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Abstract
The efficiencies of one implicit and three explicit time integrators have been
compared in line dislocation dynamics simulations using two test cases: a
collapsing loop and a Frank–Read (FR) source with a jog. The time-step size
and computational efficiency of the explicit integrators is shown to become
severely limited due to the presence of so-called stiff modes, which include the
oscillatory zig-zag motion of discretization nodes and orientation fluctuations of
the jog. In the stability-limited regime dictated by these stiff modes, the implicit
integrator shows superior efficiency when using a Jacobian that only accounts
for short-range interactions due to elasticity and line tension. However, when a
stable dislocation dipole forms during a jogged FR source simulation, even the
implicit integrator suffers a substantial drop in the time-step size. To restore
computational efficiency, a time-step subcycling algorithm is tested, in which
the nodes involved in the dipole are integrated over multiple smaller, local time
steps, while the remaining nodes take a single larger, global time step. The time-
step subcycling method leads to substantial efficiency gain when combined with
either an implicit or an explicit integrator.

Keywords: dislocation dynamics, time integrator, implicit method, subcycling

(Some figures may appear in colour only in the online journal)

1. Introduction

Modeling crystal plasticity by dislocation dynamics (DD) has been a computationally
challenging endeavor for the last 25 years [1–9]. In DD, individual dislocations are discretized
and modeled in a material simulation cell. By accounting for the various driving forces on each
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segment arising from elastic interactions between segments, applied loads, and other features
such as free surfaces and obstacles, and then applying suitable mobility laws, the plastic
deformation of the material arises naturally from motion of the dislocations. Such models are
computationally challenging for two main reasons: (1) force calculations are expensive due
to the long-range stress fields of dislocations and (2) efficient time integration of dislocation
motion is difficult. While much research has focused on dealing with the former issue [9–11],
the latter issue has gone largely uninvestigated.

Most DD models assume dislocation motion is over-damped, where drag forces intrinsic
to the crystal lattice are dominant so that inertia can be neglected. This leads to a system of
first-order ordinary differential equations (ODEs) of motion of the form [12]

v ≡ dr

dt
= g({r}), (1)

where r is the 3N -dimensional vector of nodal positions of N nodes, and g(·) is a mobility
function that subsumes the force calculation [13] and the material-specific mobility law [14].
The problem of DD is thus to numerically solve this system of ODEs efficiently and accurately.
Because DD seeks a solution to metal plasticity in the time domain, efficient time integration
is necessary, in addition to efficient force calculation, at each time step.

The potential of DD to provide insight into to the physics of work hardening in metals
can be fully realized only if DD simulations can accumulate plastic strains comparable to
experimental values, usually on the order of 10% or higher. To date, DD simulations of
material volumes large enough to represent bulk metal behavior (∼1000 µm3) are limited to
about 3% strain or less [9, 15, 17]. Much of the work to overcome this disparity has focused
on developing efficient, parallelized algorithms for force calculations [9–11, 16]. Despite the
implementation of a variety of such approaches, simulation strains remain small. On the
other hand, a survey of the major DD codes reveals that most use very simple explicit time
integrators (e.g. forward Euler [3, 4, 18, 19, 36]). Very rarely are these simple approaches the
most efficient. Some researchers have considered more advanced time integration algorithms
in DD [20]. This work aims to extend these efforts by evaluating the performance of a variety
of different time integrators and the time-step-limiting aspects of DD simulations.

In order to thoroughly investigate time integration in DD, we break up the problem into two
separate studies. The first study, which is presented here, will examine the roles of accuracy and
stability on the simulation time-step size, but will exclude the effects of topological changes
(i.e. dislocation annihilation and junction formation, but remeshing is allowed); these effects
will be avoided here for the sake of scope and clarity and will be the subject of an upcoming
companion paper. It will be demonstrated that even in the absence of topological changes,
achieving efficient time integration in DD is a complex and challenging problem. There exist
multiple mechanisms that can dramatically reduce the time-step size of a simple integrator,
and an efficient integration scheme needs to address all of them. This paper will present two
case studies: a prismatic loop and a Frank–Read (FR) source with a jog. Though these case
studies are small, they provide insight into the problematic modes of dislocation motion that
can severely hinder the overall efficiency. Specifically, we will show that short dislocation
segments and segments in close proximity, both of which are commonly found in large-scale
simulations, introduce such modes. The overarching goal of these studies is to determine an
optimized solution algorithm for DD simulations of bulk work hardening. The first step in
doing so is optimizing the algorithm for smaller problems that isolate problematic modes, and
this is the goal of this work.

The remainder of this paper will be organized as follows. Section 2 introduces the explicit
and implicit integrators examined in this work. Section 3 compares the performance of these
integrators in the two test cases. The analysis will focus on the modes of dislocation motion that
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cause significant drops in the time step with certain integrators, and the algorithmic features
needed to efficiently increase the time step. Section 4 presents a discussion on how the
findings here can be applied to large-scale DD simulations of bulk work hardening, followed
by a summary in section 5.

2. Time integrators

2.1. Overview

Time integrators can be broken into two broad categories: explicit and implicit. Explicit
integrators provide an estimate of the solution at the next time-step based only on current and
past nodal positions and velocities, allowing the solution to be determined explicitly in one
calculation. They are relatively simple to implement and a variety of different types exist with
various orders of accuracy. In contrast, implicit integrators require knowledge of the nodal
velocities at the next time step also. Since these velocities are functions of the nodal positions
at the next time step, which are still unknown, implicit integrators yield implicit expressions
that must be solved iteratively (if the system is nonlinear), usually by the Newton–Raphson
method. Solving the problem in this way is computationally much more demanding, but the
added benefit is stability. When the system of ODEs contains phenomena occurring at both
very small and very large time scales, it is called stiff and an implicit integrator is usually
necessary to integrate it efficiently.

Therefore, an important question to ask when selecting a time integrator is whether the
problem is stiff. Any system has a number of modes associated with its degrees of freedom
and each has a characteristic time constant or frequency. Some modes may be of little practical
interest in terms of the overall behavior we are trying to capture, but may introduce tremendous
error to the simulation if the time step is not sufficiently small. For instance, the oscillation of
a dislocation segment in a stable configuration during a work hardening simulation will bear
no weight on the overall behavior. If such modes are present and have much smaller time
constants than the main modes of interest (i.e. a FR source bowing out), then the system is said
to be stiff. In this case, all explicit integrators will be stability limited and forced to take very
small time steps; a large time step can cause dislocation motion to become unstable leading to
unphysical multiplication. When this happens, an implicit integrator is likely to provide much
higher efficiency [21, 22].

If, on the other hand, the system is not stiff and an explicit integrator can be competitive,
there is a broad library of such integrators available for use. Which integrator will be
most effective is dictated by the characteristics of the specific problem [25], so the selection
process requires trial and error. Performance can vary significantly across different classes of
integrators making it worthwhile to consider a broad range. For DD simulations, we find that
both explicit and implicit integrators can be competitive, depending on the problem of interest.

