can be easily done
with the open and puts command in Tcl. The final part of the previous Tcl file
can be modified to the following to save the results in to file EvsVol.dat.

MD++ saveH
set fileID [open "EvsVol.dat" w] # open file to write
for {set x 997} {$x <= 1003} {incr x} {

set y [expr $x/1000.0]
MD++ restoreH input = \[$y \] scaleH
MD++ eval
puts $fileID "[format %21.14e [MD++_Get OMEGA]]\t \

[format %21.14e [MD++_Get EPOT]]"
}
close $fileID # close data file

Variable $fileID contains the file handler for the data file that was just opened
for writing. When $fileID is given as the first argument for puts, the output
is redirected to the file instead of to the screen. Don’t forget to close the file by
the close command before exiting the simulation. After running MD++ with
this input file, you will obtain a EvsVol.dat file with the following content.

1.01599792136425e+04 -2.37027775032590e+03
1.01905815401367e+04 -2.37043479747376e+03
1.02212452554299e+04 -2.37052875901589e+03
1.02519704210336e+04 -2.37055999874412e+03
1.02827570984600e+04 -2.37052887814698e+03
1.03136053492207e+04 -2.37043575643357e+03
1.03445152348275e+04 -2.37028099055573e+03

This can be easily loaded into your favorite software to be plotted, such as
Matlab or Octave, or Gnuplot.

2.4 Command line arguments

With Tcl we can pass extra arguments from the command line when we run
MD++. In this way, one input file can perform a set of different but related
tasks, depending on the command line arguments. In the following example
(si-bulk3.tcl), MD++ will decide whether or not to relax the atomic positions
before printing out the potential energy, depending on the value of the first
command line argument (following the input file name).

-*-shell-script-*-
#***
Definition of procedures
#***

10

proc initmd { } { MD++ {
setnolog
setoverwrite
dirname = runs/si-example
zipfiles = 1 # zip output files
NIC = 200 NNM = 200
#--
Create Perfect Lattice Configuration
#
element0 = Si
crystalstructure = diamond-cubic
latticeconst = 5.430949821 #(A) for Si
latticesize = [1 0 0 4

0 1 0 4
0 0 1 4]

} }

#--
proc relax_fixbox { } { MD++ {
Conjugate-Gradient relaxation
conj_ftol = 1e-6 conj_itmax = 1000 conj_fevalmax = 1000
conj_fixbox = 1 relax
} }

#***
Main program starts here
#***
initmd
MD++ makecrystal
if {$argc > 0} {

set do_relax [lindex $argv 0]
puts "do_relax = $do_relax"

}

MD++ saveH
set fileID [open "EvsVol.dat" w]
for {set x 997} {$x <= 1003} {incr x} {

set y [expr $x/1000.0]
MD++ restoreH input = \[$y \] scaleH
if { $do_relax == 1 } { relax_fixbox }
MD++ eval
puts $fileID "[format %21.14e [MD++_Get OMEGA]]\t \

[format %21.14e [MD++_Get EPOT]]"
}
close $fileID
MD++ quit

11

If we run this script by typing

$ bin/sw gpp scripts/Examples/Tcl/si-bulk3.tcl 1

then MD++ relaxed the atomic structure to an energy minimum before printing
out the potential energy to the data file, because the first argument is 1. $argv
is an array and [lindex $argv 0] retrieves the first element of the array.
On the other hand, if we run MD++ by

$ bin/sw gpp scripts/Examples/Tcl/si-bulk3.tcl

then there is no relaxation. In this particular case, there is no difference in
the data file created by these two runs. But if we compute elastic constants
other than the bulk modulus (such as C11, C12, C44), allowing the atoms to
relax will generally give a different value for a compound crystal structure such
as diamond cubic (with more than one basis atom). The results for relaxed
configurations correspond to experimental measurements.

