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The chemical equilibrium distribution of point defects modeled as non-overlapping,
spherical inclusions with purely positive dilatational eigenstrain in an isotropically elastic
solid is derived. The compressive self-stress inside existing inclusions must be excluded
from the stress dependence of the equilibrium concentration of the point defects, because it
does no work when a new inclusion is introduced. On the other hand, a tensile image stress
field must be included to satisfy the boundary conditions in a finite solid. Through the
image stress, existing inclusions promote the introduction of additional inclusions. This is
contrary to the prevailing approach in the literature in which the equilibrium point defect
concentration depends on a homogenized stress field that includes the compressive self-
stress. The shear stress field generated by the equilibrium distribution of such inclusions is
proved to be proportional to the pre-existing stress field in the solid, provided that the
magnitude of the latter is small, so that a solid containing an equilibrium concentration of
point defects can be described by a set of effective elastic constants in the small-stress limit.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Solid solutions are a ubiquitous feature of metallic systems. They can arise through alloying to enhance mechanical
properties, by the introduction of solutes during manufacturing or processing, or via attack by highly permeable
contaminants (e.g. hydrogen). The interaction between solutes and other material defects, such as dislocations, can lead
to significant changes in the mechanical properties of metals. These interactions can yield desirable effects, as in the case of
solid solution strengthening, or undesirable effects, as with hydrogen embrittlement. Possessing a strong theoretical basis
for understanding and evaluating the behavior of solid solutions is therefore a necessity for the materials community
(Fleischer, 1964; Hirth, 1980; Haasen, 1996).

One key aspect that determines the character of these interactions is the distribution of solutes at chemical equilibrium.
Consider a solid containing a set of pre-existing, non-solute defects, such as dislocations or precipitates, which generate
a field of internal stresses. Now introduce solutes into the solid. The equilibrium solute distribution depends on
the pre-existing stress field. The solutes also generate their own stress fields, whose character depends on the nature of
the solutes and the lattice sites they occupy. We will focus on solutes that generate spherically symmetric stress fields, as in
the case of octahedral interstitials in face-centered-cubic (FCC) metals. These solute stress fields produce thermodynamic
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forces on the pre-existing defects, which may, for instance, assist rearrangements of the dislocation structure. If solute
diffusion is sufficiently fast, then we may assume the solutes to be in the equilibrium distribution for any instantaneous
dislocation configuration. If solute diffusion is not fast enough, then the solute diffusion and dislocation microstructure
evolution equations may need to be solved together. Even in this case, the equilibrium solute distribution corresponding to
the instantaneous dislocation configuration is still of fundamental importance as it provides a reference state relative to
which the solute chemical potential and the driving force for diffusion can be defined.

A common approximation for this problem is to model each point defect as an Eshelby inclusion with a spherical shape
and purely dilatational eigenstrain (Eshelby, 1954, 1961) (we will use the terms solute, point defect, and inclusion
interchangeably in this work). Often, in order to simplify the analysis both the inclusion and surrounding matrix are treated
as elastically isotropic with identical elastic constants. Even though real point defects in crystals introduce additional effects
not captured by this simple misfitting inclusion model (modulus effects, electronic effects, etc.), the above approximations
provide a valuable starting point for understanding the behavior of point defects and are invoked in this work as well.
A significant advantage of this model is that explicit analytical solutions exist for the stress/strain fields and elastic energy of
a spherical dilatational inclusion in an infinite solid and, under certain circumstances, in a finite solid. The simplicity of this
model makes it easier to expose any potential errors in our intuitive reasoning concerning the solute-defect interaction
problem, while such errors can easily be masked in a more complicated model that includes many effects and adjustable
parameters.

There have been two predominant approaches presented in the literature for analyzing the problem of a distribution of
misfitting inclusions. Both utilize the Eshelby inclusion model to calculate the stress field due to a distribution of point
defects, and both use the condition of chemical equilibrium to determine the defect distribution. The difference between the
approaches lies in two seemingly small but vital details of the analysis. The first approach, which we will call Approach I,
excludes what we will refer to as the self-stress of the inclusions, but accounts for the so-called image stresses that arise to
satisfy the traction-free boundary conditions of the solid. In this paper, we refer to the self-stress as the purely hydrostatic
stress found inside of each inclusion. The logic behind excluding the self-stress is that because inclusions cannot overlap, the
self-stress of existing inclusions is not experienced by the next inclusion to be introduced into the solid, and hence irrelevant
to the condition of chemical equilibrium. In contrast, the second approach termed Approach II, ignores the image stress and
includes the spatially homogenized self-stress of the inclusions in calculating the equilibrium distribution. Approach II
considers the overall stress state of the solid to be a smeared-out homogenization of the stresses both internal and external
to the inclusions.

The question of whether Approach I or II is correct has had a long history. The notion of accounting for self-stress was
first introduced by Cottrell (1948) and Cottrell and Bilby (1949), who argued that point defects would lessen the hydrostatic
tension beneath the glide plane of an edge dislocation and lead to a saturation of the solute concentration, a thesis that
requires the self-stress to be included in the equilibrium analysis. But this argument was made before the pioneering work
of Eshelby (1954, 1961), who showed that the interaction energy for two dilatational inclusions in an infinite isotropic solid
is zero.1 Based on this result, Thomson (1958) and Hirth and Lothe (1968) excluded the homogenized self-stress field from
their analyses. Furthermore, Eshelby (1954) and Hirth and Lothe (1968) pointed out that the presence of a free surface
would introduce a position-independent interaction between misfitting defects through the image stresses. So, by the end
of the 1960s, after two decades of work focused on discrete atomic point defects on a crystalline lattice, it was widely agreed
that the homogenized self-stress field should be excluded and image stresses included in analyzing point defects in stressed
solids.2 We have called this Approach I. But beginning in the early 1970s, in a series of highly cited papers, Larché and Cahn
(1973, 1982, 1985) developed a continuum approach to point defect equilibrium that resulted in the re-introduction of the
homogenized self-stress and removal of the image stresses. Through this choice they were able to develop an elegant theory
that brought the mechanics of point defects into a rigorous thermodynamic framework. The framework developed by
Larché and Cahn, which we have called Approach II, has been adopted by others in recent years, including Sofronis (1995),
Sofronis and Birnbaum (1995), Chateau et al. (2002), and Delafosse (2012).

With the present paper we wish to conclusively demonstrate that Approach I provides the correct model for understanding
the chemo-mechanical equilibrium of solid solution systems. We will present a detailed derivation of the approach and show
that in order to have self-consistency, the homogenized self-stress field must be excluded and the images stresses need to be
accounted for. Some authors have stated that Approach I is valid only in the limit of dilute solutions (Sofronis, 1995), and we
will demonstrate that to the contrary, it is valid both in the dilute limit and beyond. We will then prove analytically that the
shear stress induced by a solute atmosphere in equilibrium with the pre-existing stress field is proportional (component by
component) to the pre-existing stress, in the limit of small pre-existing stress. As a result, the solid and solutes together behave
as a new solid with a set of effective elastic constants, in the limit of small stress. This idea was first presented by Larché and
Cahn (1973), but without a proof for the case of non-uniform stress fields. Their expressions were also approximate because
the image stresses were ignored. Finally, we will provide a series of numerical results of a solute atmosphere around an edge
dislocation to visualize and corroborate our analytic expressions and to contrast the differences between Approaches I and II.
1 This result is also reproduced in a number of classic texts, such as Khachaturyan (1983) and Mura (1987), and is sometimes referred to as Crum's
theorem.

