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A vacancy, one of point defects is introduced into a perfect crystal FCC (Al,
Cu), BCC (Mo, Ta), and DC (Si) and the vacancy formation energy, E, was
calculated in each case using MD++ code.

1 Background Knowledge

A computation domain is usually taken to be simply shaped such as a unit cube
shown as Fig. 1(a) for solving various problems of different coordinates or some
other reasons.

MD++ code also has a similar transformation to easily implement periodic
boundary condition (PBC). Since the crystal shows a periodic structure, it is
natural to assume there are infinite number of image cells faced with a primary
cell and periodically arranged in all 3 directions like Fig. 1(b). This primary cell
is called as the simulation cell (or box) and the coordinate in the simulation cell
as the reduced coordinate, s. The relationship between the reduced coordinate,
s and the real coordinate, r is defined with the the transformation matrix H
like

s=H'!.r (1)

where H is a matrix whose columns are 3 periodicity vectors, or H =
[C1C2C3].

In this work, fortunately, it does not need to take the periodicity vectors ¢,
co, and cg different from the conventional z, y, and z coordinate frame. So take
as simple as

Ci = Ll[].OO], Coy — Lg [010], C3 = L3[001]

where Ly = Ly = L3 = L is the size of a cubic simulation box. (Actually,
all the lengths are nondimesionalized by the lattice consant, which should be
multiplied to get the real coordinate, r in the above equation.)

2 Simulation Procedure

The simulation procedure in MD-++ is outlined as the following items.
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Figure 1: (a) Transformation between the real domain, r and the computational
domain, s. (b) The relationship between the real coordinate and the reduced
coordinate in MD++, r = H - s where H = [c1cacs]

e Create a perfect crystal.

e Remove an atom.

e Relax the system using the conjugate cradient relaxation method.

e Evaluate the potential energy of the system.

e (Calculate the vacancy formation energy, F, for different box size, L.

The first four steps are so obvious that I will not mention all the steps in detail.
If you read the MD++ manual®, you will know how to write a script file for
each step.?

In the 2nd step, when you pick an atom to be removed, where do you think that
atom is located? Corner or center of the box? Or the middle of an edge? If
you see the Fig.2, you will clearly understand what the question is. The answer
is the location of a vacancy does not affect the simulation result, becuase the
periodic boundary condition is imposed, and whatever atoms you choose they
are all the same.

At the last step, how to calculate the vacancy foramtion energy, F, may
be different according to what definition of F, you propose. Our definition of
the vacancy formation energy is how much cohesive energy is needed to form a
vacancy. If this value is negative, that means energy is released when forming
a vacancy. Cohesive energy, E..n, can be said as the interatomic potential

Thttp://micro.stanford.edu/~caiwei/Forum/
2See the appendix B.



Figure 2: The BCC molybdenum with a vacancy. The atoms around a vacancy
are highlighted with yellow. (a) Vacancy in the corner (b) Vacancy in the middle
of an edge (c) Vacancy on the center of a surface (d) Vacancy in the center of the
box. The vacancy formation energy is independent of the position of a vacancy.

energy per atom at most stable state. For example, E.,p, in Lennard-Jones(LJ)
potential between 2 atoms is shown as Fig.3.

We assume that the total potential energy, F in the perfect crystal has been
reached to the cohesive state and so does the energy, Es in the vacancy-formed
structure after the relaxation. Then vacancy formation energy can be defined
as Eqn.4. Note that it is not just the difference between E; and F, even if it
can be assumed so in case that N is a very big number.

N
E, = Y E;=N-E., (2)
N—-1
B, = Y E=(N-1)-E, (3)
N -1
E, = (N_l)'(Ecloh_Egoh):E _TEl (4)

where N is the number of atoms in the simulaion box.

Let us think more about what this definition implies. What really happens
when a vacancy forms is not like just removing an atom from the perfect crystal
as we did in the simulation. (See Fig.4(b)) Rather, it is more or less like the
rearrangement of atoms within the crystal, with the number of atoms kept
constant like Fig.4(a).

Once the vacancy formation energy is revealed, we can apply this knowledge
to obtain the concentration of vacancy in the crystal with Boltzmans probability,

exp(—Fy,/kT) = exp(—(E, —T5S,)/kT)
exp(—F,/kT) for low temperature. (5)
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Figure 3: Cohesive energy, E.o; in Lennard-Jones(LJ) interatomic potential

Figure 4: Two different concepts about vacancy-forming mechanism. (a) Re-
arrangement of atoms while the total number of atoms does not change. (b)
An atom is removed from the crystal and located so far away that no more
interaction exists. In this case, additional energy (e.g. evaporation energy or
sublimation energy) is usually needed in addition to vacancy-forming energy.
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Figure 5: (a) Pseudo effect of the periodic images of defects exists in case of
L < 2rc. (b) The simulation cell can be considered as a supercell when L > 2r..
In (c), supercell concept holds only along the y direction and the periodicity is
imposed along the x direction.

where F, is the free energy for the vacancy formation®.