2.5 User defined Tcl subroutines for MD++

As mentioned earlier, Tcl allows us to define subroutines to describe commonly
used operations and facilitate our use of MD++. For example, the following
subroutines can help us print out MD++ matrices, arrays, and vector arrays
conveniently within Tcl.

proc index3 { ID coord } {
set ind.x 1; set ind.y 2; set ind.z 3
expr { $ID * 3 + [set ind.$coord] - 1 }

}

proc MD++_GetVector { name ID coord } {
MD++_Get $name [index3 $ID $coord]

}

proc MD++_PrintVar { name {unit \?} {fmt %11.4e} } {
puts "$name\t= [format $fmt [MD++_Get $name]] (in $unit)"

}

proc MD++_PrintMatrix { name {unit \?} {fmt %11.4e} } {
puts "$name\t= [format $fmt [MD++_Get $name 0]]\

[format $fmt [MD++_Get $name 1]]\
[format $fmt [MD++_Get $name 2]] (in $unit)"

puts "\t [format $fmt [MD++_Get $name 3]]\
[format $fmt [MD++_Get $name 4]]\
[format $fmt [MD++_Get $name 5]]"

puts "\t [format $fmt [MD++_Get $name 6]]\

12

[format $fmt [MD++_Get $name 7]]\
[format $fmt [MD++_Get $name 8]]"

proc MD++_PrintArray {name {unit \?} {i0 0} {i1 3} {fmt %11.4e}} {
for {set ID $i0} {$ID < $i1} {incr ID 1} {

puts "$name\($ID\)= [format $fmt [MD++_Get $name $ID]]\
[expr {$ID==$i0?"(in $unit)":" "}]"

}
}

proc MD++_PrintVectorArray { name {unit \}?} {i0 0} {i1 3}
{fmt %11.4e} } {

for {set ID $i0} {$ID < $i1} {incr ID 1} {
puts "$name\($ID\)=([format $fmt [

MD++_GetVector $name $ID x]]\
[format $fmt [

MD++_GetVector $name $ID y]]\
[format $fmt [

MD++_GetVector $name $ID z]])\
[expr {$ID==$i0?"(in $unit)":" "}]"

}
}

If these definitions are included at the beginning of your Tcl input file, then you
can use the following commands.

MD++_PrintMatrix TSTRESS "eV/A^3"
MD++_PrintMatrix H "A"
MD++_PrintVectorArray SR "no unit" 0 5
MD++_PrintArray EPOT_IND "eV" 0 5

They will lead to printouts that look like the following.

TSTRESS = -5.9944e-03 5.4507e-21 -1.0648e-20 (in eV/A^3)
5.4507e-21 -5.9944e-03 5.4507e-21

-1.0648e-20 5.4507e-21 -5.9944e-03
H = 2.1789e+01 0.0000e+00 0.0000e+00 (in A)

0.0000e+00 2.1789e+01 0.0000e+00
0.0000e+00 0.0000e+00 2.1789e+01

SR(0)= (-5.0000e-01 -5.0000e-01 -5.0000e-01) (in no unit)
SR(1)= (-3.7500e-01 -3.7500e-01 -5.0000e-01)
SR(2)= (-5.0000e-01 -3.7500e-01 -3.7500e-01)
SR(3)= (-3.7500e-01 -5.0000e-01 -3.7500e-01)
SR(4)= (-4.3750e-01 -4.3750e-01 -4.3750e-01)
EPOT_IND(0)= -4.6295e+00 (in eV)
EPOT_IND(1)= -4.6295e+00
EPOT_IND(2)= -4.6295e+00

13

EPOT_IND(3)= -4.6295e+00
EPOT_IND(4)= -4.6295e+00

The command MD++ PrintMatrix prints a matrix, such as the total stress tensor
(TSTRESS). The command MD++ PrintVectorArray prints a segment of an array
of vectors. In the example we printed the scaled coordinates (SR) of atoms 0
to 4. The command MD++ PrintArray prints an array of scalar, such as the
individual potential energy contribution of atoms 0 to 4. It is likely that more
Tcl subroutines will be developed by MD++ users as the use of Tcl in MD++
continues.

14

