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This report is based on two papers: “From Dislocation Junctions to Forest Hardening,
Phys. Rev. Lett. 89 255508 (2002), R. Madec, B. Devincre, and L. P. Kubin ”and
“Structure and Strength of Dislocation Junctions: An Atomic Level Analysis, Phys. Rev.
Lett. 82 1704 (1999), D. Rodney and R Phillips ”.

1 Introduction

Heisenberg’s uncertainty principle tells us the fundamental limitation of observa-
tion in small scale; if the size of a object is very small, there should be an uncertainty
of measurements of its exact position and momentum simultaneously. Although the
physical characteristic is different, in the case of the mechanical properties of met-
als in small scale, ”Smaller is more uncertain” phenomena happen when we try to
measure mechanical properties of metals.

Plastic deformation of metals is usually governed by the motion of dislocations
and their reactions, such as nucleation, pinning, and multiplication. In general, since
the number of dislocations is very high in large scale, the plastic deformation behav-
ior arises from the average response of a whole dislocation structure under a given
stress. If a sample is produced in the same way and stresses are applied in the same
crystallographic direction, we can obtain fairly the consistent properties even though
the detailed initial configurations of dislocations are different. However, this is not
true in small scale. As a sample gets smaller, the number of dislocation becomes
lower. From a certain size, the distribution of dislocation begins to be not uniform
any more, and the average effect breaks down. Thus, the mechanical properties in
small scale depend strongly on the initial configurations of dislocations. However, the
problem is that there is no experimental technique to describe those configurations
precisely. The transmission electron microscope (TEM), the conventional way to ob-
serve dislocations, requires the sample thickness less than 1000 A for the transmission
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Figure 1: The variation of yield strengths (Reproduced by Prof. Nix’s kind permis-
sion)

of electrons. Thus, it is impossible even to see dislocations in a sample with a thick-
ness larger than 1000 A. Even though the size is smaller than 1000 A, the acquired
images from TEM are just the projected ones. In sum, there is a limitation to observe
the initial configuration of dislocations before deformation.

The limitation of observation gives the uncertainty of mechanical properties in
small scale. In conventional experiments, the sampled configurations of dislocations
are usually very different even though the samples are produced in the same way.
Since it is impossible to figure out those configurations precisely, we cannot obtain
the determistic mechanical properties. This uncertainty is much larger in small scale
because the initial configuration dependence of mechanical properties is higher in
small scale, as already mentioned. Thus, we cannot help measuring the different
mechanical properties in small scale for each same experiment. For example, in
Greer’s and Uchic’s results, it is found that they got large variations of yield strengths
in Fig. [I|in spite of the same sized samples |7, ?].

In sum, in small scale, uncertainty of measurements seems to be unavoidable in
experiments. However, this is not pessimistic since we can make this uncertainty
more determistic by the comparative study between experiments and simulations.
The formation and dissociation of the Lomer-Cottrell junction governs the hardening
of fcc crystals. In small scale, the number of junction becomes small, and each junction
plays more important role in hardening behavior. Thus, this DDLAB case study of
the individual Lomer-Cottrell junction in fec crystals (Gold) can be more meaningful
in small scale. In this report, the initial configuration dependence on the junction
lengths and the corresponding critical stresses needed to dissociate the junction are
studied.



2 DDLAB coding

Only the main parts of the codes are provided in this section to save the space.
The whole codes are attached in Appendix.

2.1 The initial configuration of two dislocations

Following the initial configurations of two dislocation in Madec’s paper, it is needed
to generate two dislocation sets with the same length on (111) and (111) planes.
The Lomer-Cottrell junction forms on the intersection of these two planes along [110]
direction. Mathematically, we can make a circle by a parametric representation form.
If the 0 is the parameter and the point P on the circle is given by

P = Rcos(f)u+ Rsin(f)n x u+ c,

where u is a unit vector from the center of the circle to any point on the circumference;
R is the radius; n is a unit vector perpendicular to the plane and c is the center of
the circle. Here, for two dislocation sets, the normal vectors, n, are [111] and [111]
and the c is the origin. 6 is defined the angle between the dislocation lines and the
instersection, so u is taken as [110]. Using this form, we can construct the circle as
described by Fig. [2l The corresponding MATLAB code is represented as below.