2 The self-stress is also effectively removed in the continuum theory used by Siems (1970) and Wagner and Horner (1974).
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2. Theory

2.1. Fundamental assumptions

We list below the central assumptions upon which all subsequent results are based. For simplicity, we will focus on
interstitial solutes that produce spherically symmetric lattice distortion, with hydrogen being our primary interest, even
though most of our results can be easily generalized to other cases, e.g. substitutional point defects. Additionally, we mainly
consider highly mobile solutes, but the theory holds for solutes of any non-zero mobility as long as the system is given
sufficient time to reach equilibrium.
�
 The solid crystal (i.e. matrix) is modeled as a homogeneous, isotropically elastic mediumwith shear modulus μ, Poisson's
ratio ν, and bulk modulus K ¼ 2μð1þνÞ=½3ð1�2νÞ�.
�
 Each solute is treated as a spherical misfitting inclusion with purely dilational eigenstrain enij ¼ e�δij and the same elastic
constants as the matrix. The original lattice volume to be occupied by the inclusion is V0 ¼ ð4π=3Þr30.
�
 The inclusions are only allowed to occupy specific sites in the solid. These allowable sites form a regular lattice with a
volume density cmax ¼Ns=V , where Ns is the total number of sites and V is the volume of the solid. cmax is the maximum
possible volume density of the solutes. At equilibrium, only a fraction χ of the sites are occupied, so that the volume
density of the solutes is c¼ χcmax.
�
 The distance between adjacent sites is greater than 2r0, so that no two inclusions can overlap.
�
 The solutes are sufficiently mobile so that they are always in chemo-mechanical equilibrium with the instantaneous
stress field generated by other defects (such as dislocations) and external loads.

If the inclusion is taken out of the matrix and allowed to expand freely, the volume expansion would be ΔV � V03e
�. ΔV

is often used to represent the extra volume of the solute.

2.2. The distribution of point defects in a stressed solid

We begin by examining the stress field due to a single solute in infinite and finite media, and then consider the behavior
of a distribution of inclusions with and without stresses.

2.2.1. A single inclusion in an infinite medium
We will use Eshelby's solution for a misfitting inclusion in an infinite medium. His solution is based on the thought

experiment of removing a spherical piece of material from an infinite body, allowing it to expand uniformly by some
eigenstrain, and then reinserting the inclusion back into the body. Eshelby (1961) showed if the eigenstrain is hydrostatic
then the resulting stress state inside the inclusion is uniform and purely hydrostatic with the form

sI;1ij ¼ � 4μð1þνÞ
3ð1�νÞ e�δij ror0ð Þ ð1Þ

where r is the distance from the center of the spherical inclusion to the field point, and δij is the Kronecker delta. This will be
called the self-stress in the following discussions. We can define the pressure corresponding to the self-stress as

pI;1 � � 1
3
sI;1ii ¼ 4μð1þνÞ

3ð1�νÞ e� ror0ð Þ ð2Þ

where summation over repeated indices is implied. In contrast, outside of the inclusion in the matrix, the stress state is
purely deviatoric and varies with position x. It is given by

sM;1
ij xð Þ ¼ μð1þνÞ

6πð1�νÞΔV
δij
r3

� 3xixj
r5

� �
r4r0ð Þ ð3Þ

where r¼ jxj and xi is the i-th component of vector x. The work required to insert the first inclusion in an infinite solid is

ΔW1 ¼ 1
2
pI;1ΔV ð4Þ

This can be shown by considering a reversible path along which the excess volume of the inclusion varies slowly from 0 to
ΔV . The factor of 1/2 appears because the internal pressure varies linearly with the excess volume along this path.

We can apply the same argument to obtain the work done to insert the second inclusion in the infinite solid. In principle,
work must be done against the stress field generated by both inclusions. However, since the stress field of the first inclusion
is purely deviatoric at the site of the second inclusion, the stress field of the first inclusion produces no work effect on the
second inclusion. Hence the work required to create the second (or third, fourth, etc.) inclusion in the infinite solid is the
same as that required for the first one, as given in Eq. (4). The required work and hence the final energy of the solid is also
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independent of the relative location of the inclusions, as long as they do not overlap. This means that there is no elastic
interaction between the inclusions in an infinite medium.3

We also point out that the volume expansion of the inclusion embedded in the matrix is

ΔV1 ¼ 1þν

1�ν
V0e

�: ð5Þ

Notice that ΔV1 is smaller (for νo0:5) than the volume expansion ΔV ¼ V03e
� if the inclusion were taken out of the matrix

and allowed to expand freely.

2.2.2. A single inclusion in a finite medium under zero traction
Since all solutes exist in finite bodies, we need to examine how the stress field solution changes in the presence of a free

surface, no matter how far away the surface is. Returning to the same inclusion with an initial volume V0, we now consider it
embedded in a finite medium of volume V. Since the medium surface is traction free, the above solution must be modified so
that the tractions vanish there. This requires imposing the so-called image stresses on the medium. For an inclusion at the
center of a spherical matrix, this image field is uniform and simply given by (Eshelby, 1961)

simg
ij ¼ 4μð1þνÞ

9ð1�νÞ
ΔV
V

δij: ð6Þ

This is a uniform field of positive hydrostatic stress experienced globally throughout the solid.4 The resulting volume
expansion of the matrix is

ΔV img ¼ Vεimg
ii ¼ 2ð1�2νÞ

1�ν
V0e

�: ð7Þ

The total volume expansion of the system is that of the inclusion plus that of the matrix:

ΔV1þΔV img ¼ V03e
� ¼ΔV : ð8Þ

Thus in the finite solid, the total volume expansion between the isolated inclusion and the inclusion–matrix system is
conserved. In other words, the act of inserting the inclusion inside the hole of the matrix, thus creating an internal stress
field, does not produce any total volume change, as long as the inclusion and the matrix have the same elastic constants.
This is a consequence of Albenga's law (Albenga, 1918/19; Indenbom, 1992) as applied to linear (isotropic and anisotropic)
elasticity. We note that Eq. (8) represents the type of “surface effects” that are included in this paper — the ones that persist
no matter how far away the surface is, or how large the total volume V is. Other surface effects that depend on the geometry
of and proximity to the surface are beyond the scope of this paper.

Finally we define the image pressure as

pimg � � 1
3
simg
ii ¼ � 4μð1þνÞ

9ð1�νÞ
ΔV
V

ð9Þ

which is a constant throughout the solid.
The work required to insert the first inclusion into a finite solid is

ΔW finite ¼ 1
2

pI;1þpimg
� �

ΔV ¼ΔW1þΔW img ð10Þ

where ΔW img is the work done against the image stress. Because pimgo0, ΔW imgo0, so that ΔW finiteoΔW1. Hence the
image stress reduces the energy required to insert an inclusion into a finite solid.