The last thing to point out is the concept of “supercell”. Periodic boundary
condition has a drawback that the unwanted effect of periodic images of a defect
in Fig.1(b) can distort the solution. Because we want to focus one single vacancy
in the infinite crystal, the effects of other image vacancies should be removed
or at least mitigated. Thus the cell size, L is chosen larger than a critical
radius , r. where the potential of a vacancy is assumed to vanish.* According
to the result, it is shown that vacancy formation energy gets constant once the
simulation box size is larger than certain value. Sometimes this supercell is
intentionally broken down along a certain direction where you want to impose
periodic effect of images as shown in Fig.5(c), where the supercell is achieved
only along y-direction.?

3 Numerical Result

3.1 Aluminum (Al, lattice constant=4.05A)

The vacancy formation energy of FCC aluminum is obatained to be 0.7381eV in
the following table with the “Aluminum Glue Potential” or “Ercollessi-Adams
potential”. The energy becomes constant above the box size 5 in Fig.6.

3R.J.Stokes and D.F.Evans, “Fundamentals of Interfacial Engineering”, Wiley-VCH 1997
pp-491-493

4see Appendix A.

5see. Riidiger et al., Phy. Rev. Lett. 82 Num.1 (Jan.04.1999)
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Figure 6: Vacancy Formation Energy, E, of FCC Al is plotted for the different
simulation box size, L. The energy gets constant after the box size is bigger

than 5.
L 1 2 20
N =4L3 4 32 32000
Ey -6.20844E+00 | -9.98300E+01 -1.07497E+05
E, -4.09903E+00 | -9.62230E+01 -1.07493E+05
E, 5.57302E-01 4.87296E-01 7.38091E-01

3.2 Other Atoms

For other atoms like copper(Cu), molybdenum(Mo), tantalum(Ta), and sili-
con(Si), the vacancy formation energy is also calculated and shown in the fol-

lowing table.

Structure FCC BCC DC
Element Al Cu Mo Ta Si
Potential Al glue | EAM FS FS EDIP
Lattice Constant (A) 4.05 3.6030 | 3.1472 | 3.3058 | 5.4309
E, (eV) 0.739 1.308 2.250 2.906 3.224
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Figure 7: LJ potential (blue) and two models of its truncation: (a) simple
truncated (red dot) and (b) truncated and shifted (green). Simple truncated
potential hass a discontinuity at cutoff radius.

A Cut-off Radius and Truncation of Potential °

The periodic boundary condition means that infinite number of periodic struc-
ture repeat again and again in all x, y, z direction. This brings us an impossible
mission to calculate potentials with innumerable atoms. To overcome this ob-
stacle, we adopt an assumption that potential between atoms can be neglected
beyond a certain range, so called “cut-off radius”, r. just like Fig.7.

According to Frenkel and Smits, cutoff radius, r. is chosen where the poten-
tial reduces to 1/60th of the energy well depth, or

re = 2.579

for the LJ potential. If ry is regarded as a lattice constant a, then we can
approximately say
L > 2r.~5a or L/a>5

This can make it helpful for us to guess how large box size might be chosen for
MD simulation, even though the potentials for Al, Cu, Mo, Ta, and Si are not
LJ potential.

This truncated potential assumption makes finite number of calculation of in-
teratomic potential possible by neglecting the atoms out of cutoff radius. Note

6See Frenkel & Smit, “Understanding Molecular Simulation: From Algorithm to Applica-
tion” 2%ded. Academic Press. pp.35-39
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Figure 8: (a) square: L > 27, (b) rectangle: min(Ly,Ls) > 2r,
(c) parallelogram: min(Lqsin®, Lysing) > 2r., (d) general 3D case:
det(H) det(H) det(H)
‘CgXCl"‘C1XC2"‘C2XC3‘

min( ) > 2r., where H = [c1cacs)

that this can be justified only if long rage interaction is dominated by dispersion
force.
Fig.8 show some examples to get an idea of how to obtain the inequality,

L>2r,

given in the Fig.5 and how to generalize this inequality. The basic algorithm
is that the minimum height of the simulation box should be larger than twice
of the cutoff radius, and for general 3D case the height is given by the volume
over the area in Fig.8(d).

For the general 3D case, first of all, the center of sphere O’ is assumed to be
located at the center of diagonal lines. From the point O’, make the orthogonal
line to each three surfaces formed by the periodicity vectors, c1, c2, and c3. The
distances are

1 det(H)
rH = ——7>
2 |02 X C3|
1 det(H)
T -
2 |C3 X C1|
1 det(H)
T3 = D rE———
2 |01 X C2|

Since the radius of the biggest inner touching sphere is the smallest one among
r1, T3, and r3, we can get the inequality,

det(H) det(H) det(H)
|C3 X (31|7 |C1 X CQ|7 |C2 X C3|

2r, < min( (6)
where H = [cicacs].