2.2. Error control

For all simulations conducted in this work, the time-step size will be selected adaptively based
on the error estimate provided by each method and the error tolerance allowed by the user.
The error estimate for each integration scheme is presented below or in appendix A. To
specify the error tolerance, we employ both relative and absolute error control. To control
absolute error at each time step, the positioning error of each node, ei , must be less than the
absolute tolerance, rtol. Relative error is limited by requiring that the ratio of the positioning
error to the total distance traveled for each node, ei/‖ri (t + �t) − ri (t)‖ where ri is the
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position vector of node i and ‖ · ‖ denotes the L2 norm, must be less than the relative
error tolerance, ftol. When dislocation segments are moving very slowly, the relative error
criterion can lead to unnecessarily small error requirements. We therefore also enforce an
error threshold, rth, such that any node with absolute error below rth is considered to have
passed both requirements (rth � rtol). Unless otherwise stated, the tolerance parameters were
given the values rtol/b = 10, ftol = 0.01, and rth/b = 0.01, where b is the Burgers vector
magnitude. These values were found to provide physically reasonable solutions (e.g. stable
with smooth line structures) for all simulations presented here.

2.3. Explicit integrators

Three explicit integrators are evaluated in this paper: the Heun method, the Runge–Kutta–
Fehlberg (RKF) method, and a Bulirsch–Stoer (BS) method. They are briefly summarized
below. More implementation details are given in appendix A.

Both the Heun and RKF methods belong to the Runge–Kutta family of methods. These
are referred to as single-step methods in that they use (mobility) function evaluations only
within the range of integration (i.e. between the current and future time steps). The Heun
method [23] is also called the Euler-trapezoid method and is used in the ParaDiS program [9].
It uses a forward Euler predictor and a trapezoidal method corrector:

r0
k+1 = rk + �t g(rk) (2)

r
j+1
k+1 = rk + �t

g(rk) + g(r
j

k+1)

2
, (3)

where we have denoted the nodal position vector at time step k as rk , the iterate number as
a superscript, and the time-step size as �t . The predictor and corrector are globally first and
second order accurate, respectively. The error for each node i is defined as

ei = ‖(rj+1
k+1)i − (r

j

k+1)i‖. (4)

If the error is too large after using equations (2) and (3), then a fixed point iteration is applied
with equation (3). After a pre-specified maximum number of iterations, if the iteration fails to
converge the time step �t is reduced and the process is attempted again (see appendix A for
details).

The RKF method provides a fifth-order accurate solution and an error estimate in only six
function evaluations. The RKF algorithm is outlined in appendix A and further information
can be found in [24].

BS methods are a family of approaches that apply an explicit method over the same time
range with multiple step sizes and then use Richardson extrapolation to produce a higher order
estimate of the solution. This overall technique is called Romberg integration, and we utilize an
implementation that uses the modified midpoint method [24]. With this method, each iteration
increases the order of accuracy by two, so with the iteration constraints imposed here (see
appendix A) the order of accuracy varies between 2, 4 and 6.

We end this section with some comments on multi-step methods, which are commonly used
in numerical simulations, but are not evaluated in this paper. Multi-step methods use function
evaluations from previous time steps to augment the order of accuracy. These methods are
referred to as non-self-starting because there are no previous time steps to use at the beginning
of the simulation. Thus a different method must be used until a sufficient nodal history is
developed. In addition, for these methods, stability requires that the solution be smooth and
continuous [25]. These aspects are particularly troublesome for DD simulations because new
nodes are added and discontinuous topological changes occur frequently, effectively resetting
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the time-step count to zero for these nodes. Furthermore, the fact that we need to maintain
nodal history at intervals equal to the current time-step size imposes strict requirements on how
the time-step size can be changed. For these reasons, multi-step methods will not be discussed
further in this paper.

2.4. Implicit integrators

The most common implicit methods applied to stiff problems are the backward differentiation
formulas (BDFs) developed by Gear [21]. These formulas are variable-order, implicit, multi-
step relationships for the solution at the next time step. As discussed above, multi-step methods,
implicit or explicit, are difficult to use in DD simulations where remeshing and topological
changes occur. Therefore, in this work, instead of BDFs, we choose the single-step trapezoidal
method:

rk+1 = rk + �t
g(rk) + g(rk+1)

2
. (5)

The solution of equation (5) requires a nonlinear equation solver, for which we choose the
Newton–Raphson method. First we rewrite equation (5) as the search for the root of function
F(·), where

F(rk+1) = rk+1 − rk − �t
g(rk) + g(rk+1)

2
. (6)

The Newton–Raphson method can then be expressed as

r
j+1
k+1 = r

j

k+1 + �r
j

k+1, (7)

where superscripts again represent iteration number, and �r
j

k+1 is the solution of the linear
system

J(r
j

k+1) �r
j

k+1 = −F(r
j

k+1). (8)

J is the Jacobian matrix, whose components can be expressed as

Jmn(r) = ∂Fm

∂rn

= δmn − �t

2

∂gm(r)

∂rn

. (9)

Equation (9) shows that the Jacobian, J , is the identity matrix (Kronecker delta) minus �t/2
times the Jacobian Jmob of the mobility function, g(·), in equation (1),

J mob
mn (r) ≡ ∂gm(r)

∂rn

. (10)

The fact that the Jacobian needs to be calculated is the main source of difficulty for implicit
methods. In this work, the Jacobians were calculated using a combination of analytical and
numerical methods (see appendix B). To solve equation (8), the mldivide function (i.e. the ‘\’
operator) in MATLAB was used. The cost of these operations was confirmed to be negligible in
comparison to the dislocation force calculations in the test cases considered here. In general,
the cost of solving these linear systems using direct methods can become large, however,
making iterative solution methods desirable. A more detailed study of this cost is the subject
of future work. The solution error at each iteration is taken to be the norm of the residual
vector F for each node. For the first iteration of the method, the solution from the previous
time step is used, since an initial guess made with an explicit method could be unstable and
inaccurate. Finally, we emphasize that even though the Heun scheme also uses the trapezoidal
approximation, it is a conditionally stable method; the trapezoidal method, equation (6), must
be solved directly using a technique like the Newton–Raphson method to achieve unconditional
stability [26].
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2.5. Subcycling

In order to maintain efficiency with jogged FR source simulations, a time integration scheme
known as subcycling will need to be implemented. Subcycling is an approach for handling
problems with spatially disparate time-step sizes developed by the structural dynamics
community [33–35]. The basic idea is to allow different degrees of freedom in the system to
progress with different time-step sizes. Each element or node (depending on the partitioning
scheme) is allowed to progress with its own time-step size, usually selected based on elemental
stability conditions. In DD, however, these maximum stable (or sufficiently accurate) time
steps are not known a priori. Instead, in DD simulations we usually allow the integrator to
automatically adjust the time step to satisfy the specified error tolerance [9] (see section 2.2).
Algorithms of this sort have been implemented in DD before (termed ‘sub-stepping’ [36]
and ‘under-integration’ [37]) motivated by the observation that generally a small fraction of
the nodes in a simulation, often those experiencing close-ranged interactions and/or in stable
configurations, require very small time steps. Here we will present a new subcycling algorithm
and perform a detailed evaluation of its performance.

Our implementation begins with the classification of the nodes of a simulation into two
groups. We denote the nodes to be subcycled as group 1 and the remaining nodes as group 0.
The ‘global’ time step corresponds to that of group 0. Group membership will be determined
at the beginning of every global time step according to the proximity of dislocation segments.
If two disconnected segments are within some radius, rg, of each other, then their nodes will
be added to group 1. In principle, group assignments can be made using a number of other
criteria, such as the local error, but we here choose this approach for simplicity. We believe
this grouping algorithm can be justified using stability arguments, but we save this discussion
for a future study.