2.2.3. The distribution of inclusions in a finite medium under zero traction
Now we consider the case of a solid containing a three-dimensional periodic array of potential solute sites (e.g. all

octahedral sites in an FCC crystal), as illustrated in Fig. 1. Such an arrangement leads to two significant effects: (1) no two
solutes can occupy the same solute site and (2) there are a finite number of solute sites that can be occupied, setting a
maximum solute concentration limit (cmax). We will construct this system by adding more solutes to the system one-by-one
up to some quantity Ni. Let us define Ef as the energy cost of inserting one solute in an infinite medium (i.e. without
considering image stress). If only elastic energy is considered, then Ef equals the ΔW1 given in Eq. (4). However, it is
sometimes useful to include other energy contributions, such as chemical bonding energy and interfacial energy, in Ef .
Hence we shall treat Ef as an independent parameter in the model. In a finite solid, the work associated with the image
stresses needs to be considered. The work associated with external stress and other internal stress fields (e.g. due to
3 We note that for this conclusion to be true, the misfitting inclusions must have the same elastic constants as the matrix, as is assumed in our model
(see Section 2.1).

4 Strictly speaking, this expression is exact only for an inclusion at the center of a spherical matrix. For inclusions off the center of the matrix, this is an
approximation. Eshelby (1954) has also shown that for a solid containing a uniform distribution of solutes, the image stress is uniform at locations further
away from the surface than the average distance between nearest solutes. If the deviation of the local solute concentration from a constant is only
appreciable at a length scale smaller than λ, then the image stress is very close to be uniform at locations further away from the surface than λ. Nonetheless,
the volume average of the image stress over the entire solid is always given by Eq. (6), so that Eqs. (7) and (8) are exact.
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Fig. 1. A schematic showing a solid of volume V and surface Sext containing a periodic array of sites where inclusions can be inserted. Each spherical region
to which each inclusion can be inserted has volume V0. The occupied sites are shown in gray.
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dislocations) will be considered in the next section. Note that aside from any image interaction, two solutes do not directly
interact with each other because they produce purely deviatoric stresses outside themselves in an infinite matrix (see
Eq. (3)).

According to Eq. (10), the energy required to insert the first inclusion into the solid is

Ef þ
1
2
pimgΔV ð11Þ

The energy required to insert the second inclusion into the solid is

Ef þ
1
2
pimgΔV

� �
þpimgΔV ð12Þ

where the last term is the work done against the image stress of the first inclusion. The energy required to insert the Ni�th
inclusion into the solid is

Ef þ
1
2
pimgΔV

� �
þ Ni�1ð ÞpimgΔV ð13Þ

where the last term is the work done against the image stress of all pre-existing inclusions.
Now, we can express the total enthalpy of the system after having added Ni inclusions as follows:

H Nið Þ ¼ ∑
Ni

n ¼ 1
Ef þ

1
2
pimgΔV

� �
þ n�1ð ÞpimgΔV

� �
¼NiEf �

4μð1þνÞ
9ð1�νÞ

ðΔVÞ2
V

∑
Ni

n ¼ 1
n� 1

2

� �

¼NiEf �
2μð1þνÞ
9ð1�νÞ

ðΔVÞ2
V

N2
i : ð14Þ

Since there are no external loads, the Gibbs free energy, G, of the solid containing Ni inclusions includes the enthalpy, H, and
the contribution from the configurational entropy, S. (The vibrational entropy is ignored here.) Thus

GðNiÞ ¼HðNiÞ�TSðNiÞ ð15Þ
where T is the absolute temperature, and the entropy is

S Nið Þ ¼ kB ln
Ns!

Ni!ðNs�NiÞ!
ð16Þ

where kB is the Boltzmann constant. The resulting chemical potential of the inclusions is then (using Stirling's formula)

μi �
∂G
∂Ni

¼ Ef �
4μð1þνÞ
9ð1�νÞ

ðΔVÞ2
V

NiþkBT ln Ni� ln Ns�Nið Þ� 	
: ð17Þ

Let us define the total volume concentration of point defects in the solid under zero pre-existing stress as

c0 ¼
Ni;0

V
ð18Þ
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and the fraction of occupied sites as

χ0 ¼
Ni;0

Ns
ð19Þ

where c0 ¼ χ0cmax and the subscript 0 indicates zero stress. Therefore, if the solid is in equilibrium with a reservoir of
inclusions with chemical potential μi, the inclusion fraction χ0 satisfies the following equation:

χ0
1�χ0

¼ Ni

Ns�Ni
¼ exp � 1

kBT
Ef �

4μð1þνÞ
9ð1�νÞ ðΔVÞ2 Ns

V
χ0�μi

� �� �
ð20Þ

To simplify our notation, we define the following quantity, which appears frequently in our expressions, and has the
dimension of energy and is always positive,

ξ� 4μð1þνÞ
9ð1�νÞ ðΔVÞ2 Ns

V
¼ 4μð1þνÞ

9ð1�νÞ ðΔVÞ2cmax: ð21Þ

Thus we can write Eq. (20) as

χ0 ¼
1

1þexp
1

kBT
Ef �ξχ0�μi

 �� � : ð22Þ

This is an implicit equation because χ0 appears in both sides of the equation. The �ξχ0 term on the right-hand side is caused
by the (tensile for ΔV40) image stress which promotes the introduction of more inclusions into the matrix. If, instead of the
image stress, the (compressive) self-stress were (erroneously) included in the analysis, this term would become þξχ0, and
would incorrectly predict that the existing inclusions tend to suppress the introduction of more inclusions into the matrix.
In order for the self-stress term to appear, the self-stress would have to perform work upon introducing a new inclusion,
which would only be possible if the new inclusion were placed inside an existing inclusion. Also note that Eq. (22) has
the form of a Fermi–Dirac type distribution (Louat, 1956) so that the concentration limit is enforced (χr1) — this is a
consequence of the constraint that no more than one inclusion can occupy each solute site.

2.2.4. The distribution of inclusions in a finite medium with inhomogeneous stress
We now consider a finite-sized solid under the influence of an inhomogeneous pre-existing stress field sdij present before

the inclusions are introduced. While the superscript d indicates our primary interest in the stress fields produced by
dislocations, sdij includes the stress fields generated by other defects as well as by external loads.5

To include these pre-existing stresses, we need to consider their energetic contribution. The work done against these
stresses upon the introduction of an inclusion is simply

ΔWd xð Þ ¼ � sdiiðxÞΔV
3

: ð23Þ

Notice in this case that because the stress field is heterogeneous, the location of the inclusion affects the amount of work
done. This forces us to consider the fraction of inclusions as a field quantity χðxÞ. Adding this contribution to the
concentration expression, Eq. (22), gives

χ xð Þ ¼ 1

1þexp
1
kBT

Ef �
1
3
sdii xð ÞΔV�ξχ�μiÞ

� �� ð24Þ

where χ ¼ 〈χðxÞ〉 is the averaged fraction of occupied sites over the entire solid. Noticing that

χ0
1�χ0

¼ exp � 1
kBT

Ef �ξχ0�μi

 �� �

ð25Þ

we can write the inclusion distribution field as

χ xð Þ ¼ 1þ 1�χ0
χ0

exp
1
kBT

� 1
3
sdii xð ÞΔV�ξ χ�χ0


 �� �� �� �1

: ð26Þ

Here we have only retained the contribution from the spatially homogeneous part of the image stress. This is a valid
approximation in the center region of a large solid, i.e. far away from the surface. To obtain the image stress field exactly would
require the solution of a boundary value problem, and is beyond the scope of this paper.6 Note that the dependence on the
chemical potential μi is subsumed in the zero stress solute fraction χ0. Eq. (26) describes the equilibrium distribution of point
defects in a solid with arbitrary internal and external stresses at any concentration level. In other words, it remains valid beyond
the dilute limit. This result is in direct conflict with the expressions given by Wolfer and Baskes (1985), Sofronis (1995),
5 Such as those designated by Eshelby as sAij .
6 In the special case of a spherical solid containing a spherically symmetric solute distribution, i.e. χðxÞ ¼ χðrÞ, where r¼ jxj, then the image stress is

uniform and Eq. (26) is exact.
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and Chateau et al. (2002) which include the additional point-wise variant self-stress term and, excluding Wolfer and Baskes
(1985), ignore the image stresses.
2.3. The effect of point defects on the stress state of solids

