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This document gives a simple and self-contained description of the Classical Ewald method [1, 2].
The derivation here reflects the our thoughts when trying to understand and “internalize” the
method. We hope that it will be useful for others who also want to understand the basic idea of
Ewald summation.

1 Problem Statement

ConsiderN ions in vacuum, at locations r1, r2, r3, ..., rN , and possessing point charges q1, q2, q3, ..., qN ,
respectively. The total Coulomb interaction energy is

E =
1

4πε0

∑
(i,j)

qi qj
|rij |

(1)

where rij = rj − ri, ε0 = 8.854 × 10−12 C2N−1m−2 is vacuum permittivity (or electric constant),
and the sum is over all ionic pairs (i, j) (there are N(N − 1)/2 pairs in total).

Now suppose the ions are subjected to periodic boundary conditions (PBC), which are described
by three repeat vectors c1, c2, c3 (forming a supercell). This means that whenever there is an
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ion qi at location ri, there are also ions with charge qi at ri + n1c1 + n2c2 + n3c3, where n1,
n2, n3 are arbitrary integers. To simplify our notation, we will write an arbitrary repeat vector,
n1c1+n2c2+n3c3, as nL, where L represents the characteristic length of the supercell. For example,
it is easy to picture a supercell with a cubic-shape. In this case, we can choose L = |c1| = |c2| = |c3|
and vectors n form a simple cubic lattice (n1, n2, n3). The total Coulomb interaction energy for
these ions under PBC has to include the interactions between periodic images,

E =
1

4πε0

∑
n

∑
(i,j)

qi qj
|rij + nL|

(2)

The sum over all pairs can be rewritten into sums over all ions, with a factor 1/2 to cancel the
double-counting.

E =
1

4πε0

1
2

∑
n

N∑
i=1

N∑
j=1

′ qi qj
|rij + nL|

(3)

where the ′ symbol is introduce to exclude the term j = i, if and only if n = 0. The infinite sum in
Eq. (3) not only converges very slowly but also is conditionally convergent, meaning that the result
depends on the order of the summation. The Ewald method evaluates E by transforming it into
summations that converges not only rapidly but also absolutely. The final expression of energy in
the Ewald method is given by Eq. (39). In the following we describe how and why we arrive at such
an expression.

To gain more physical insight, we consider the electrical potential field generated by the ions.
The potential field generated by an ion with charge qi at location ri is

φi(r) =
1

4πε0

qi
|r− ri|

(4)

The potential field generated by all N ions together with their periodic images under PBC is

φ(r) =
1

4πε0

∑
n

N∑
j=1

qj
|r− rj + nL|

(5)

We can define φ[i](r) as the potential field generated by all the ions plus their images, excluding
ion i,

φ[i](r) ≡ φ(r)− φi(r) =
1

4πε0

∑
n

N∑
j=1

′ qj
|r− rj + nL|

(6)

Again, the ′ symbol means that the term j = i is excluded, if and only if n = 0. Comparing Eqs.(3)
and (6), we see that

E =
1
2

N∑
i=1

qi φ[i](ri) (7)

2 Charge Distribution Function

The charge density distribution for the system of point charges considered above are described by
a collection of delta functions. In particular, the charge density for point charge qi is

ρi(r) = qi δ(r− ri) (8)
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We can consider a more general problem, in which the charge distribution for each ion is not
necessarily a delta function, but could spread out in space. The potential field generated by this
charge distribution is the solution of the Poisson’s equation

∇2φi(r) = −ρi(r)
ε0

(9)

and can be written as

φi(r) =
1

4πε0

∫
ρi(r′)
|r− r′|

d3r′ (10)

The total Coulomb interaction energy can be written as,

E =
1

4πε0

1
2

∑
n

N∑
i=1

N∑
j=1

′
∫∫

ρi(r)ρj(r′)
|r− r′ + nL|

d3r d3r′ (11)

and the potential field generated by all ions excluding ion i becomes

φ[i](r) =
1

4πε0

∑
n

N∑
j=1

′
∫

ρj(r′)
|r− r′ + nL|

d3r′ (12)

When the charge densities are described by Eq. (8), Eqs. (11) and (12) reduce to Eqs.(3) and (6).

3 Splitting the Charge Distribution

We now return to our original problem, in which the charge distributions are described by delta
functions. But we can split it into two terms by adding and subtracting a Gaussian distribution.