Because dislocation segment interactions are long-ranged and every degree-of-freedom
interacts with every other degree-of-freedom, we need to manipulate the mobility function
operator, g(·), to enable subcycling. We employ the approach of operator-splitting [38],
whereby the differential (mobility law) operator is split into two (or more) separate operators
which are then solved separately with the solutions coupled in some way. We split the governing
ODE, equation (1), into the form

dr

dt
= g0({r}) + g1({r}), (11)

where g0(·) only contains velocities for group 0 nodes (the velocities for group 1 nodes are
zero), and g1(·) only contains velocities for group 1 nodes. We then solve this system as
follows:

dr̂

dt
= g0({r̂}), t ∈ [tn, tn+1] with r̂(tn) = rn (12)

dr

dt
= g1({r}), t ∈ [tn, tn+1] with r(tn) = r̂n+1. (13)

This means that we first move group 0 nodes with group 1 nodes fixed-in-place, and then move
group 1 nodes with group 0 fixed in their new positions. The solution rn+1 is then accepted as
the final solution, rn+1. This is called the sequential operator-splitting method [38]. Obviously,
some error is introduced by solving the problem in this way, referred to as splitting error, but
we will demonstrate that for our test case here this error is small.

Now, to apply subcycling, we first advance the nodes in group 0 using the chosen integrator
by solving equation (12) with the global time step �t . Then the nodes in group 1 are advanced
with equation (13) using the same integrator but at a smaller time step for multiple steps
(i.e. subcycles) until they catch up with the global clock set by group 0. The subcycle step
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size changes dynamically based on the selected integration algorithm. To save computational
expense, the forces exerted by group 0 on group 1 are calculated only at the beginning of a
subcycle phase (one global time step). During the subcycles, only the forces due to interactions
within group 1 are updated, leading to significant computational savings. This means that we
are essentially using the forward Euler integrator for group 0 effects on group 1, making our
subcycling approach a mixed method [34, 39], i.e. mixing different time integration schemes.
We believe this approach is sound because, if our grouping algorithm is effective, the behavior
of group 1 nodes will be dominated by their interactions with other group 1 nodes and no
destabilizing modes will exist between group 0 and group 1.

For additional computational savings, we employ a ‘forward progress check’ on all group
1 nodes during subcycling. The idea is that often times the nodes in group 1 are in an
equilibrium state (i.e. a stable dipole, as in the case of the jogged FR source) and oscillating
back and forth due to numerical noise. Hence capturing the details of this behavior is neither
physically meaningful nor numerically significant. We cannot, however, completely ignore
these nodes (e.g. hold them fixed-in-place) in case the local stress is large enough to overcome
this equilibrium. The goal of the forward progress test is to determine whether the nodes
are merely oscillating around an equilibrium state or attempting to leave group 1. If a node
reverses its direction of motion during subcycling (within a global time step), this node will
be fixed-in-place during the remainder of the subcycles. The subcycling stops if all nodes in
group 1 are fixed, even if the local clock has not caught up with the global clock.

3. Results

We now compare the performance of the four integrators introduced above in the two case
studies, and discuss the algorithmic features that lead to higher efficiency. All simulations
were conducted using the MATLAB code DDLab [28], which is a serial variant of the parallel
C program ParaDiS [9, 12, 29].

3.1. Collapsing prismatic loop

3.1.1. Simulation setup. Consider a circular prismatic loop collapsing by climb due to its own
elastic energy and core energy (line tension). A prismatic loop is chosen here for simplicity
because, unlike a glide loop, all dislocation segments in a prismatic loop have edge character
and the loop remains circular during the simulation. All dislocation segments in the loop have
the same core energy per unit length, which is designated by Ec/(1 − ν), that results in a
line tension force experienced locally everywhere along the loop. Additionally, when elastic
interactions are enabled, all segments experience Peach–Koehler forces due to the stress field of
every segment, including themselves. The non-singular continuum theory of dislocations [13]
is used to evaluate the resulting forces on the nodes. A linear mobility law is assumed such
that the nodal velocity is given by [12]

vi = fi

B
∑

j Lij /2
, (14)

where fi is the net force vector on node i and the summation is over the (two) neighboring
nodes connected to node i. A constant drag coefficient B is used (all segments have edge
character and are moving by climb).

DD simulations can be performed for various ratios of core and elastic energies, which
can be measured by the dimensionless parameter α = Ec/(µ b2). When the core radius is
chosen to be rc/b = 1, α is in the range of 0.5 to 1 for most metals [32]. For benchmarking
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Figure 1. (a) Snapshots of a DD simulation of a circular prismatic loop collapsing
by climb shown at intervals of about �t µb2/[BR2

0(1 − ν)] = 0.106 with α = 0.5.
The circle is represented with 10 uniform segments. (b) Radius of a prismatic loop
collapsing by climb as a function of nondimensional time, T = t A/[BR2

0(1 − ν)]
where with elasticity enabled A = µb2 and with line tension only A = Ec. Analytical
solution shown for α = 0 (no line tension), α = 0.5, and α = 1 with rc/b = 1 and line
tension only (thick line). Dots are the DD simulation results corresponding to (a). The
initial radius for all is R0/b = 103.

purposes, we have performed simulations with elastic energy only (α = 0), line tension
only (µ = 0), and with both elastic energy and line tension present (e.g. α = 0.5).
Figure 1(a) plots snapshots of a DD simulation with α = 0.5. Figure 1(b) plots the analytical
solutions (given in appendix C) and a comparison with the DD prediction corresponding to
figure 1(a).

3.1.2. Accuracy versus stability. When the collapsing prismatic loop is simulated by DD
using an explicit integrator, the allowable time-step size can depend on both the error tolerance
and the dislocation segment length. Figure 2(a) presents the number of solution time steps
required for the prismatic loop of initial radius R0 = 103b to shrink to 1/10 of its original
radius using the Heun method as a function of the absolute integration tolerance, rtol, when the
loop is uniformly discretized into different numbers (N ) of segments. For these calculations,
the relative error tolerance, ftol, was set to an arbitrarily large value and the error threshold,
rth, was set to zero. Because all segments have the same length (l), in this example there is a
simple relationship between N and l, i.e. N ≈ 2πR/l.

First, we note that the number of solution steps increases significantly as the number of
segments increases (element size decreases). Secondly, with longer segments (N = 10) the
number of solution steps decreases as rtol is increased. This is an indication that the simulation
accuracy is limiting the time step. As the segment size decreases, however, the curve slope
lessens until the number of solution steps becomes insensitive to the tolerance (N � 40). Even
when the integration tolerance is a significant fraction of the initial loop radius, the number of
time steps still does not decrease. This signals the transition to a regime where the time step
is limited by stability.

The maximum stable time step for an explicit integrator can be expressed as (when all
eigenvalues are real)

�t s
max = cint

|λ|max
, (15)
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Figure 2. (a) Number of solution time steps for a prismatic loop collapsing from the
initial radius R0 = 103 b to the final radius Rf = 0.1R0, as a function of absolute
integration tolerance size, with α = 0.5 and different numbers of elements. (b)
Maximum stable time-step sizes for a prismatic loop with line tension only as a function
of the smallest segment length; ◦ are for a loop with uniformly sized segments, ×
for randomly sized segments, and � for a loop with 19 uniformly sized segments and
1 small segment. The dashed line is a fit assuming �t s

max ∝ (2πR/lmin)
−2 and the

dashed–dotted lines are fits assuming �t s
max ∝ (2πR/lmin)

−1.

where |λ|max is the maximum eigenvalue magnitude of the Jacobian Jmob of the mobility
function g(·), and cint is an integrator-specific constant. For instance, with the Heun and RKF
integrators, the theoretical values3 of cint are 2 [26] and 3.7 [27].