In this section, we will use the above derived solute distribution expressions to analyze how the stress and strain of a
solid are modified by the presence of a distribution of misfitting inclusions. Our focus is on shear stresses since they are the
only components that exert Peach–Koehler forces on dislocations and cause dislocation motion.7 We will begin by
examining a finite solid under a uniform stress state; this will be done for simplicity and because others have considered
this case (Sofronis, 1995). We will then examine a completely general stress field. The general stress state will be assessed by
considering a point force in an infinite solid using Green's function of a three-dimensional isotropic solid. We will
demonstrate that the effect of a distribution of point defects at equilibrium with any stress state can be accounted for
(within the limits of a linearized concentration stress-dependence) with a set of concentration-dependent effective elastic
constants. Throughout the derivation, the solid is assumed to be able to exchange solutes with an infinite reservoir, i.e. the
solid is an open system.
2.3.1. Uniform stress in a finite body
We now consider a finite-sized solid with no pre-existing internal stress sources (other than the point defects of interest)

that is subjected to external loads that produce a uniform stress field, sAij . In this case, using Eq. (26) the equilibrium fraction
of occupied sites is given by

χ ¼ 1þ 1�χ0
χ0

exp
1
kBT

� 1
3
sAiiΔV�ξ χ�χ0


 �� �� �� �1

: ð27Þ

This is an implicit equation for χ which has to be solved iteratively. If we take the Taylor expansion of this expression about
sAii ¼ 0 and neglect higher order terms, we arrive at the approximate linear relationship

χ�χ0 � χ0 1�χ0

 � sAiiΔV

3kBT
þ ξ

kBT
χ�χ0

 �" #

: ð28Þ

Thus we can express the linearized inclusion fraction as

χ�χ0 �
χ0 1�χ0

 �sAiiΔV

kBT

3 1�χ0 1�χ0

 � ξ

kBT

� � : ð29Þ

Since we have already shown in Section 2.2.3 that the total volume expansion due to an inclusion in a finite solid is ΔV ,
Eq. (29) indicates that there is a (dilatational) strain associated with the excess concentration of solutes, in response to the
applied stress, of εcij ¼ εcδij, where

εc ¼ c�c0ð ÞΔV
3

�
χ0 1�χ0

 �

cmax
sAii ðΔVÞ2

kBT

9 1�χ0 1�χ0

 � ξ

kBT

� � : ð30Þ

The elastic strain in response to the applied stress is ϵelij ¼ ϵelδij, where

ϵel ¼ sAii
9K

: ð31Þ

The total dilatational strain is the sum of the contributions from elastic expansion and swelling due to the population of
inclusions:

ϵtot ¼ ϵelþϵc: ð32Þ

We may now define an effective bulk modulus K I
eff

K I
eff �

sAii
9ϵtot

ð33Þ
7 Hydrostatic stresses can also exert forces on dislocations by the so-called osmotic effects (vacancy production/absorption) — these effects are beyond
the scope of the present work, however.
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which by inspection is given by

1

K I
eff

¼ 1
K
þ

χ0 1�χ0

 �

cmax
ðΔVÞ2
kBT

1�χ0 1�χ0

 � ξ

kBT

: ð34Þ

The superscript I denotes that this is an effective elastic constant based on Approach I (i.e. the correct approach). The shear
modulus, μ, is unaffected by the inclusions since they do not impose a net shear strain on the solid. Therefore, we can also
define an effective Poisson's ratio as

νIeff �
3K I

eff �2μ

2ð3K I
eff þμÞ

¼ 1� 1�νð Þ 1� 1þν

2
ξ

kBT
χ0 1�χ0

 �� ��1

ð35Þ

which also leads to

1
1�νIeff

¼ 1
1�ν

1� 1þν

2
ξ

kBT
χ0 1�χ0

 �� �

; ð36Þ

an expression that often appears in the stress expressions for edge dislocations. These effective elastic constants are valid as
long as the applied stress is small so that the linearized relation, Eq. (28), is accurate.

If we consider the case of a dilute solution, the effective elastic constants simplify further. In this limit, the pre-factor
χ0ð1�χ0Þ (which is due to the non-ideality, i.e. non-Boltzmann character, of the solution) is approximately given by χ0. Since
χ051 when the solution is dilute, the image term in the denominator of Eq. (29) can also be neglected, because it ultimately
leads to a term of the order of χ20. The linearized relationship between χ and sAii then simplifies to

χ�χ0 ¼ χ0
sAiiΔV
3kBT

þO χ20

 �

: ð37Þ

Hence the effective bulk modulus Kdilute
eff is given by

1

Kdilute
eff

¼ 1
K
þc0

ðΔVÞ2
kBT

; ð38Þ

and the associated effective Poisson's ratio is

νdiluteeff � 3Kdilute
eff �2μ

2ð3Kdilute
eff þμÞ

¼
ν�c0ðΔVÞ2

9kBT
E

1þc0ðΔVÞ2
9kBT

E

; ð39Þ

where E¼ 2μð1þνÞ is Young's modulus. These results are the same as those derived by Sofronis (1995), which are here
shown to be valid only in the limit of dilute solutions. The effective bulk modulus given by Larché and Cahn (1985) is
somewhat in between Eq. (38) and Eq. (34); it maintains the non-ideality pre-factor, χ0ð1�χ0Þ, in the numerator of Eq. (34),
but it neglects the image stress term in the denominator.

2.3.2. Arbitrary internal stress in an infinite body
We now derive the deviatoric part of the solute stress field in equilibrium with the internal stress field caused by a unit

point force applied at the origin along the z-axis in an infinite medium. We will assume the linearized concentration
dependence on hydrostatic stress. Since any internal stress state can be derived from this solution via a convolution integral,
we can use this result to draw conclusions about any arbitrary internal stress state. The elastic Green's function of an infinite,
homogeneous isotropic medium is

Gij ¼
1

8πμ
δijR;kk�

1
2ð1�νÞR;ij

� �
; ð40Þ

where R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p
, and a subscript comma denotes partial differentiation, e.g. R;ij ¼ ∂2R=∂xi∂xj. Hence the displacement

caused by the unit point force along the z-axis is

ui ¼
1

8πμ
δi3R;kk�

1
2ð1�νÞR;i3

� �
: ð41Þ

The resulting displacement gradients are readily obtained as

ui;j ¼
1

8πμ
δi3R;kkj�

1
2ð1�νÞR;ij3

� �
ð42Þ

uk;k ¼
1�2ν

16πμð1�νÞR;kk3 ð43Þ
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which then allows us to determine the stress field with

sij ¼ λδijuk;kþμðui;jþuj;iÞ ð44Þ

where λ¼ 2μν=ð1�2νÞ is the Lamé constant. More explicitly, we can write

sij ¼
1
8π

δi3R;kkjþδj3R;kkiþ
ν

1�ν
δijR;kk3�

1
1�ν

R;ij3

� �
: ð45Þ

It can be readily shown that the hydrostatic stress is

skk ¼
2μð1þνÞ
1�2ν

uk;k ¼
1þν

8πð1�νÞR;kk3 ð46Þ

and the deviatoric stress is

~sij � sij�
1
3
skkδij ¼

1
8π

δi3R;kkjþδj3R;kki�
2
3
δijR;kk3

� �
� 1

8πð1�νÞ R;ij3�
1
3
δijR;kk3

� �
: ð47Þ

Since the medium is infinite, the image term is zero, so that the linearized solute distribution change due to the
hydrostatic stress field is