ρi(r) = ρSi (r) + ρLi (r)
ρSi (r) = qi δ(r− ri)− qiGσ(r− ri)
ρLi (r) = qiGσ(r− ri) (13)

where

Gσ(r) =
1

(2πσ2)3/2
exp

[
−|r|

2

2σ2

]
(14)

σ is the standard deviation of the Gaussian distribution. Another parameter, α ≡ 1/(
√

2σ), is also
used in the literature. It is important to note that the delta function can be considered as a limit
of the Gaussian distribution when σ → 0,

lim
σ→0

Gσ(r) = δ(r) (15)

Corresponding to the splitting of charge, the potential field φi(r) can also be split into two terms,

φi(r) = φSi (r) + φLi (r)

φSi (r) =
qi

4πε0

∫
δ(r′ − r′)−Gσ(r− r′)

|r− r′|
d3r′

φLi (r) =
qi

4πε0

∫
Gσ(r− r′)
|r− r′|

d3r′ (16)
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The potential field generated by all ions excluding ion i can be split in a similar way,

φ[i](r) = φS[i](r) + φL[i](r) (17)

This leads to the splitting of the Coulomb interaction energy

E =
1
2

N∑
i=1

qi φ
S
[i](ri) +

1
2

N∑
i=1

qi φ
L
[i](ri) (18)

For reasons that will become clear later, we further split the energy E by adding and subtracting
a self-interaction term,

E =
1
2

N∑
i=1

qi φ
S
[i](ri) +

1
2

N∑
i=1

qi φ
L(ri)−

1
2

N∑
i=1

qi φ
L
i (ri) ≡ ES + EL − Eself (19)

where

ES ≡ 1
2

N∑
i=1

qi φ
S
[i](ri) (20)

EL ≡ 1
2

N∑
i=1

qi φ
L(ri) (21)

Eself ≡ 1
2

N∑
i=1

qi φ
L
i (ri) (22)

Notice that in EL the potential generated by ion i itself is no longer excluded.

4 Potential Field of a Gaussian Charge Distribution

The potential field generated by a charge distribution of the Gaussian form can be obtained by
solving the Poisson’s equation,

∇2φσ(r) = −Gσ(r)
ε0

(23)

By symmetry, we know that φσ(r) only depends on the magnitude r = |r|. In spherical coordinates,
the Poisson’s equation becomes,

1
r

∂2

∂ r2
[r φσ(r)] = −Gσ(r)

ε0

∂2

∂ r2
[r φσ(r)] = −r Gσ(r)

ε0

∂

∂ r
[r φσ(r)] =

∫ ∞
r

r Gσ(r)
ε0

dr =
σ2

ε0
Gσ(r)

r φσ(r) =
σ2

ε0

∫ r

0
Gσ(r) dr =

σ2

ε0

1
(2πσ2)3/2

√
π

2
σ erf

(
r√
2σ

)
φσ(r) =

1
4πε0 r

erf
(

r√
2σ

)
(24)
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where erf(z) ≡ 2√
π

∫ z
0 e
−t2dt. Therefore,

φSi (r) =
1

4πε0

qi
|r− ri|

erfc
(
|r− ri|√

2σ

)
φLi (r) =

1
4πε0

qi
|r− ri|

erf
(
|r− ri|√

2σ

)
(25)

where erfc(z) ≡ 1 − erf(z). Because limz→∞ erf(z) = 1, we know that φLi (r) is a long-range non-
singular potential and φSi (r) is a short-range singular potential. (In comparison, the Coulomb
potential of a point charge is both long-ranged and singular.) Given this result, we also have

φS[i](r) =
1

4πε0

∑
n

N∑
j=1

′ qj
|r− rj + nL|

erfc
(
|r− rj + nL|√

2σ

)
(26)

as well as the short-range part of the total Coulomb interaction energy (first term in Eq. (18))

ES ≡ 1
2

N∑
i=1

qi φ
S
[i](ri) =

1
4πε0

1
2

∑
n

N∑
i=1

N∑
j=1

′ qi qj
|ri − rj + nL|

erfc
(
|ri − rj + nL|√

2σ

)
(27)

This is similar to the total Coulomb interaction energy E, except for the erfc term that truncates
the potential function at large distances. Due to the erfc truncation, ES can be directly computed
from a sum in real space. Now that we have the analytic expression for the long-range potential,
we can easily obtain the self energy term,

lim
z→0

erf(z) =
2√
π
z

φLi (ri) =
qi

4πε0

√
2
π

1
σ

Eself =
1

4πε0

1√
2πσ

N∑
i=1

q2
i (28)

5 Long Range Potential in Reciprocal Space

Because φLi (r) is long-ranged, the long-range interaction EL defined in Eq. (19) cannot be directly
computed by a sum in real space. The basic idea of the Ewald sum is to transform it into a sum
in the reciprocal space, given that this potential is no longer singular [1].