% Make dislocations
t = [-1:0.1:1]*pi;

X = 2000%(-cos(t)/sqrt(2)-sin(t)/sqrt(6));
y = 2000*(cos(t)/sqrt(2)-sin(t)/sqrt(6));

z = 2000%(2*sin(t)/sqrt(6));

x1 = 2000*(-cos(t)/sqrt(2)+sin(t)/sqrt(6));
y1 = 2000%(cos(t)/sqrt(2)+sin(t)/sqrt(6));
z1l = 2000*(2*sin(t)/sqrt(6));

figure(2)

plot3(x,y,z,’-0o’, x1,y1,z1,’-0’);

x1im([-2500 2500]) ;ylim([-2500 2500]);z1im([-2500 2500]);
grid on

view([30 -30 401)

Each circle has 20 points. If we define a dislocation line by connecting one point and
its origin-symmetric point, we can obtain 20 dislocations for each circle.
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Figure 2: The start and end points of each dislocation lines on on (111) and (111)
planes. (The whole MATLAB code is in Appendix.)

2.2 Mobility law of an FCC crystal

In DDLAB, the motion of dislocations is expressed by the motion of nodes. Thus,
the computation of nodal velocities is important part of dislocation dynamics sim-
ulation. How dislocation move is largely controlled by the atomistic structures and
energetics of dislocation core, which can vary significantly from one dislocation (or
material) to another. Thus, the dislocation mobility is strongly materials specific.
For example, in bee crystals, dislocation do not dissociate into partials. However, the
core of screw dislocation in fcc crystals splits planarly into two partials on (111)
planes, bounding a stacking fault area, as shown in Fig. (a). Since the stacking fault
energy is low on {111} planes, the dislocation core prefers to spread itself on one
of those planes. Thus, the motion of bounded partial dislocations is entirely confined
within the initial dissociation plane. In real FCC crystals, cross slip also happen dur-
ing deformation, as shown in Fig. (b) For example, for a dislocation with Burgers
vector 1/2[110], its glide plane could be either (111) or (111). However, cross slip
is more energetically unfavorable than the glide motion, the cross slip probability is
ignored in DDLAB.

For simplicity, dislocation velocity is assumed to be isotropic within the glide plane
and to be linear to the driving force (because the Peierls stress in FCC metals is very
low). Thus, we can express a mobility law in FCC crystals by a single parameter M,

v=M-f—M-(f-n)-n

The second term ensures that velocity v remain orthogonal to glide plane normal n.



Partial dislocations

L) (a) (b)

Stacking fault

Figure 3: (a) The glide motion and (b) cross slip of two partial dislocations in fcc
metals.

2.3 The calculation of junction lengths

With the obtained dislocation sets in section 2.1 we can find each junction length
for 400 (20 x 20) binary dislocations. Since we wanted to see junction formation
without an external stress, the applied stress was set as zero. For each dislocation
set, the normal vectors of slip plane were set as [111] and [111] in Madec’s way, and
Burgers vectors were chosen as 1/2[101] and 1/2[01 1], respectively. Shear modulus
is chosen as that of gold (27 GPa). As mobility function, mobfccl.m was used for fcc
crystals. These values are fixed, then simulations were performed only by changing
dislocation line directions. In order to compute effectively, ‘for-loop 'was used.

totalsteps=100;
appliedstress = zeros(3,3);
mobility=’mobfccl’;

make_dis;

for disl_no=1:21;
for dis2_no=1:21;

rn = [ Di1(disl_no,:) 7
0 0 0 0
-Di(disi1_no,:) 7
D2(dis2_no, :) 7
0 0 0 0
-D2(dis2_no,:) 715
b1 =[ 1 0o -1 1/2;
b2 =[ 0 1 1 1/2;



nl=1[ 1 1 1 1; % no glide constraint
n2=[ 1 1 -1 1; Y% no glide constraint
links = [ 1 2 bl nl

23 bl nl

45 b2 n2

56 Db2n2];

move_pos = find(rn(:,4)==0);
move_coord = [rn(move_pos,1) rn(move_pos,2), rn(move_pos,3)];
junc_pos = find(-10"-2<move_coord(:,3) & move_coord(:,3)<107-2 );

if length(junc_pos)==1;
junc_length(disl_no,dis2_no)=0;

elseif isempty(junc_pos)==0;

junc_coord = [move_coord(junc_pos,1) move_coord(junc_pos,2),...

move_coord(junc_pos,3)];
junc_max = find(max(junc_coord(:,1)));
junc_length(disl_no,dis2_no) = sqrt(2)*...
sqrt (junc_coord(junc_max, 1) “2+junc_coord(junc_max,3)"2...
+junc_coord(junc_max,3)~2);

elseif isempty(junc_pos)==1;
junc_length(disl_no,dis2_no)=0;

end
end
end

2.4 The critical stresses required to break the junctions

Based on Rodney’s paper, the shear stress was applied on (111) plane, as de-
scribed in Fig. [dl The coordinate system is already set up as e; =[100], e; =[010],
and eg =[001]. Thus, in order to apply the shear stress on (111) plane, stress
transformation is needed. As described in Fig. [4) the new coordinate system was
chosen as ej= [112], e, =[110], and e} =[222].
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Figure 4: The new coordinate system for the stress transformation.