To examine the stability limit of DD simulations of a collapsing prismatic loop, we
calculated the eigenvalues of Jmob (see appendix B) and the corresponding maximum stable
time steps �t s

max. These calculations were performed for loops represented both by segments
of uniform length and by segments of randomly chosen lengths. The eigenmode paired with
|λ|max always corresponds to a radial, zig-zag motion, as was previously observed by [20] in
their figure 4. Figure 2(b) presents the results with line tension only. For uniformly discretized
loops, the resulting �t s

max, when expressed in dimensionless form, is found to follow the
relationship (with line tension only)

�t s
max

cintBR2(1 − ν)/Ec
= 10

(
2πR

l

)−2

. (16)

This is shown by the circles and dashed line in figure 2(b). Furthermore, when all segments
in the loop are equal in length except for one short segment of length lmin, the maximum
stable time step is found to instead scale with (2πR/lmin)

−1, as shown by the triangles and
dashed–dotted line in figure 2(b). For loops discretized into segments of random lengths, the
dependence of �t s

max appears to be in between (2πR/lmin)
−1 and (2πR/lmin)

−2. These same
scaling trends are observed when elastic interactions are accounted for as well.

Given �t s
max, we can estimate the number of solution steps needed for an explicit integrator

as a function of the smallest element size. When the time step is always stability limited, we
find that for a shrinking prismatic loop described by the line-tension-only model and discretized

3 Stability is most often analysed with a first order, linear, homogeneous ODE. Since any problem can be linearized
(and diagonalized, if possible), this provides a fairly universal assessment of stability.
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by uniform segments, the necessary number of solution steps is (see appendix D)

Nsol = ln

(
R0

Rf

) [
1

10 cint

(
2πR

l

)2

− 1

]
+ O

([
2πR

l

]−2
)

, (17)

where Rf is the final radius. Notice that 2πR/l remains unchanged during the simulation,
since we do not allow remeshing. Equation (17) predicts that the number of solution steps
increases quadratically with 2πR/l for explicit integrators in the stability-limited regime.

3.1.3. Comparison among integrators. We first compare the performance of all four
integrators, Heun, RKF, BS and implicit, for the line-tension-only model of the dislocation
loop (i.e. no elasticity). Figure 3(a) plots the number of solution time steps as a function of the
inverse of element size for all four of the integrators with R0 = 103 b and Rf = 0.1 R0. The
predictions of equation (17) are also plotted for the explicit integrators, with cint values chosen
as empirical fitting parameters; we found that cint = 2.33, 4, and 4.9 for Heun, RKF, and BS,
respectively, provide excellent fits when the number of segments is large. Note that the values
for the Heun and RKF methods are very close to the theoretical values. Because equation (17)
gives an accurate description of the number of solution steps as a function of segment length,
in conjunction with the evidence in figure 2(a), we conclude that under these conditions the
time steps are stability limited. Furthermore, for the implicit integrator the number of solution
steps is almost entirely insensitive to the element size, confirming that it better tolerates the
introduction of unstable, stiff modes.

Even though the number of solution steps enables a qualitative comparison between
integrators, it is not an accurate measure of computational cost because different integrators
require differing amounts of computation per time step. Higher order methods such as RKF
and BS perform more calculations (calls to function g(·)) per step than the lower order
Heun method. Also, an implicit method usually requires more calculations per step than an
explicit method. To compare the costs, we have plotted the number of force calculations
(calls to function g(·)) as a function of 2πR/l in figure 3(b). It can be seen that with
coarser discretization (smaller 2πR/l) the explicit methods are competitive. However, as
the discretization of the loop is refined the implicit solver scales much more favorably
and eventually becomes more efficient, with the cross-over point at about 2πR/l = 30,
which is close to the boundary of the stability-limited regime observed in figure 2(a).
It is also worth noting that in the stability-limited regime (where the implicit method is
the most efficient), the lower order Heun method performs the best among the explicit
methods.

Similar conclusions can be made when elasticity is turned on in the DD simulations.
Figures 3(c) and (d) present the same data as above with α = 0.5. The computational cost
is now measured in terms of the number of calls to segment–segment interactions. (To find
the force on all nodes in a loop discretized into N segments requires O(N2) calculations
of segment–segment interactions.) When long-range elastic interaction is allowed, the full
Jacobian matrix Jmob is so expensive to evaluate that it can make the implicit integrator less
efficient than the explicit integrators. Therefore, we have used the Jacobian derived from
the line-tension-only model as an approximation to the true Jacobian. Unfortunately, such an
approximation deteriorates the efficiency of the implicit integrator, making it only slightly better
than the explicit integrators, even in the stability-limited regime (see figure 3(d)). However,
we found that by accounting for near-neighbor elastic interactions in the Jacobian (which
incurs a small computational cost, which is accounted for in figure 3(d)), the efficiency of the
implicit method is dramatically improved, as shown by the stars in figures 3(c) and (d). Elastic
interaction terms were added to the Jacobian if two segments were within the enhancement
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Figure 3. Comparison of (a), (c) number of time steps and (b), (d) number of force
calculations as a function of inverse element size with a collapsing prismatic loop for
all four solvers. (a) and (b) are with line tension only and (c) and (d) are with α = 0.5.

radius, renh, of each other, here set to renh = R/10. When the implicit method uses an
approximated Jacobian containing near-neighbor elastic interactions, the computational cost
shows a more favorable scaling behavior than the explicit methods, though the improvement
is less dramatic than that with the line-tension-only model. Including more elastic interactions
in the approximated Jacobian does not seem to improve the efficiency of the implicit method.

3.2. Jogged FR source

3.2.1. Simulation setup. To evaluate integrator performance in a more complex scenario,
we choose the geometry of a centrally jogged FR source of length L and height h that is
initially of edge character, as depicted in figure 4(a). The jogged FR source provides three
important features for this study: (1) it prevents collision and annihilation (which are beyond
the scope of this study) even when it is fully activated; (2) if the jog height is sufficiently
small a stable dipole may form, allowing the evaluation of integrator performance with closely
approaching segments; and (3) the jog is a physical element that cannot be removed by a
remeshing algorithm. The last point is significant because small physical segments do appear
during large-scale bulk work hardening simulations and are believed to have an adverse effect
on the time step. Of course when the jog height h is zero the geometry of a traditional, flat FR
source is recovered.
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(a)

(b)

Figure 4. A jogged FR source before (a) and after (b) a dipole has formed. The FR
source in (a) and (b) have different jog heights and are not shown to the same scale.

As shown in figure 4(a), the Burgers vector of the FR source is along the x-axis. Glide
occurs in the x-y plane for the source arms and in the x–z plane for the jog. The nodes at
either end of the jog are constrained to move only in the x-direction.

In all simulations unless stated otherwise, a constant shear stress of τxz/µ = 0.0075 is
applied, and both core energy and elastic interactions are included with α = 0.5. Remeshing
is enabled in all simulations to control the length of all discretization segments to be within
lmin and lmax, and to control the area of all triangles spanned by neighboring segments to be
within Amin and Amax [9, 12]. The remaining simulation parameters are L/b = 500, rc/b = 1
and ν = 0.3. Given lmax and rtol, the other three remeshing parameters are determined by the
following relationships: lmax/lmin = 4, Amin = 2rtol lmax and Amax = 2Amin + (

√
3/8) l2

max.

3.2.2. Before dipole formation. We will first consider the behavior of the FR source before the
arms complete a full revolution and before the possibility of a stable dipole forming. Examining
this case allows us to compare the integrator performances between the (expanding) FR source
and the (collapsing) prismatic loop in section 3.1. The simulations here are conducted for a
duration of t µ/B = 3 × 105 which corresponds to approximately 270◦ of revolution of the
arms (figure 4(a)).