χ�χ0 ¼ χ0 1�χ0

 � skkΔV

3kBT
¼ 1þν

24πð1�νÞ
ΔV
kBT

χ0 1�χ0

 �

R;kk3: ð48Þ

The deviatoric stress field resulting from this solute cloud can be obtained by invoking the Papkovich–Neuber scalar
potential (see Appendix A), B0, which must satisfy the following Poisson equation:

∇2B0 ¼ �4e� 1þνð Þ c�c0ð ÞV0 ¼ � 1þν

8πμ
ξ

kBT
χ0 1�χ0

 �

R;kk3: ð49Þ

This clearly reduces to

B0 ¼ � 1þν

8πμ
ξ

kBT
χ0 1�χ0

 � ∂R

∂z
: ð50Þ

The deviatoric part of the stress from the distribution of solutes can then be obtained as (see Appendix A)

~sc
ij ¼ � μ

2ð1�νÞ B0;ij�
1
3
B0;kkδij

� �
¼ 1þν

16πð1�νÞ
ξ

kBT
χ0 1�χ0

 �

R;ij3�
1
3
δijR;kk3

� �
: ð51Þ

The superscript c denotes that this is the coherency stress field due to the solutes. Comparing this with Eq. (47), we observe
that scij is proportional to the term in ~s ij that contains the factor 1=ð1�νÞ. Therefore, the net deviatoric stress (point force
plus equilibrated solute cloud) is

~sijþ ~sc
ij ¼

1
8π

δi3R;kkjþδj3R;kki�
2
3
δijR;kk3

� �
� 1

8πð1�νÞ R;ij3�
1
3
δijR;kk3

� �

þ 1
8πð1�νÞ

1þν

2
ξ

kBT
χ0 1�χ0

 �

R;ij3�
1
3
δijR;kk3

� �

¼ 1
8π

δi3R;kkjþδj3R;kki�
2
3
δijR;kk3

� �
� 1

8πð1�νIeff Þ
R;ij3�

1
3
δijR;kk3

� �
ð52Þ

Thus, we conclude that the deviatoric stress of an equilibrium distribution of solutes in any stress state can be accounted for
with the effective Poisson's ratio using Approach I, Eq. (36).

Note that in this example we are considering an infinite medium where no image stresses are present. And yet, the
effective elastic constants derived here match exactly those we found by considering a finite medium including image stress
in the previous section. This result is a reflection of the self-consistency of Approach I.

In the above we have referred only to the deviatoric portion of the coherency stress field. The reader should keep in mind
that when sampling only regions external to the inclusions, as other inclusions do when diffusing to their equilibrium
positions, this is actually the entire coherency stress field, i.e. scij ¼ ~sc

ij. If we instead utilized a smeared-out continuum
approach, as in Larché and Cahn (1985), then the homogenized stress field also includes the hydrostatic part of the
coherency stress, which is,

sckk ¼ � ξ

kBT
χ0 1�χ0

 � 1þν

8πð1�νÞR;kk3 ¼ � ξ

kBT
χ0 1�χ0

 �

skk ð53Þ

Note that this stress is proportional to the pre-existing hydrostatic stress skk given in Eq. (46). Furthermore, it is exactly the
change in skk if ν were replaced by νIeff .

8

8 However, it is important to exclude this sckk , i.e. the homogenized self-stress, from the equilibrium distribution field of solutes, such as in Eq. (26).
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3. Numerical results

3.1. Equilibrium solute distribution around an edge dislocation

We first examine the equilibrium solute distribution around an infinitely long, straight edge dislocation in an infinite
medium. Physically, we can consider the dislocation at the center of a solid cylinder with a radius R much larger than the
region of interest around the dislocation. The change of average solute concentration χ from χ0 induced by the dislocation
vanishes as R goes to infinity. This is the infinite medium limit in which we do not need to consider the image stress9. We
will use this example to visualize the differences in the predictions between Approach I and Approach II. The material
parameters correspond to hydrogen interstitials occupying interstitial sites of the FCC metal palladium (Pd): μ¼46 GPa,

ν¼0.385, b¼2.75 Å, and ΔV=Ω¼ 0:186, where Ω¼ 14:72Å
3
is the volume per Pd atom.

We consider an edge dislocation along the z-axis, with the extra half plane pointing in the þy direction. The Burgers
vector points in the x-direction when the sense vector is in the z-direction. The stress field of this dislocation is given in Eq.
(B.1). The equilibrium hydrogen fraction depends only on the hydrostatic stress field of the dislocation given in Eq. (B.2). The
equilibrium hydrogen fraction field, χðx; yÞ, predicted by Approach I can be computed using Eq. (26), with χ�χ0 ¼ 0 in this
example since we are dealing with an infinite medium. In other words, the correct hydrogen fraction field is

χI x; yð Þ ¼ 1þ 1�χ0
χ0

exp
1
kBT

� 1
3
sdii x; yð ÞΔV

� �� �� �1

: ð54Þ

If Approach II is used instead, then the hydrogen fraction can be computed using the following (incorrect) expression:

χII x; yð Þ ¼ 1þ 1�χ0
χ0

exp
1
kBT

� 1
3
sdii x; yð ÞΔVþξ χII x; yð Þ�χ0


 �� �� �� �1

ð55Þ

which is an implicit expression that has to be solved iteratively for every point (x, y).
Fig. 2 shows the χðx; yÞ fields using Approach I (left) and Approach II (right), for zero-stress fractions of (a) χ0 ¼ 0:01 and

(b) χ0 ¼ 0:1. The two values of χ0 correspond to different chemical potentials μi of the solutes. It should be noted that the
calculations with χ0 ¼ 0:1 are for illustration purposes only, since palladium undergoes a phase change at hydrogen
concentrations that large at room temperature.

It can be seen that Approach I predicts more hydrogen accumulation beneath the glide plane of the edge dislocation than
Approach II does. This is because Approach II incorrectly includes the solute self-stress, which provides a negative feedback
to reduce solute accumulation. The difference between the Approach I and Approach II increases with increasing
background hydrogen fraction, χ0.

Fig. 3(a) plots the excess number of solute atoms per unit length around the dislocation, i.e. N=L in the notation of Hirth
and Lothe (1968), within a cylinder of radius R, caused by the pressure field of the dislocation. The circles are data obtained
by numerically integrating cðx; yÞ�c0 (from Approach I) over circular areas of radius R. The data agree very well with the
analytic expression

N
L
� πβ2c0

2k2BT
2

1�χ0

 �

1�2χ0

 �

ln
R
rc

ð56Þ

where

β¼ μbð1þνÞ
3πð1�νÞΔV ð57Þ

and rc is treated as a fitting parameter here. The logarithmic dependence shown in Eq. (56) is consistent with Hirth and
Lothe (1968). The only difference is in the factor of ð1�χ0Þð1�2χ0Þ in Eq. (56), which is caused by our use of the Fermi–Dirac
distribution, instead of the Boltzmann distribution. The logarithmic divergence of N=L with R indicates that the solute
atmosphere is not localized around the dislocation center.