The stress transformation can be performed by the relation,
o' = AcAT,

where o’ and o are the stress tensors defined in the new and old coordinate sys-
tem, respectively (The axes of the old coordinate are e; =[100], e =[010], and
es =[001]). A is the transformation matrix which components are consisted of
directional cosines. Since the applied stress in DDLAB are set up in the old coordi-
nate system, we have to transform the known stresses in the new coordinate system.
Therefore, we need the transformation of

o=A"1o’'AT L.

The applied stresses are increased manually (like the experiment!). The MATLAB
code is represented as below.

load junction_data_1
totalsteps=600;

%hstress in coordinate system 1
sigma = [ O 0 0.6

0 0 O

0.6 0 01 * 1e8; %in Pa
%hcoordinate system 1
el = [-1-12];e2 =1[-110]; e3=[-2-2-2];
el=el/norm(el); e2=e2/norm(e2); e3=e3/norm(e3);
%hcoordinate system 2 (cubic coordinate system)
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elp=[100]; e2p = [010]; e3p = [0 0 1];
elp=elp/norm(elp); e2p=e2p/norm(e2p); e3p=e3p/norm(e3p);
Jhrotation matrix
T = [ dot(el,elp) dot(el,e2p) dot(el,e3p)

dot(e2,elp) dot(e2,e2p) dot(e2,e3p)

dot(e3,elp) dot(e3,e2p) dot(e3,e3p) 1;

%Transform stress into current coordinate system
appliedstress = T -1xsigmax(T"-1)’;



3 Results and Discussion

3.1 The initial configuration dependence on the junction lengths

During the relaxation, the Lomer-Cottrell junction was formed as described in
Fig. [l As expected, it forms along the (110) direction on the intersection of two
slip planes.
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Figure 5: The Lomer-Cottrell junction formation

The junction lengths could be calculated from rn matrix, which includes the co-
ordinate number of each node by the following step.

1. Exclude the coordinate numbers including the end point, which have 7 in the
forth column.

2. Find the coordinate numbers with zero in the third column.

3. Then, find the vector with the maximum component in the first or second
column.

4. (Junction length) = v/2x (the obtained maximum component)

rn = 1.0e+003 *
0.6642 -1.6240 0.9598 0.0070
0.6738 -0.6738 -0.0000 0 <—-
-0.6642 1.6240 -0.9598 0.0070
0.6642 -1.6240 -0.9598 0.0070
-0.6642 1.6240 0.9598 0.0070

0.6484 -0.9419 0.2935 0
-0.6484 0.9420 -0.2936 0
0.0070 -0.0065 0.0000 0
-0.6739 0.6739 0.0000 0 <—-



0.6765 -1.2658 -0.5893 0
-0.6764 1.2678 0.5914 0

Thus, in the case of this example, the junction length can be calculated approximately

by
(Junction length) = v/2x673.9 = 952.6143.

Notice that using this method, we cannot find the junction length in the extreme
cases; for example, ¢; = 0, ¢o = 0. However, intuitively, the junction length is the
same with the initial dislocation length in this case. Thus, the obtained matrix of the
junction length was modified as below.

% Modification of junction lengths at the extreme angles
junc_length(1,1)=2000;

junc_length(21,1)=2000;

junc_length(1,21)=2000;

junc_length(21,21)=2000;

junc_length(11,11)=2000;

Furthermore, for some dislocation sets, the calculated junction lengths are not correct
because merge effect. In fact the node at the end of junction has to connect junction
to two dislocation arm. However, during the formation of junction, if the node at the
end of junction become too close to the fixed node at the end of dislocation arm, two
nodes merge together. Thus, it looks like one junction and one arm structure (not two
arms!). Thus, since the above code cannot consider this case, we have to correct the
obtained junc_length matrix manually. Here, the merge effect occurs at 7 sets; (D1,
D2) = (21,1), (1,20), (3,20), (20,21), (21, 20), (10,11), (11,10) (It is
not difficult to find these sets because there should be lower junction lengths than
you expected at the first obtained plot). The junction length of these sets is 2000.
Finally, we can obtain the initial configuration dependence on the junction lengths for
every dislocation couple as described in Fig. [l The Medec’s result is also included.