First we consider a traditional, jog-free FR source (h = 0). Figure 5 presents the plastic
strain due to the bowing out of the source at different values of L/lmax, normalized by the
average (across all five data sets) of the solutions with the smallest segment size, εo. It can
be seen that all integrators converge to approximately the same value as the segments are
refined, indicating that the chosen error tolerances are reasonable. Figure 6(a) compares the
number of solution steps using different integrators as a function of L/lmax. Figure 6(b)
compares the computational cost of the different integrators. In contrast to the collapsing loop
simulations, the implicit method is most efficient regardless of element size, even when the
Jacobian includes only the line tension terms. When the elastic interactions between segments
within renh = L/4 are included in the approximated Jacobian, the efficiency of the implicit
method is further improved, as shown by the stars in figure 6(b). Again, the addition of further
elastic interactions in the Jacobian did not provide a performance gain. DD simulations with
a relatively large jog height of h = L/32 show similar trends to the jog-free case shown here.
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Figure 5. Plastic strain due to bowing out of the FR source as a function of the maximum
segment size for all four integrators. For the implicit solver, results with a line-tension-
only Jacobian and an elasticity enhanced Jacobian with renh = L/4 are shown. All data
are normalized by the average plastic strain across all results with the smallest segment
size, εo.

Next we consider a FR source containing a short jog. Figure 6(c) shows how the jog height
affects the number of solution steps of each solver with jog heights from h = L/16 down to
h = L/1024 and with L/lmax kept at 2. Figure 6(d) compares the computational cost in terms
of the number of segment–segment interaction calculations. For all of the explicit integrators,
both the number of solution steps and the computational cost increase linearly with the inverse
of the jog height. This linear scaling is consistent with the case of a collapsing prismatic
loop when only one segment is of a shorter length (figure 2(b)); here the jog has a much
shorter length than all other segments. In this case, the jog introduces a destabilizing mode
where the nodes at either end of the jog zig-zag forward and backward rapidly, when using
an explicit integrator with a large time step. The most important conclusion from figures 6(c)
and (d) is that the performance of the implicit integrator is unaffected by the jog height h.
Furthermore, this performance can be achieved with a line-tension-only Jacobian, indicating
that this unstable mode is dominated by line tension. The implicit method clearly out-performs
all the explicit methods in this regime.

3.2.3. After dipole formation. After a jogged FR source is activated, a stable dipole can form
when the two arms gliding on parallel planes meet, provided that h is small enough, as shown
in figure 4(b). Due to strong and rapidly varying short-range elastic interactions between
segments in the dipole, the dipole formation is expected to introduce a stiff mode and reduce
the simulation time step4. In the following, we show that the dipole formation has a severe
impact on both the explicit and implicit integrators considered here, so that further algorithmic
development (e.g. subcycling) is needed to restore computational efficiency.

To evaluate the effects of dipole formation we extend the simulation time to t µ/B =
4.6×105. Figure 7(a) shows that, as soon as the dipole forms at about t µ/B = 4.2 ×105, the
simulation time-step drops precipitously for all the integrators considered here. The time-step

4 An eigenvalue analysis can easily be performed using linear elasticity theory of straight dislocations to demonstrate
the maximum stable time step and resulting stiffness of a dipole.
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Figure 6. Comparison of (a) number of time steps and (b) number of segment–segment
interactions as a function of inverse maximum element size with a jog-free FR source
for all four solvers. For the implicit solver, results with a line tension only Jacobian and
an elasticity enhanced Jacobian with renh = L/4 are shown. Comparison of (c) number
of time steps and (d) number of segment–segment interactions as a function of inverse
jog height with a jogged FR source for all four solvers. L/lmax was kept constant at 2
for these simulations. Implicit results with a line-tension-only Jacobian are shown.

drop with the implicit method when using the line-tension-only Jacobian (LT) is as significant
as the explicit methods. This is not surprising because the Jacobian does not contain any
information on the strong interaction between the dipole, which is the cause of the time-step
drop here. When the Jacobian includes interactions between segments within renh = L/4 of
each other (LT+E), large enough to include the dipole, the time step of the implicit integrator
is improved. However, even in this case, the time step is still lower than the values before
the dipole formation, and also suffers from periodic drops to even lower values. These drops
coincide with the entrance of new segments into the dipole. We have confirmed that some
amount of this time-step reduction with the implicit integrator is due to accuracy limitation
since when the relative tolerance is increased to ftol/b = 0.25 the time-step reduction is
lessened (see figure 7(a), this is in contrast to increasing ftol with explicit methods (not shown)
where the time-step drop is unchanged), but stability does appear to be a factor as well.

Table 1 compares the computational cost of all four integrators in units of millions of
segment–segment interaction calculations during the period after the dipole has formed with
two different dipole heights. Without subcycling, the Heun method is most efficient with the
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Figure 7. (a) Time-step size as a function of time for a jogged FR source with L/h = 128
and L/lmax = 2. When the dipole forms, the time-step drops with all integrators. Results
from three versions of implicit methods are shown here: (1) using line-tension-only
Jacobian (LT), (2) including some elastic interaction terms in the Jacobian (LT+E), and
(3) using an LT+E Jacobian with ftol/b = 0.25. An enhancement radius of renh = L/4
was used for both LT+E calculations. (b) Time-step size as a function of time using the
Heun method with and without subcycling. The subcycling algorithm clearly partitions
the nodes based on time-step size.

Table 1. Comparison of dipole computational costs (total cost after dipole forms) in
millions of segment–segment interactions from jogged FR source simulations. Two
implicit methods are tested. The first one uses an approximated Jacobian based on
the line-tension (LT) model. The second one (LT+E) includes the elastic interactions
between segments within a distance of renh = L/4 of each other. For the subcycling
results, a grouping radius of rg = 8h was used for both Heun method calculations,
rg = 20h for implicit LT+E with L/h = 128, and rg = 30h for implicit LT+E with
L/h = 256.

Without subcycling With subcycling

Implicit with Implicit with Implicit with
Heun RKF BS LT Jacobian LT+E Jacobian Heun LT+E Jacobian

L/h = 128 4.08 5.46 6.44 7.65 5.04 0.69 0.23
L/h = 256 14.0 22.9 36.0 26.5 7.65 1.28 0.26

taller jog and implicit LT+E with the shorter jog. We note that halving the jog height causes
the cost with the explicit and implicit with LT Jacobian methods to increase by a factor of
between 3 and 6, but results in only a modest increase using implicit with LT+E Jacobian.
This is because while the other methods are stability limited by the dipole, the implicit method
(with LT+E Jacobian) is accuracy limited.

3.2.4. Using subcycling. Given that the time-step drop is observed even with the implicit
method, as shown in figure 7(a), it alone does not completely address the efficiency challenge
created by the dipole formation. We therefore seek an additional improvement for our time
integration algorithm to further increase computational efficiency, and for this we turn to
subcycling (section 2.5).
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For the jogged FR source simulation, we wish to assign all nodes in the dipole to
group 1 (subcycling group) and all remaining nodes to group 0 (global group). The idea
here is that since only the nodes in the dipole require small time steps, we should isolate
them from the rest of the system. This grouping is accomplished using the proximity
condition discussed in section 2.5, with the grouping radius, rg, selected so that the global
time step is unaffected by the dipole formation; specific rg values were determined by trial
and error.