By not excluding the contribution from any ion, φL(r) is the potential field generated by a
periodic array of ions. Because the total charge density field

ρL(r) =
∑
n

N∑
i=1

ρLi (r + nL) (29)

is a periodic function, so is φL(r). Hence it makes sense to Fourier transform φL(r) to the reciprocal
space. Let φ̂L(k) and ρ̂L(k) be the Fourier transform of φL(r) and ρL(r), respectively.

φ̂L(k) =
∫
V
φL(r) e−ik·r d3r

ρ̂L(k) =
∫
V
ρL(r) e−ik·r d3r
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The integral is over the volume V of the supercell. The inverse Fourier transform is

φL(r) =
1
V

∑
k

φ̂L(k) eik·r

ρL(r) =
1
V

∑
k

ρ̂L(k) eik·r

The summation is over the reciprocal lattice of the lattice defined by the translation vectors c1,
c2, c3. The potential field and the charge distribution are related to each other by the Poisson’s
equation

∇2φL(r) = −ρ
L(r)
ε0

(30)

which can be transformed into reciprocal space to give

k2φ̂L(k) =
ρ̂L(k)
ε0

(31)

Hence our strategy of computing EL is the following. First, we obtain the Fourier transform of
the charge density. Dividing the result by k2 we obtain the Fourier transform of the long range
potential. The long-range potential in real space is then obtained by inverse Fourier transform,
which finally gives rise to EL. This is described by the following expressions.

ρL(r) =
∑
n

N∑
j=1

qj Gσ(r− rj + nL)

ρ̂L(k) =
∫
V

N∑
j=1

qj Gσ(r− rj + nL) e−ik·r d3r

=
N∑
j=1

qj

∫
R3

Gσ(r− rj) e−ik·r d3r

=
N∑
j=1

qj e−ik·rj e−σ
2k2/2 (32)

where k = |k| and
∫
R3 means integration over the entire 3-dimensional space. In the above deriva-

tion, we have used the fact that k is a reciprocal vector and exp(−ik · nL) = 1. Notice that

ρ̂Li (k) = qj e−σ
2k2/2 (33)

is the Fourier transform of ρLi (r) and

ρ̂L(k) =
N∑
i=1

ρ̂Li (k) (34)

The potential field in reciprocal space is

φ̂L(k) =
1
ε0

N∑
j=1

qj e−ik·rj
e−σ

2k2/2

k2
(35)
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Now applying inverse Fourier transform, we get

φL(r) =
1
V

∑
k 6=0

φ̂L(k) eik·r

=
1
V ε0

∑
k 6=0

N∑
j=1

qj
k2

eik·(r−rj) e−σ
2k2/2 (36)

The contribution to the k = 0 term is zero if the supercell is charge neutral, i.e.
∑N

i=1 qi = 0. The
long-range interaction energy is

EL =
1
2

N∑
i=1

qi φ
L(ri)

=
1

2V ε0

∑
k 6=0

N∑
i=1

N∑
j=1

qi qj
k2

eik·(ri−rj) e−σ
2k2/2

For convenience, let us define the structure factor S(k) of the charge distribution

S(k) ≡
N∑
i=1

qi eik·ri (37)

Then the long-range interaction energy can be simply expressed as

EL =
1

2V ε0

∑
k 6=0

e−σ
2k2/2

k2
|S(k)|2 (38)

Combining Eqs. (27), (28), (38), the total Coulomb interaction energy can be finally written as,

E = ES + EL − Eself

=
1

4πε0

1
2

∑
n

N∑
i=1

N∑
j=1

′ qi qj
|ri − rj + nL|

erfc
(
|ri − rj + nL|√

2σ

)

+
1

2V ε0

∑
k 6=0

e−σ
2k2/2

k2
|S(k)|2 − 1

4πε0

1√
2πσ

N∑
i=1

q2
i (39)

The summation for ES is short-ranged in real space (truncated by the erfc function) and the
summation for EL is short-ranged in reciprocal space (truncated by e−σ

2k2/2).