Fig. 3(b) plots the excess number of solute atoms in the domain yo0 where χ4χ0, i.e. N
þ =L, within a half-cylinder of

radius R. The numerical data agree very well with the analytic expression

Nþ

L
� 2c0β

kBT
Rþd ð58Þ

where d is treated as a fitting parameter here. Eq. (58) indicates that the total excess solute accumulated within a
semicircular region below the glide plane increases linearly with radius R. The total depletion of solute, i.e. N� =L (not
shown), within a semicircular region above the glide plane also increases linearly with radius R, similar to Eq. (58). The net
accumulation of solute in a circular region of radius R, shown in Fig. 3(a), is the accumulation below the glide plane minus
the depletion above the glide plane, i.e. N=L¼Nþ =L�N� =L.
9 However, the image stress cannot be ignored if the solid contains a finite density of dislocations as R goes to infinity.
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3.2. Solute coherency stress around an edge dislocation

We now compute the coherency stresses due to the equilibrium distribution of solutes around the edge dislocation. The
coherency stresses scij are calculated by convolving the inhomogeneous part of the dilatation density field,
½χðx; yÞ�χ0�cmaxΔV , with the stress field of a line of unit dilatation, sdilaij , given in Eq. (C.4), i.e.,

scijðx; yÞ ¼
Z 1

�1

Z 1

�1
χðx0; y0Þ�χ0
� 	

cmaxΔVsdilaij ðx�x0; y�y0Þ dx0 dy0: ð59Þ

Here we are only interested in the shear stress components of the coherency stress, and for this 2D problem, the two
independent shear stress components are: scxy and ðscxx�scyyÞ.

The integral of Eq. (59) was evaluated numerically, using the adaptive quadrature function quad2d in Matlab. The limits
of the integration were truncated at 7105b, so that every field point (x, y) had stress contributions from a domain of solute
concentrations of the same size. The use of adaptive quadrature does not require a pre-specified mesh grid, nor the
approximation that solute density is piecewise uniform. Hence the method used here is more accurate than the “constant
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concentration” approach used in Chateau et al. (2002), especially for stress contributions from regions near each field point
and those near the dislocation center, where the integrand varies rapidly.

Fig. 4 presents the coherency shear stress sxy and sxx�syy results using Approaches I (circles) and II (triangles) along
radial lines at angles of θ¼ 01 and θ¼ 451 relative to the positive x-axis, for the case of χ0 ¼ 0:01. The stress field of the edge
dislocation itself, sdij , is also plotted as a solid line, which is a straight line here due to its 1=r dependence. Notice that
ðsdxx�sdyyÞ ¼ 0 along θ¼ 01, while sdxy ¼ 0 along θ¼ 451.

We can see that at distances greater than 10b from the dislocation center, the solute coherency shear stresses become
proportional to the dislocation stress, i.e. they either develop a 1=r dependence or become zero. This is the region where the
linearized solute concentration theory becomes valid, and where the solid plus the solutes behave as a new solid with an
effective Poisson's ratio νeff . The coherency shear stresses predicted by the linearized theory are

sc;linxy ¼ 1
ð1�νeff Þ

� 1
ð1�νÞ

� �
μb
2π

xðx2�y2Þ
ðx2þy2Þ2

sc;linxx �sc;linyy ¼ 1
ð1�νeff Þ

� 1
ð1�νÞ

� �
μb
2π

4x2y
ðx2þy2Þ2

ð60Þ

where νeff can be either νIeff , given by Eq. (35) from the full theory (Approach I), or νdiluteeff , given by Eq. (39) as an
approximation in the dilute limit (χ051). Even though these results follow from the general proof in 3D (Section 2.3.2), it is
instructive to prove them explicitly for the case of solutes in equilibrium with an edge dislocation; this proof is given in
Appendix B. It may seem counter-intuitive that the stress field of the solute cloud can have a 1=r tail, while the stress field of
a single line of dilatation decays as 1=r2 at large r. Indeed, if we consider a hypothetical situation where an edge dislocation
is suddenly introduced in a solid with an initially uniform solute concentration, then, in the short term, solute diffusion is
most pronounced near the dislocation center, from the region above the slip plane to the region below the slip plane. This
creates a dilatation dipole (Hirth, 2013), which has a stress field that decays as 1=r3. However, after sufficient time is given
for the solutes to reach their equilibrium distribution, both the solute density field and the solute stress field develop a
1=r tail.

The lines representing the predictions based on νIeff are almost indistinguishable from those based on νdiluteeff , indicating
that the dilute limit approximation works well for the present case of χ0 ¼ 0:01.

Eqs. (60) and (B.13) show that, far away from the dislocation center, the shear stress of the dislocation plus that of the
solute can be quickly obtained by substituting ν-νeff in the original shear stress expression of the dislocation. However,
caution must be exercised in interpreting the solid þ solute system as a new solid with an effective Poisson's ratio νeff .
In particular, the hydrostatic stress field sdii that enters Eq. (54) to determine the equilibrium solute fraction must be the
original dislocation stress field, i.e. using ν instead of νeff . For example, it was a mistake in Eq. (5.19) of Larché and Cahn
(1985) to use νn (which is equivalent to our νeff ) instead of ν to determine the solute concentration. It is for this reason that
we have considered the approach of Larché and Cahn as Approach II.

Near the dislocation center (ro10b), the actual shear stresses from the solute distribution deviate from the 1=r shape
predicted by the linearized theory. It is also in this region that the predictions from Approach I and those from Approach II
differ clearly from each other. The deviation from the linearized theory is expected because the linearized theory is only
valid regions experiencing low stress, which is clearly not the case near the dislocation center. Part of this deviation can be
accounted for as a net accumulation of solutes near the dislocation core. A first order approximation of the additional shear
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stresses near the core is to treat the excess of solutes there as a lumped line of dilatation. To investigate such a model, we
have calculated the stress fields due to lines of dilatation based on a circular region of radius rd centered at rd below the
origin. The region has the same shape and relative position to the dislocation as the contour lines shown in Fig. 2, while its
size (i.e. radius rd) is chosen empirically. All the lines of dilatation inside this region together are represented by a
concentrated line of dilatation, whose strength is the integral of the dilatation strength and whose position is the centroid of
the distribution within this circular region. Fig. 4 shows the resulting lumped core dilatation stress field added to the exact
effective elastic prediction (short-dashed lines) with rd ¼ b, which was selected based on goodness of fit. The lumped model
reproduces the actual solute stress field (Approach I) very well.
4. Conclusions

The main purpose of this paper is to clarify a controversy in the literature concerning how the equilibrium distribution of
solutes should depend on the stress field. To ensure that the most important point stands out clearly and unobstructed by
unnecessary details, we have considered a simple model in which every solute atom is equivalent to a spherical inclusion
with purely dilatational eigenstrain. The matrix and the solutes are modeled as isotropic elastic media with identical elastic
constants.
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The central point of the controversy is about whether the compressive self-stress inside each inclusion should be
included in the expression for the equilibrium distribution of solutes. In Approach I, the compressive self-stress is excluded
from consideration, based on the fact that it is never experienced by the next inclusion to be introduced into the solid.
Furthermore, when a finite solid is considered, Approach I takes into account the tensile image stress field that is needed to
satisfy the traction-free boundary condition. In Approach II, exactly the opposite treatment is used: the compressive self-
stress is included, and the tensile image stress is excluded.