To demonstrate the effectiveness of this subcycling algorithm, DD simulations were
performed with both the Heun and implicit methods. The resulting global and subcycle
time-step sizes using the Heun method are presented in figure 7(b) along with the result
without subcycling. Even after dipole formation, the global time step stays at the same level
as before. The local time steps for group 1 are about the same as the (global) time steps
when subcycling is not applied, as in figure 7(a). (The time-step size of the last subcycle
may be much smaller, only to prevent the clock of group 1 from going beyond the clock of
group 0.) However, the subcycling results in a tremendous efficiency gain because during the
subcycling only local interactions among the nodes in group 1 are updated. To quantify the
efficiency of subcycling, we have calculated the fraction of the computational cost spent on
subcycling. With the Heun method at the end of the simulation when the dipole is longest,
16% of the nodes belong to group 1 and they incur only 25% of the total segment–segment
interaction cost.

Table 1 provides a comparison of the computational cost with and without subcycling
when either the Heun or the implicit integrator with LT+E Jacobian is used. Subcycling
yields a tremendous computational savings, reducing the cost by a factor of between 11
and 30. The implicit method using the LT+E Jacobian combined with subcycling is the
most efficient approach. We also point out that even with subcycling, the cost with the
Heun method doubles when the jog height is halved—this is the same effect (from jog
oscillation) that was observed before in figure 6(d). Again, the implicit solver is insensitive
to the jog height change making the cost with subcycling constant. This constant cost,
independent of minor discretization details, indicates a robust integration algorithm. We can
conclude that most of the computational gain in the present case of dipole formation is due to
subcycling.

Finally, we have investigated the effect of subcycling and operator-splitting on jogged
FR source simulation accuracy. We have run a variety of simulations using the Heun method
examining various dipole behaviors when L/h = 128. Firstly, figure 8(a) displays the dipole
length, defined as the distance between where the arms cross each other, as a function of
time with the simulation parameters discussed above, with and without subcycling. It can
be seen that the subcycling curve very closely matches the result from brute-force integration
without subcycling. Next, we conducted simulations using the fully formed dipole as the initial
conditions and increased the applied stress to τxz/µ = 0.03. This caused the dipole to break
apart. We have plotted the length (ld) and width (wd) spanned by the dipole for this case as
a function of time with and without subcycling in figure 8(b). Again, subcycling accurately
captures the dipole behavior. Finally, we have conducted a study to see at what stress the FR
source arms overshoot each other rather than forming a stable dipole. A series of FR source
simulations were conducted with the applied stress slowly increased until a stable dipole no
longer formed—this was deemed the dipole threshold stress. We found that the threshold
stresses with and without subcycling were τxz/µ = 0.010 60 and 0.010 82, respectively. The
error introduced by subcycling is about 2%. We conclude that the subcycling algorithm
presented above does not introduce significant errors or artifacts into the jogged FR source
simulations.
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Figure 8. Comparison between jogged FR source dipole behavior with and without
subycling using the Heun method. (a) Dipole length versus time as the dipole forms
with an applied stress of τxz/µ = 0.0075. (b) Dipole length (ld) and width (wd) versus
time as a preformed dipole breaks with an applied stress of τxz/µ = 0.03. The grouping
radius for subcycling is rg = 8h. The other parameters are L/h = 128, L/lmax = 2,
and rtol/b = 0.1. Data with subcycling is shown at global time steps only.

4. Discussion

We have demonstrated multiple mechanisms that can dramatically reduce the computational
efficiencies of standard explicit integrators in line DD simulations. There is no single solution
that can effectively respond to all of these mechanisms. This is perhaps why efficient time
integration in DD simulations of work hardening has remained a significant challenge to date.
We believe the efficiency-limiting mechanisms identified in the two test cases considered here
are representative of those in large-scale work hardening simulations. They include: zig-zag
oscillation of discretization nodes on a dislocation arm, oscillation of a jog or any short segment
that cannot be removed by remeshing, and the relative motion of two dislocations in a dipole.

Each of the efficiency-limiting mechanisms has a characteristic length scale, e.g. the
shortest segment comprising the dislocation arm, the length of the jog, and the height of the
dipole. When this characteristic length scale is sufficiently small, the time-step size with an
explicit integrator becomes insensitive to the specified error tolerance. Instead, it is solely
controlled by this length scale and the simulation is said to have entered the stability-limited
regime.

The implicit (trapezoid) integrator exhibits superior efficiency in the stability-limited
regime, provided that its Jacobian has the information relevant to any destabilizing modes
that are present (i.e. line tension or short-range elastic interactions). In the small test cases
studied here, we have shown that the computational cost for constructing this approximated
Jacobian is relatively small, and the memory requirement is also small because it is sparse. For
large-scale simulations, because only line tension and near-neighbor elastic interaction terms
need to be included to gain maximum efficiency, this cost is only expected to grow as O(N).
Therefore we expect that an implicit integrator can improve the efficiency of large-scale DD
simulations of work hardening, assuming that these simulations are stability-limited by the
presence of short segments. The progressive reduction of average time-step sizes observed
in existing ParaDiS simulations with increasing strain correlates with the production of short
segments, supporting the hypothesis that these simulations are indeed stability-limited.
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However, an implicit integrator alone is not expected to deliver optimal efficiency, as is
demonstrated by the jogged FR source forming a stable dipole. Dislocations are expected
to form relatively stable complexes (such as dipoles and multi-junctions [15]) during work
hardening simulations. The nodal oscillations within these complexes are of minor importance
to the overall behavior of the dislocation ensemble as long as they remain stable. Yet both
explicit and implicit methods require much smaller time steps to integrate the equations of
motion of these nodes than that necessary for the other remaining nodes. An effective method
to handle this situation is subcycling, where the nodes in the stable complexes are grouped
together and allowed to take multiple smaller, local time steps, while the remaining nodes
take a single larger, global time step. In terms of large-scale work hardening simulations, the
subcycling method looks promising. The sophistication of the algorithm will likely have to
be increased to maximize the efficiency gain, however (e.g. finer scale grouping for specific
segment pairs). A general algorithm that can effectively identify local nodal clusters that
require smaller time steps must also be devised. Finally, subcycling will have to be made
compatible with any parallelized code structures, with care taken to keep computational loads
balanced across processors.

There is some concern in the literature that remeshing, i.e. adding or removing
discretization nodes, can introduce error and limit the time-step size [9]. For example, a new
node is usually added at the midpoint of an existing segment, while a more accurate location
may be away from the midpoint to better represent a curved dislocation arm. To address this
concern, we performed a simple study with the Heun method comparing the iteration and
convergence behavior during jogged FR source time steps with and without a remeshing event
having just occurred. We found that without remeshing the iteration of equation (3) required
more than one iteration when convergent (no need to cut the time step) for 4% of the steps
and experienced time-step cuts for 18% of the steps. In contrast, immediately after remeshing,
iteration was required (didn’t converge after the first iteration) during 68% of time steps and the
time step was reduced for 29% of the steps to achieve convergence. For reference, remeshing
occurred during 6% of the time steps. Furthermore, by comparing analytical and simulation
solutions with the collapsing prismatic loop we have observed large error spikes of an order
of magnitude immediately following remesh events. We therefore conclude that a remeshing
event can locally increase computational cost, but the effect is not at the same scale as the other
mechanisms we have elucidated here.