6 Implementation Issues

In Molecular Dynamics (MD) simulations, we need to compute not only the interaction energy E,
but also the forces on the ions due to this interaction. The force on ion j is

fj ≡ −
∂E

∂ rj
= −∂E

S

∂ rj
− ∂EL

∂ rj
≡ fSj + fLj (40)
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The short-range force fSj is essentially the force due to the pair potential φ(r) = erfc[r/(
√

2σ)]/r
and can be computed directly from a sum in real space. The long-range force fLj can be computed
by first computing the derivative of the structural factor,

∂S(k)
∂ rj

= ik qj eik·rj (41)

and then follow the chain rule,

fLj =
1

2V ε0

∑
k 6=0

e−σ
2k2/2

k2

[
S∗(k)

∂S(k)
∂ rj

+ c.c.

]
(42)

where c.c. means complex conjugate.
The method described above is called the Classical Ewald (CE) method [1, 2], whose compu-

tational cost scales as O(N3/2) (with optimal choice of σ for each N). The Particle Mesh Ewald
(PME) method [3] is a more advanced method which scales as O(N · log(N)). Hence PME is more
efficient than CE in the limit of large N .

A Alternative Derivation of Ewald Summation

Suppose we would like to compute the potential field generated by point charge qi at ri and its
periodic images. The result is

ϕi(r) =
1

4πε0

∑
n

qi
|r− ri − nL|

(43)

(This summation is actually divergent. But the divergent component is a constant. This constant
will disappear if we sum up the potential field of a collection of point charges whose total charge is
zero.) Its Fourier transform is

ϕ̂i(k) =
1

ε0 k2
e−ik·ri (44)

where k = |k| and for brevity we have set qi = 1 here. (Notice that the k = 0 term is ill-defined,
which corresponds to the constant term in real-space potential ϕi(r).) If we want to obtain the
total energy, we may sum over the k vector over the reciprocal space. But the summation over the
reciprocal space is also conditionally convergent. To construct an absolutely convergent summation,
we use the mathematical identity,∫ ∞

0
e−k

2t dt =
1
k2

(45)

Hence,

ϕ̂i(k) =
1
ε0

e−ik·ri
∫ ∞

0
e−k

2t dt (46)

Next we break the integral into two parts and assign them to the short- and long-range part of the
potential field.

ϕ̂i(k) = ϕ̂Si (k) + ϕ̂Li (k) =
1
ε0

e−ik·ri
[∫ η

0
e−k

2t dt+
∫ ∞
η

e−k
2t dt

]
(47)

ϕ̂Si (k) =
1
ε0

e−ik·ri
∫ η

0
e−k

2t dt

ϕ̂Li (k) =
1
ε0

e−ik·ri
∫ ∞
η

e−k
2t dt
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The long-range potential can be integrated analytically to give

ϕ̂Li (k) =
1

ε0 k2
e−ik·ri e−η k

2
(48)

With η = σ2/2, this expression is connected to the expression of EL discussed in Section 5. The
next step is to convert ϕ̂Si (k) to real space. We do so by inverse Fourier transform.

ϕSi (r) =
1
V

∑
k

ϕ̂Si (k) eik·r

=
1
V ε0

∑
k

∫ η

0
eik·(r−ri) e−k

2t dt

=
1
V ε0

∫ η

0

∑
k

eik·(r−ri) e−k
2t dt

Notice that the summation above is simply the inverse Fourier transform of a Gaussian distribution
(identifying t with σ2/2). Hence,

ϕSi (r) =
1
ε0

∑
n

∫ η

0

e−|r−ri+nL|2/(4t)

(4π t)3/2
dt

=
1

4πε0

∑
n

1
|r− ri|

erfc
(
|r− ri|

2
√
η

)
=

1
4πε0

∑
n

1
|r− ri|

erfc
(
|r− ri|√

2σ

)
(49)

This expression is connected to the expression of ES discussed in Section 4. The above is a “stan-
dard” derivation of Ewald summation in many papers and books. It makes use of the “magical”
split of 1/k2 into two integrals, given in Eq. (47). This approach may be mathematically appeal-
ing to some readers but may look like “black-magic” to others who are looking for more physical
intuition.