We have provided explicit derivations and physical explanations that conclusively prove that Approach I is correct, and
Approach II is incorrect. The differences between the predictions from Approach I and Approach II are illustrated for
hydrogen solutes surrounding an edge dislocation. The main difference is in the distribution near the dislocation core. Far
away from the dislocation core, both approaches predict a solute coherency shear stress field that has the same 1=r tail as
the dislocation stress field itself. The 1=r tail can be described by a change of Poisson's ratio to an effective Poisson's ratio.
However, in the usual case of a low back-ground solute concentration χ0, this effect is very small, and the difference between
the two approaches is even smaller and hardly noticeable.

The difference between Approach I and Approach II is perhaps best illustrated by considering the equilibrium
distribution of solutes in an inhomogeneous internal stress field in the zero temperature limit. According to Approach I,
Eq. (24), in the limit of T-0, the local solute fraction is 1 at regions where the local tensile stress is sufficiently large so that
the sum of all terms inside the round bracket is negative. In these regions, all available solute sites are occupied, so that the
local concentration equals cmax. In all the remaining regions, the local solute fraction is 0. Therefore, Approach I predicts a
“binary” distribution scenario in the zero temperature limit, where the local fraction of solutes at every point is either 0 or 1.

On the contrary, in Approach II it is possible to have a smoothly varying solute concentration field in the presence of a
smoothly varying internal stress field. This happens when the compressive self-stress from the local solute concentration
exactly cancels the local tensile field of the pre-existing internal stress (Chateau et al., 2002). This corresponds to the
suggestion in Cottrell (1948) and Cottrell and Bilby (1949) that existing solutes “relax” the local tensile stress field of
dislocations. However, as we have shown extensively in this paper, this scenario envisioned by Approach II is erroneous.
Solutes do not “relax” the local tensile stress field of dislocations in the sense of reducing the local driving force for solute
segregation. On the contrary, if the image stress is taken into account, existing solutes actually produce a tensile stress field
in the solid that promotes the incorporation of more solutes.

As emphasized earlier, we have focused our discussions on the simple model of solutes as spherical inclusions with a
purely dilatational eigenstrain in an isotropic medium. However, the main conclusion that the self-stress must be excluded
(and image stress included) in the equilibrium distribution of solutes remains true in general, for example, even if the solutes
are modeled as inclusions with shear eigenstrains in anisotropic media. As long as the solute is modeled as an inclusion
embedded in a continuum matrix, there is a self-stress “locked-inside” each inclusion. This self-stress may contain both
hydrostatic and (in the general case) deviatoric components, but it is not experienced by the next inclusion to be introduced
into the solid. Hence the self-stress does not enter the equilibrium distribution expression of the solutes. This holds true
because, ultimately, solute atoms are discrete entities. Therefore, the error of Approach II illustrates the need to be careful
when developing homogenized continuum theories for a collection of discrete objects. Sometimes the discrete nature of the
objects persists even in the equations that describe homogenized fields, such as the equilibrium distribution expression.
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Appendix A. Stress field of dilatational eigenstrain in infinite medium

Here we derive the expressions for the stress field due to a distribution of purely dilatational eigenstrains in an infinite
medium, in terms of the scalar potential B0. The expressions have been used in Wolfer and Baskes (1985), but are derived
here for completeness. The derivation also makes it clear that the stress given by these expressions have included the self-
stress, which is purely hydrostatic. Therefore, the deviatoric part of these stress expressions does not contain the self-stress.

We start from the equilibrium condition of the stress field sij in the absence of body forces,

sij;j ¼ 0: ðA:1Þ

In a linear elastic isotropic medium, the stress can be written in terms of the elastic strain ϵelij ,

sij ¼ λϵelkkδijþ2μϵelij ðA:2Þ



W. Cai et al. / J. Mech. Phys. Solids 66 (2014) 154–171168
where λ¼ 2μν=ð1�2νÞ is Lamé constant. The elastic strain ϵelij is the difference between the total strain ϵtotij and the
eigenstrain enij, and the total strain is defined through the spatial derivatives of the displacement field,

ϵtotij ¼ 1
2 ui;jþuj;i

 �

: ðA:3Þ

Therefore, the stress can be written as

sij ¼ λðuk;k�enkkÞδijþμðui;jþuj;i�2enijÞ: ðA:4Þ

Hence the equilibrium condition can be written in terms of the displacement field as

ðλþμÞuk;kiþμui;kk ¼ λenkk;iþ2μenik;k: ðA:5Þ

Assuming that the eigenstrain field is due to a concentration field cðxÞ (number per unit volume) of purely dilatational
inclusions, we have

enij ¼
ΔV
3

δij c xð Þ�c0½ � ðA:6Þ

where ΔV is the excess volume of each inclusion, and c0 is the uniform background concentration. The equilibrium
condition becomes

ui;kkþ
1

1�2ν
uk;ki ¼

1þν

1�2ν
2ΔV
3

ci xð Þ�c0;j
� 	

: ðA:7Þ

In an infinite medium, the solution can be obtained by introducing a scalar potential B0ðxÞ (Gurtin, 1972) such that

ui ¼ � 1
4ð1�νÞB0;i: ðA:8Þ

In terms of B0, the equilibrium condition becomes

B0;ikk ¼ � 4ΔV
3

1þνð Þ ci xð Þ�c0;i
� 	 ðA:9Þ

which is obviously satisfied if

∇2B0 � B0;kk ¼ � 4ΔV
3

1þνð Þ c xð Þ�c0½ �: ðA:10Þ

This is equivalent to Eq. (10) of Wolfer and Baskes (1985). Therefore, the scalar potential B0 can be obtained from the
concentration field by solving Poisson's equation.

After B0 is determined, the stress field can be obtained from Eq. (A.4), which gives

scij ¼ � μ

2ð1�νÞB0;ij�
2μð1þνÞ
1�ν

ΔV
3

δij c xð Þ�c0½ �: ðA:11Þ

This is equivalent to Eq. (11) of Wolfer and Baskes (1985). Here we have added the superscript c to indicate that it is the
coherency stress of the solutes. The stress given in Eq. (A.11) includes the homogenized self-stress inside each inclusion.
The hydrostatic part of this stress is

sckk ¼ � 4μð1þνÞ
1�ν

ΔV
3

c xð Þ�c0½ � ðA:12Þ

which is proportional to the local concentration of inclusions. We emphasize that this stress field is entirely “locked inside”
each existing inclusion and not experienced by any new inclusion to be introduced into the matrix. Hence it should not
enter the chemical potential of solutes. Since the self-stress is purely hydrostatic, the deviatoric part of the stress field, given
below, does not contain the self-stress contribution,

~sc
ij � scij�

1
3
sckkδij ¼ � μ

2ð1�νÞ B0;ij�
1
3
B0;kkδij

� �
: ðA:13Þ
Appendix B. Linearized solute coherency stress field around an edge dislocation