5. Conclusions

We have compared the efficiencies of three explicit integrators (Heun, RKF, BS) and one
implicit integrator (trapezoid) in DD simulations of the collapse of a prismatic loop and the
activation of a jogged FR source. With all explicit methods, the time-step size reduces with
decreasing dislocation segment lengths, due to an increased system stiffness. The performance
of the implicit integrator is less sensitive to these unstable modes, and in one case (jog
oscillation) completely immune to the effect. The Jacobian needed to achieve maximal
efficiency with the implicit integrator can be constructed by taking account of only short-
range elastic and core interactions, thus without appreciable increase of computational cost.
On the other hand, the formation of a stable dipole presents challenges to both explicit and
implicit methods. Computational efficiency is restored by implementing a time-step subcycling
approach, in which a small cluster of nodes takes smaller time steps than the global time step
used for the remaining nodes. We believe that the application of the implicit integrator and
subcycling method explored here in large-scale DD simulations can significantly improve the
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efficiency of work hardening simulations and ultimately lead to the higher strains relevant to
engineering applications.
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Appendix A. Integrator details

A.1. RKF method

The RKF method [24] is fifth-order accurate and uses the following algorithm:

rk+1 = rk + �t

(
16

135
q1 +

6656

12825
q3 +

28561

56430
q4 − 9

50
q5 +

2

55
q6

)
(A.1)

ei =
∥∥∥∥�t

(
1

360
(q1)i − 128

4275
(q3)i − 2197

75240
(q4)i +

1

50
(q5)i +

2

55
(q6)i

)∥∥∥∥ (A.2)

where ei is an estimate of truncation error for node i, and

q1 = g (rk)

q2 = g

(
rk +

�tq1

4

)
q3 = g

(
rk + �t

(
3

32
q1 +

9

32
q2

))
q4 = g

(
rk + �t

(
1932

2197
q1 − 7200

2197
q2 +

7296

2197
q3

))
q5 = g

(
rk + �t

(
439

216
q1 − 8q2 +

3680

513
q3 − 845

4104
q4

))
q6 = g

(
rk + �t

(
− 8

27
q1 + 2q2 − 3544

2565
q3 +

1859

4104
q4 − 11

40
q4

))
.

Each qi is incrementally calculated to gradually build-up the final solution and error estimates.
If there were explicit time dependence in the mobility function g(·), that would also be reflected
in the qi expressions.

A.2. BS method

The BS method adopted here uses the modified midpoint method. Consider finding the solution
from the current time tk to time tk+1 and breaking this interval into m = 2n equal subintervals
of size h, where n is an integer:

h = tk+1 − tk

m
(A.3)

19



Modelling Simul. Mater. Sci. Eng. 22 (2014) 025003 R B Sills and W Cai

The modified midpoint method is then defined as follows:

r1 = r0 + h g(r0) (A.4)

rj+1 = rj−1 + 2h g(rj ), 1 � j < m (A.5)

rf = rm

2
+

rm−1 + h g(rm)

2
(A.6)

where r0 = r(tk) and rf = r(tk+1). The estimate in the first subinterval uses the forward
Euler method (equation (A.4)). Estimates over subsequent subintervals use the midpoint
method (equation (A.5)). The final estimate, rf , is the average of the last midpoint estimate
and an estimate using the backward Euler method (equation (A.6)). These modified midpoint
solutions at different n values are then extrapolated to higher order estimates with Richardson
extrapolation. With each iteration, the order of accuracy increases by 2. Since the modified
midpoint method is second order accurate, the extrapolation relationship is

Ars = 4s−1Ar,s−1 − Ar−1,s−1

4s−1 − 1
, 2 � s � r (A.7)

where the Ars values with s = 1 correspond to modified midpoint estimates, i.e. Ar1 = rf (n =
r). This extrapolation also provides an error estimate, except when n = 1 (no extrapolation is
possible yet) and the error is instead estimated by comparing the two terms in equation (A.6):

ei =


‖(rm)i − [

(rm−1)i + h g(rm)i
] ‖, r = 1∥∥∥∥ (Ar,s−1)i − (Ar−1,s−1)i

4s−1 − 1

∥∥∥∥ , r > 1.
(A.8)

The BS method iterates until the solution converges or the pre-specified maximum number of
iterations is reached. For further information on this method see [24].

A.3. Time step and iteration control

All of the methods used in this work allow for the time-step size �t to vary, and all except
RKF allow for iteration. We must therefore decide how to control time-step adjustment and
iteration. Here we opt for relatively simple approaches. Despite this simplicity, we have
confirmed that the simulation and benchmark results reported are robust and insensitive to the
details of time-step adjustment and iteration control.

For the iterative explicit solvers (Heun and BS methods), we choose to increase �t when
the number of iterations needed for convergence falls below some minimum, nmin

iter . For the
RKF integrator, the time step is increased if the maximum nodal error at convergence is below
some fraction, finc, of the specified absolute integration tolerance, rtol. We also prevent �t

from being increased for all solvers if it was just reduced in the current time step in order to
achieve convergence. To control time-step reduction, with RKF we simply reduce �t if the
solution fails to converge at the given step size, and with the iterative explicit methods we cut
the time step if the number of iterations reaches some threshold, ncap

iter , the maximum number of
iterations allowed. To impose the time-step changes, we employ constant adjustment factors
Finc and Fdec for increasing and decreasing the time step, respectively. In all simulations with
explicit solvers we set these parameters as follows: nmin

iter = 2, finc = 0.1, n
cap
iter = 3, Finc = 1.2

and Fdec = 0.5.
With the implicit trapezoid solver, we need to control iteration of the Newton–Raphson

method and the frequency of the Jacobian calculation. We apply the same iteration control
scheme as for the explicit iterative solvers but with n

cap
iter = 15. When employing an implicit

solver, it is customary to reuse the same Jacobian for many time steps because the cost
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associated with a slower convergence rate due to an outdated Jacobian is usually offset by
the computational savings from not having to recalculate it [22]. Thus, when the solution does
not converge at a given step size we have two options: update the Jacobian or cut the time step.
For the simple test cases presented here we have found the following approach efficient. First,
we check to see how old the Jacobian is. If it was recalculated during the last time step, we
proceed directly to cutting the time step. If it is older than this, we first recalculate the Jacobian
and reattempt the solution at the same step size. If convergence fails again, the step size is cut.
Furthermore, we only allow the Jacobian to be reused for a maximum of five consecutive time
steps. In addition to limiting the total number of iterations, we monitor whether the solution
residual is decreasing as the solver iterates. If the residual increases for three consecutive
iterations, the iteration is aborted and handled as described above. Lastly we point out that
when new nodes are added or topological changes made, the Jacobian needs to be updated to
reflect these changes.

Appendix B. Jacobian evaluation

The total force on a node i has contributions from elastic interactions, core energy (line tension),
and applied stress, i.e.

f tot
i = f el

i + f core
i + f

app
i . (B.1)

Given the mobility law equation (14), the mobility function for node i is,

gi (r) = f tot
i

B
∑

j Lij /2
(B.2)

where Lij is the length of segment i–j and the sum is over all nodes j connected to node i.
Hence the Jacobian of the mobility function is

J mob
mn (r) = 2

B

f tot
m

∂
(∑

j Lmj

)−1

∂ rn

+
1∑

j Lmj

∂f tot
m

∂ rn

 . (B.3)

The first term in the square brackets defines how segment length changes affect the nodal
velocities and thus applies only locally—its contribution to the Jacobian is nonzero only if
nodes m and n are nearest line neighbors. The second term defines the impact of force
changes on the nodal velocities. When elastic interactions are considered every element of
the Jacobian could in general be nonzero since dislocation stress fields are long-ranged. If the
drag coefficient is taken to be a function of the dislocation character, as is often the case in
body-centered-cubic metals [12, 14], additional terms would arise to account for those effects.