B Two-dimensional Ewald Summation

The derivation in Appendix A can be generalized to a two-dimensional periodic array of point
charges [4]. The coordinate system is chosen such that the 2-dimensional plane that contains all
the image charges is perpendicular to z-axis. The potential field generated by point charge qi at ri
and its periodic images is

ϕi(r) =
1

4πε0

∑
m

qi
|r− ri + mL|

(50)

where mL is real-space repeat vectors of the 2-d lattice. Its 2-dimensional Fourier transform is

ϕ̃i(κ, z) =
e−κ|z−zi|

2 ε0 κ
e−iκ·ρi (51)

where ρi = (xi, yi), κ = |κ| and κ is a vector in the 2-d reciprocal lattice. Again, for brevity we
have set qi = 1 here. (This result can be easily obtained by 1-dimensional inverse Fourier transform
of ϕ̂i(k) along z-axis.) Notice that in the limit of κ→ 0,

ϕ̃i(0, z) = −|z − zi|
2 ε0

(52)
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Notice that as long as |z − zi| > 0, ϕ̃i(κ, z) decays exponentially fast in the 2-d reciprocal space.
In this case, the summation over reciprocal space will be absolutely convergent. However, the sum
becomes conditionally convergent when |z − zi| = 0. In practice, the decay rate becomes very slow
even if |z − zi| is non-zero but very small.

To construct absolutely convergent sums, we take a similar approach as in Appendix A and use
the following identity.1

e−κ|z−zi|

2κ
=

1√
π

∫ ∞
0

e−κ
2 t2−|z−zi|/(4t2) dt (54)

Again, we can split ϕ̃i(κ, z) into a short-range part and a long-range part.

ϕ̃i(κ, z) = ϕ̃Si (κ, z) + ϕ̃Li (κ, z) =
1√
πε0

e−iκ·ρi
[∫ η

0
+
∫ ∞
η

]
e−κ

2 t2−|z−zi|/(4t2) dt (55)

ϕ̃Si (κ, z) =
1√
πε0

e−iκ·ρi
∫ η

0
e−κ

2 t2−|z−zi|/(4t2) dt

ϕ̃Li (κ, z) =
1√
πε0

e−iκ·ρi
∫ ∞
η

e−κ
2 t2−|z−zi|/(4t2) dt

The long-range potential can be integrated analytically to give

ϕ̃Li (κ, z) =
1

4ε0 κ
e−iκ·ρi

[
eκ|z−zi| erfc

(
κ η +

|z − zi|
2η

)
+ e−κ|z−zi| erfc

(
κ η − |z − zi|

2η

)]
(56)

As κ→ 0, ϕ̃Si (κ, z) goes to

ϕ̃Si (0, z) =
1√
πε0

[
η e−|z−zi|

2/(4η2) −
√
π

2
|z − zi| erfc

(
|z − zi|

2η

)]
=

η√
πε0

e−|z−zi|
2/(4η2) − |z − zi|

2ε0
erfc

(
|z − zi|

2η

)
(57)

Thus for self-consistency, we require that as κ→ 0, ϕ̃Li (κ, z) goes to

ϕ̃Li (0, z) = ϕ̃i(0, z)− ϕ̃Si (0, z)

= −|z − zi|
2 ε0

− ϕ̃Si (0, z)

= − η√
πε0

e−|z−zi|
2/(4η2) − |z − zi|

2ε0
erf
(
|z − zi|

2η

)
(58)

The next step is to convert ϕ̃Si (κ, z) to real space. We do so by inverse Fourier transform.

ϕSi (r) =
1
A

∑
κ
ϕ̃Si (κ, z) eiκ·ρ

=
1

A
√
πε0

∑
k

∫ η

0
eiκ·(ρ−ρi) e−κ

2 t2−|z−zi|/(4t2) dt

=
1

A
√
πε0

∫ η

0

[∑
k

eiκ·(ρ−ρi) e−κ
2 t2

]
e−|z−zi|/(4t

2) dt

1This identity is related to the one used in Appendix A due to the following inverse Fourier transform identity.

F−1
[
2 t e−(κ2+k2z)t2

]
=

1

2π

∫ ∞
−∞

2 t e−(κ2+k2z)t2 eikzz dz =
1√
π

e−κ
2t2−z2/(4t2) (53)
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Notice that the summation in the bracket is simply the inverse Fourier transform of a 2-dimensional
Gaussian distribution (identifying t with σ2/2). Hence,

ϕSi (r) =
1√
πε0

∑
m

∫ η

0

e−|ρ−ρi+mL|2/(4t2)

4π t2
e−|z−zi|/(4t

2) dt

=
1√
πε0

∑
m

∫ η

0

e−|r−ri+mL|2/(4t2)

4π t2
dt

=
1√
πε0

1
4
√
π

∑
n

1
|r− ri|

erfc
(
|r− ri|

2
√
η

)
=

1
4πε0

∑
n

1
|r− ri|

erfc
(
|r− ri|√

2σ

)
(59)

In the last step, we have used the correspondence η = σ2/2. Eq. (59) is identical Eq. (49), meaning
that physically the charge distribution are split in the same way in 3D and 2D Ewald summation.