Here we give an explicit derivation of the linearized solute coherency stress around an edge dislocation, and prove
Eq. (60). Even though Eq. (60) follows from the more general proof in 3D (Section 2.3.2), it is instructive to obtain the
explicit expressions for this special case. The following derivation will explicitly show the 1=r tail of the coherency stress
around the dislocation, and predict an effective Poisson's ratio that is identical to Eq. (35), illustrating the self-consistency
of Approach I.
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We start with the stress field of an edge dislocation at the origin with Burgers vector along the positive x-axis and sense
vector along the positive z-axis (Hirth and Lothe, 1968),

sdxx ¼ � μb
2πð1�νÞ

yð3x2þy2Þ
ðx2þy2Þ2

sdyy ¼
μb

2πð1�νÞ
yðx2�y2Þ
ðx2þy2Þ2

sdzz ¼ ν sxxþsyy

 �¼ � μbν

πð1�νÞ
y

x2þy2

sdxy ¼
μb

2πð1�νÞ
xðx2�y2Þ
ðx2þy2Þ2

sdxx x; yð Þ�sdyy x; yð Þ ¼ � μb
2πð1�νÞ

4x2y
ðx2þy2Þ2

: ðB:1Þ

Hence, the hydrostatic stress field is

1
3
sdii ¼

1
3

sdxxþsdyyþsdzz
� �

¼ � μbð1þνÞ
3πð1�νÞ

y
x2þy2

ðB:2Þ

and the linearized concentration field is

c�c0 ¼ cmax χ�χ0

 �¼ c0 1�χ0


 � sdiiΔV
3kBT

¼ �c0 1�χ0

 � μbð1þνÞ

πð1�νÞ
y

x2þy2
ΔV
3kBT

: ðB:3Þ

The stress field of this solute atmosphere can be obtained by integrating the stress contribution from each line of dilatation
over the entire domain, as given in Eq. (59). The stress field of a line of dilatation located at the origin is given in Eq. (C.4). For
example, the xy component of the shear stress of the solute cloud is

scxy x; yð Þ ¼
Z 1

�1

Z 1

�1
�c0 1�χ0


 � μbð1þνÞ
πð1�νÞ

y0

x02þy02
ΔV
3kBT

� �
ΔV � μð1þνÞ

3πð1�νÞ
2ðx�x0Þðy�y0Þ

½ðx�x0Þ2þðy�y0Þ2�2

" #
dx0 dy0

¼ μbð1þνÞ
2πð1�νÞ ξχ0 1�χ0


 � Z 1

�1

Z 1

�1

1
π

y0

x02þy02
ðx�x0Þðy�y0Þ dx0 dy0
½ðx�x0Þ2þðy�y0Þ2�2

: ðB:4Þ

The integral can be carried out analytically to give

scxy x; yð Þ ¼ μbð1þνÞ
2πð1�νÞ ξχ0 1�χ0


 � � xðx2�y2Þ
2ðx2þy2Þ2

" #
¼ � 1þν

2
ξ

kBT
χ0 1�χ0

 �

sdxy x; yð Þ: ðB:5Þ

Similarly, we can show that

scxx x; yð Þ�scyy x; yð Þ ¼ μbð1þνÞ
2πð1�νÞ ξχ0 1�χ0


 � 2x2y
ðx2þy2Þ2

" #
¼ � 1þν

2
ξ

kBT
χ0 1�χ0

 �

sdxxðx; yÞ�sdyyðx; yÞ
h i

: ðB:6Þ

This means that the shear stress of the solute cloud is proportional to the original shear stress of the dislocation.
In the following, we give an alternative proof of Eqs. (B.5) and (B.6) using the Papkovich–Neuber scalar potential, which is

commonly used in the literature (Wolfer and Baskes, 1985). To find the stress field of this solute atmosphere, we first solve
the following Poisson equation for the scalar potential B0 (see Appendix A),

∇2B0 ¼ �4e�ð1þνÞðc�c0ÞV0 ðB:7Þ
which, using Eq. (B.3), is

∇2B0 ¼ A
y

x2þy2
ðB:8Þ

where

A� ð1þνÞb
π

ξ

kBT
χ0 1�χ0

 �

: ðB:9Þ

The solution is

B0 ¼
1
4
A y ln x2þy2


 ��y
� 	

: ðB:10Þ

The deviatoric part of the stress from the solute atmosphere can be obtained from

scxy ¼ � μ

2ð1�νÞB0;xy
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scxx�scyy ¼ � μ

2ð1�νÞ B0;xx�B0;yy

 � ðB:11Þ

which results in

scxy ¼ � A
2

μ

2ð1�νÞ
xðx2�y2Þ
ðx2þy2Þ2

¼ � 1þν

2
ξ

kBT
χ0 1�χ0

 �

sdxy

scxx�scyy ¼ A
μ

2ð1�νÞ
2x2y

ðx2þy2Þ2
¼ � 1þν

2
ξ

kBT
χ0 1�χ0

 �

sdxx�sdyy
� �

: ðB:12Þ

The total shear stress (dislocation þ solute) is then

sdxyþscxy ¼
μb

2πð1�νÞ
xðx2�y2Þ
ðx2þy2Þ2

1� 1þν

2
ξ

kBT
χ0 1�χ0

 �� �

¼ μb
2πð1�νIeff Þ

xðx2�y2Þ
ðx2þy2Þ2

sdxxþscxx
� �

� sdyyþscyy
� �

¼ � μb
2πð1�νÞ

4x2y
ðx2þy2Þ2

1� 1þν

2
ξ

kBT
χ0 1�χ0

 �� �

¼ μb
2πð1�νIeff Þ

4x2y
ðx2þy2Þ2

ðB:13Þ

where νIeff is the same as the one given in Eq. (35). Note that the solute stress field has the opposite sign from the dislocation
stress field. In other words, the solute atmosphere reduces the shear stresses of the dislocation.

The hydrostatic part of the coherency stress field, i.e. the homogenized self-stress, can be obtained by combining
Eqs. (A.12) and (B.3)

sckk ¼
4μð1þνÞ
1�ν

ΔV
3

cmaxχ0 1�χ0

 � μbð1þνÞ

πð1�νÞ
y

x2þy2
ΔV
3kBT

¼ � ξ

kBT
χ0 1�χ0

 �

sdkk ðB:14Þ

This is consistent with Eq. (53). The hydrostatic part of the coherency stress is the same as the change of the hydrostatic part
of the pre-existing stress of the dislocation if ν were to be changed to νIeff . The homogenized pressure field in the solid is
indeed reduced by sckk. However, it is important to exclude sckk, i.e. the homogenized self stress, from the equilibrium
distribution field of solutes, such as in Eq. (26).

Appendix C. Deviatoric stress field of a line of dilatation

Here we give the stress field of a line of dilatation, which is used in the numerical example in Section 3.2. For a
concentrated line of dilatation with excess volume ΔV per unit length, we need to first solve for the scalar potential field B0
from the following equation:

∇2B0 ¼ �4
3
ΔV 1þνð Þδ2 xð Þ ðC:1Þ

where δ2ðxÞ is the delta function in 2D. Noting that

∇2 1
2π

ln r
� �

¼ δ2 xð Þ ðC:2Þ

and letting ΔV ¼ 1 to derive expressions for unit dilatation, we have

B0 ¼ � 2ð1þνÞ
3π

ln r: ðC:3Þ

The deviatoric part of the stress field can be obtained by differentiation as

sdilaxy ¼ � μ

2ð1�νÞB0;xy ¼ � μð1þνÞ
3πð1�νÞ

2xy
ðx2þy2Þ2

sdilaxx �sdilayy ¼ � μ

2ð1�νÞ B0;xx�B0;yy

 �¼ � μð1þνÞ

3πð1�νÞ
2ðx2�y2Þ
ðx2þy2Þ2

: ðC:4Þ
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