For convenience we will further decompose the Jacobian Jmob. We begin by defining the
partial Jacobians for the length and force contributions, respectively

Jmob = JL + J f (B.4)

and separate the force contributions from elastic interactions, core energy and applied stress,

J f = J f,el + J f,core + J f,app. (B.5)

Specifically,

J L
mn(r) = 2

B
f tot

m

∂
(∑

j Lmj

)−1

∂rn

(B.6)

J f,co
mn (r) = 2

B

1∑
j Lmj

∂f co
m

∂rn

, (B.7)

where the superscript co = el, core, or app refers to each force contribution, respectively.
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We now handle these partial Jacobians individually by considering the contributions from
each individual segment and assembling their sub-Jacobians (j) into the global Jacobian (J).
In the following, we define a local coordinate system for each segment such that it is confined
to the x–y plane and the Burgers vector is b = b ex . This corresponds to pure glide motion.
Each sub-Jacobian can then be calculated in this coordinate system and then transformed into
the global coordinates before being added to the global Jacobian. Our ordering convention
in each sub-Jacobian is {x1, y1, x2, y2} (z coordinates are omitted because their contributions
are zero due to the glide constraint), where the subscripts 1 and 2 denote the two nodes of the
segment (numbered arbitrarily).

The length change partial Jacobian for a segment of length L with one neighbor segment
at each node is

jL =
[−ĵL

1 ĵL
1

ĵL
2 −ĵL

2

]
(B.8)

where

ĵL
i = 2(−1)i

BL(
∑

j Lij )2
f tot

i (r2 − r1)
T = 2(−1)i

BL(
∑

j Lij )2

[
xf tot

ix yf tot
ix

xf tot
iy yf tot

iy

]
(B.9)

and x ≡ x2 − x1, y ≡ y2 − y1.
Expressions for J f,core and J f,app have been found analytically, while the values of J f,el

are here computed numerically by finite difference. Analytic expressions for J f,el between
two straight segments have been derived as well by others [40]. The core energy contribution,
for the DeWit and Koehler line energy model [41] is

jf,core =
[

ĵf,core
1 −ĵf,core

1

−ĵf,core
2 ĵf,core

2

]
(B.10)

and the applied stress contribution is

jf,app =
[

0 ĵ
f,app
1

ĵ
f,app
2 0

]
(B.11)

where

ĵf,core
i = 2Ecb

2((1 + ν)x2 + (1 − 2ν)y2)

BL5(1 − ν)
∑

j Lij

[−y2 xy

xy −x2

]
(B.12)

ĵ
f,app
i = (−1)i s

B
∑

j Lij

[
0 1

−1 0

]
(B.13)

and

s =
[
(r2 − r1)

L
× f app

g

]
· ez (B.14)

f app
g = f app − (

f app · ez

)
ez. (B.15)

ez is the unit vector along the z-axis (and is present because of our local coordinate system
choice) and f app is the Peach–Koehler force on the segment due to the applied stress.

When the Burgers vector is instead b = b ez, as in the case of a prismatic loop collapsing
by climb, the core energy contribution to the Jacobian becomes

ĵf,core
i = 2Ecb

2

BL3(1 − ν)
∑

j Lij

[−y2 xy

xy −x2

]
. (B.16)

ĵL
i is not affected by this Burgers vector change and can be computed as given above.
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For the elastic contribution partial Jacobian we employ a centered finite difference scheme
that is second order accurate,

∂f el
m

∂xn

= f el
m (r + δ en) − f el

m (r − δ en)

2 δ
, (B.17)

where δ is a perturbation parameter and en is the nth standard basis vector. δ values in the
range 0.1 − 1b were used, which was selected based on solver performance. The value giving
the highest performance was observed to scale with segment size. It should be noted that
the implicit solver performance may be degraded by the numerical error from these finite
difference approximations.

One computationally significant detail with Jacobian calculation is the cost of accounting
for elastic interactions. If all segment–segment interactions are included in the Jacobian, the
cost scales as O(N2), in the same way as the cost of force calculations (but with a higher
prefactor). However, we have found that it is sufficient to include only elastic interactions
between segments that are within an enhancement radius, renh, of each other. By changing
renh we can empirically determine over what range interactions are significant for an efficient
implicit integrator in their contribution to the Jacobian, thus eliminating the costly inclusion
of all elastic interactions.

Appendix C. Analytical solution for collapsing prismatic loop

To quantify the error of DD simulations, we have obtained the analytic expressions for the
radius of a collapsing circular prismatic loop as a function of time. The radius of the loop as
a function of time, R(t), obeys the following ODE

B
dR

dt
= f core(R) + f el(R), (C.1)

where f core and f el are core and elastic [30, 31] forces, respectively,

f core(R) = − Ec

R(1 − ν)
(C.2)

f el(R) = − µb2

4πR(1 − ν)
ln

(
8R

rc

)
(C.3)

and rc is the core radius in the non-singular [13] theory of dislocations. The solution R(t) can
be expressed by the following implicit relation,

0 =
( rc

b

)2
exp (−8πα) Ei

[
8πα + 2 ln

(
8R

rc

)]
+

16µ t

πB(1 − ν)
+ C(R0), (C.4)

where Ei(·) is the exponential integral and α = Ec/(µ b2). The integration constant C(R0)

can be evaluated by specifying the initial radius, R0, at t = 0.
The solution for zero core energy is obtained simply by substituting α = 0 into

equation (C.4). The solution for the line-tension-only model (i.e. ignoring elastic interactions)
can be obtained explicitly, (analogous to grain growth [42])

R(t) =
√

R2
0 − 2Ec t

B(1 − ν)
. (C.5)

Analytic solutions for various combinations of elastic and core energies are plotted in
figure 1(b).
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Appendix D. Explicit solver analysis with a collapsing prismatic loop

In this appendix we derive an expression for the number of time steps needed for an explicit
integrator to simulate the collapse of a prismatic loop from some initial radius R0 to some final
radius Rf in the stability-limited regime. The expression is obtained for the line-tension-only
model. Making this prediction is nontrivial because the maximum stable time step is a function
of both the loop radius and the element size. We start with equation (16) for the maximum
stable time step for a loop discretized by uniform elements. Next, we assume that the total
simulation time is the sum of the maximum stable time steps from the simulation

tsim =
Nsol∑
i=1

�tsi,max, (D.1)

where Nsol is the number of time steps taken with an explicit integrator and �tsi,max is the
maximum stable time step of the ith solution step. Now we assume time integration is
perfect, which is most likely to be valid when discretization error is small and the solution is
severely stability limited, both of which are true when the number of elements is large. We can
then equate tsim with the exact time texact, which can be obtained from the analytic solution,
equation (C.5), and obtain

Nsol−1∑
i=0

Ri =
(
R2

0 − R2
f

)
(2πR/l)2

20cint
. (D.2)

Again, assuming no numerical error in every integration step, we can write the following
recursive relation,

R2
i = R2

i−1 − 2Ec

B(1 − ν)
�tsmax(Ri−1). (D.3)

Combining equations (D.1), (D.3) and (16), we have

Nsol−1∑
i=0

Ri = R2
0

Nsol−1∑
i=0

(
1 − 20 cint

(2πR/l)2

)i

. (D.4)

where the sum can be performed analytically to give a closed form expression. Equating
equation (D.2) with equation (D.4), Nsol can be obtained as

Nsol = 2 ln(Rf /R0)

ln
[
1 − 20 cint

(2πR/l)2

] . (D.5)

Expanding this expression about 2πR/l = 0 gives the final expression, equation (17).
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