In 3D Ewald sum, the k = 0 term represent a constant potential field in 3D space and can be
set to zero (without introducing any measurable effect.) In 2D Ewald sum, however, the κ = 0
term represent a constant potential field in 2D plane but its value can depend on z, as in Eq. (58).
So more care must be taken to evaluate the κ = 0 term in 2D Ewald sum [4, 5].

C One-dimensional Ewald Summation

Now consider a 1-dimensional periodic array of point charges parallel to the z-axis. The potential
produced by these charges is

ϕi(r) =
1

4πε0

∑
t

qi
|r− ri + tL|

(60)

where tL is lattice repeat vectors along the z-axis. tx = 0, ty = 0, tz = 0,±1,±2, · · · . The
1-dimensional Fourier transform of ϕi(r) is

ϕi(ρ, kz) =
qi

2πε0
K0(ρ̄|kz|) e−ikzzi (61)

where ρ = (x, y), ρ̄ =
√

(x− xi)2 + (y − yi)2, K0 is the modified Bessel function of the second
kind.2 Notice that in the limit of κ→ 0,

ϕ̃i(ρ, kz) = − qi
2πε0

ln ρ̄ (62)

Notice that as long as |z − zi| > 0, ϕ̃i(ρ, kz) decays exponentially fast with kz. In this case, the
summation over reciprocal space will be absolutely convergent.3 However, the summand blows up
when ρ̄ = 0. In practice, the decay rate becomes very slow even if ρ̄ is non-zero but very small.

To construct absolutely convergent sums, we first try a similar approach as in Appendix A and
use the following identity.

K0(ρ̄|kz|) =
∫ ∞

0

1
t

e−k
2
z t

2−ρ̄2/(4t2) dt =
[∫ η

0
+
∫ ∞
η

]
1
t

e−k
2
z t

2−ρ̄2/(4t2) dt (63)

2Kα(x) = π
2
iα+1H

(1)
α (ix). H

(1)
α = Jα(x) + iYα(x) is the Hankel function. Jα(x) is Bessel function of the first

kind. Yα(x) is Bessel function of the second kind.
3For large x, Kα(x) →

√
π
2 x

e−x.
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However, I am not able (yet) to find an analytic expression for the partial integral,∫ η

0

1
t

e−k
2
z t

2−ρ̄2/(4t2) dt (64)

This means difficulty in extending the above approach to construct a 1-dimensional Ewald sum.
To make progress, we split ϕi(r) into a short-range and a long-range part in a different way,

ϕi(r) = ϕSi (r) + ϕLi (r) (65)

where

ϕLi (r) =
qi

4πε0

∑
t

1√
|r− ri + tL|2 + σ2

(66)

where σ is a constant “smoothing-out” parameter. The analytic structure of ϕLi (r) is very similar
to that of ϕi(r). For example, its 1-dimensional Fourier transform is,

ϕLi (ρ, kz) =
qi

2πε0
K0(ρ̄σ|kz|) e−ikzzi (67)

where ρ̄σ =
√
ρ̄2 + σ2. For any σ > 0, ρ̄σ always stays positive and K0(ρ̄σ|kz|) is both finite at

small kz and rapidly decaying at large kz. The short-range potential is simply

ϕSi (r) =
qi

4πε0

∑
t

(
1

|r− ri + tL|
− 1√

|r− ri + tL|2 + σ2

)
(68)

It is easy to show that the summand ∝ 1/|tL|3 for large t. Hence the summation is absolutely con-
vergent. The convergence speed is not as fast as that in 2D and 3D Ewald summation (exponential
convergence). This is due to the difficulty in obtaining the analytic solution for the 1-dimensional
Fourier transform of the potential field of Gaussian charge distributions. The smooth charge distri-
bution chosen here is not optimal in the sense that the real space sum converges only polynomially
fast. But the simplicity of the expressions is the advantage of this approach. The speed of conver-
gence is not a critical issue given the one-dimensionality of the summation.
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