Another topic related with the cutoff radius is “minimum image convention”,
which says the vector of the shortest distance between an atom ¢ and an image
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Figure 9: Minimum Image Convention. (a) Interatomic potential between atom
iand j, u;; = u(r1) +u(re) +u(rs). (b) u;; = u(r1). If box size is large enough
such that only one image of atom j or atom j itself exists within the cutoff
radius of atom ¢ as shown in (b), the minimum image convention holds.

Figure 10: Conditon for the minimum image convention in 2D case. j’ is an
image atom of the primary atom j. Two or more atoms including both iamge
atoms and the primary atom are not located in the circle of the radius, r..

of atom j is taken as a relative position vector for calculating potential between
atom ¢ and j, if the simulation box size, L, is large enough such that only
one image of atom j remains within the cutoff radius as shown in Fig.9. The
condition for the minimum image convention for 2D is (See Fig.10)

1 L s, =2 e =
re <3 min(|1], |€2], |€1 + Cz, |C1 — €2])
For the general 3D case, we can say
1, . S -
Te S §|TL1C1 + noCo + n303| (7)

for any integer n1, no, and ng except that n; = ne = ng = 0.

The atoms within the cutoff radius of an atom 7 are called “neighbor atoms”
of the atom 4, and potentials between the atom ¢ and its neighbors are taken
into consideration. At this point, we have another issue that the neighbor atoms
do not stay at their original position but move and drift continuously due to
thermal vibration or random walk during the simulation. This implies that the



Figure 11: Skin Layer. As a buffer

zone for adapting the movement of

atoms in the neighbor list, a skin

layer is introduced around the cutoff
...................... . radius. If the maximum movement
o of a neighbor atom does not ex-
", skin layer ceed the skin layer thickness, ¢, the
i thickness, 1 neighbor list does not need be up-
: dated, which saves CPU time, but
Verlet list algorithm is still O(N?)
operation due to the list update.
N is so large that Verlet list algo-
rithm does not show better perfor-
mance than simple O(N?) scheme.
A fancy O(N) scheme is introduced
in the book by Frenkel and Smit. In
LJ potential, usually r, = 2.7rg ~
3.0T0.

Jj at time t+dt"-9
A rj .................
' j at time t

neighbor list has to be updated at every time step of MD simulation to make
sure whether the atoms once belonged to neighbors of an atom still belong to
its neighbors and vice versa. This confirming process costs a lot of computer
resources and “skin layer” concept is adopted to reduce this cost. Skin layer is
a buffer zone which is a thin layer right outside of the cutoff radius as shown in
Fig.11, to accommodate the movement of neighbor atoms. The neighbor list or
“Verlet list” contains atoms within the Verlet radius, .

With the skin layer, the neighbor list does not need to be reconstructed at
every time step if the maximum atom movement is less than skin layer thickness,
or

max(Ar;;) < t/2 (8)

where the factor of 2 is introduced to consider the movements of both atoms ¢
and j together.
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B Sample Script

# Vacancy is introduced into BCC Mo
# Then it is relaxed via CGR method.

setnolog

setoverwrite

dirname = runs/movacancy_kw # specify run directory
# ____________________________________________

#Read in potential file
potfile = ~/private/MD/Codes/MD++/potentials/mo_pot readpot

#Create Perfect Lattice Configuration
latticestructure = body-centered-cubic

latticeconst = 3.1472 #(A) for Mo

makecnspec = [ 1 0 0 5 # c1 = 5%[1 0 0]
0105 #c2=25%[010]
001571 # c3=5%[00 1]

makecn finalcnfile = perf.cn writecn

eval # evaluate the potential of perfect crystal

# Create Vacancy
pickfixedatomspec = [ 1 # number of picked atoms in a cell
0 ] # index number of an atom to be picked
# Actually, which index number you choose doesn’t matter
# due to the nature of Periodic Boundary Condition
removepickedatoms # remove picked atoms
finalcnfile = makevac.cn writecn
eval # evaluate the potential of vacancy-formed crystal

#Plot Configuration

atomradius = 1.0 bondradius = 0.3 bondlength = 0
atomcolor = cyan highlightcolor = purple backgroundcolor = gray
bondcolor = red fixatomcolor = yellow

#hideatomenergy = [ 1 -6.725 -6 ]

energycolorbar = [ 1 -6.8 -6.55 1 highlightcolor = red
plot_select = 3 plot_highlight = [0 0123456789 ]
plotfreq = 10

rotateangles = [ 0 0 0 1.5 ]

win_width = 600 win_height = 600

openwin alloccolors rotate saverot refreshnnlist plot

#Conjugate-Gradient relaxation

conj_ftol = 1le-7 conj_fevalmax = 1000 conj_fixbox = 1
relax finalcnfile = relaxed.cn writecn

eval # evaluate vacancy formation energy after relaxation
sleep quit

11