3.2 The critical stresses needed to break junctions
When a shear stress larger than a critical stress was applied, the Lomer-Cottrell
junction was dissociated as described in Figlg§]

The critical stresses needed to dissociate the junction was obtained by the manu-
ally increase of simga. The stability of junctions depends on the length of dislocation
arm () as depicted in Fig. [§] Since the two end nodes of dislocation arm are fixed,
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Figure 6: The initial configuration dependence on the junction lengths. The left one
is the result of this study, and the right one is Medec’s result.
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Figure 7: The dissociation of Lomer-Cottrell junction

it behaves as the Frank-Read source. The junction can be broken when one of dislo-
cation arms bows out under a stress larger than a critical stress. The critical stress
needed to bow out can be obtained roughly by the relation
~ 1

Oc = Ta
where p is the shear modulus, b the size of Burgers vector and [ the length of dislo-
cation arm. The dissociation can occur more easily as the dislocation arms are long
because the critical stress is low by the above relation. If the initial length of two
dislocations increases, the lengths of junctions get longer. Also, the length of dislo-
cation arms become longer (not shown), resulting in the low critical stresses needed
for dislocation arms to bow out.

Firstly, let’s change the configuration (the dislocation line direction) without chang-
ing the initial length of dislocations. Since the initial length of dislocations are same,
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when the junction length is longer, the length of dislocation arm is shorter. Thus, in
this case, it is easier to dissociate the junction with the longer length. The obtained
values are tabulated in the table below. Then, this result is plotted in Fig. ?7.

¢1 (rad) | ¢ (rad) | junction length (nm) | 7. (MPa)
37/10 | 1m/10 166 20
37/10 | 27/10 397 16
37/10 | 37/10 259 14
37/10 | 47/10 102 13

2

21t 4
20¢ 1

Critical stress (MPa)

11l 1 1 1 1 1 1
02 04 06 08 1 12 14

¢,

Figure 8: The initial configuration dependence on the critical shear stress required
for the dissociation of junction.

As mentioned early, if the externals size of a sample is smaller, the yield strength
gets higher. This is so-called “Smaller is Stronger ”phenomenon. Recently, there are
many models to explain this phenomenon; for example, Nix’s dislocation starvation
model, Uchic’s source deactivation model, and Tang’s dislocation escape model. In
this study, we can find one more view. Usually, a sample is made from the thin
film deposition. During that time, dislocations forms, then, followed by annealing.
If the deposited film is thin (1~2 pm), the length of dislocations distributed in the
sample before annealing must be short. It means that after annealing, junctions
have the shorter dislocation arms than those in bulk metals. Thus, we need the
larger stress to dissociate the junctions. This could be one contribution of “Smaller is
Stronger "phenomenon. The initial dislocation length dependence on junction length
and critical stress required for the dissociation of junction are plotted in Fig.[0] Here,
both ¢; and ¢o are selected as 7/10.

As shown in Fig. 10, as the initial dislocation length is smaller, the larger shear stress
is needed to dissociate junction.
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Figure 9: Junction length dependence on the critical shear stress on (111 ) plane and
junction direction dependence on the critical stress.

4 Conclusion

The formation and dissociation of the Lomer-Cottrell junction governs the hard-
ening of fcc crystals. In small scale, the number of junction becomes small, and each
junction plays more important role in hardening behavior. Thus, this DDLAB ex-
ample study of the individual Lomer-Cottrell junction in fcc crystals can be more
meaningful in small scale. In this report, the initial configuration dependence on
the junction lengths and the corresponding critical stresses needed to dissociate the
junction are studied. The junction length are largely dependent of the initial config-
uration of dislocations. A critical stress need to dissociate the junction depends on
the initial dislocation length. As the initial length given before relaxation is smaller,
the higher stress is needed to dissociate the junction.
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5 Appendix (MATLAB codes)

5.1 The initial configuration of two dislocations

% Make dislocations
t = [-1:0.1:1]*pi;

= 2000* (-cos(t)/sqrt(2)-sin(t)/sqrt(6));
= 2000%* (cos(t)/sqrt(2)-sin(t)/sqrt(6));
= 2000* (2*sin(t)/sqrt(6));

< ™
|

N
|

x1

yi
z1

2000%* (-cos(t) /sqrt(2)+sin(t)/sqrt(6));
2000%* (cos (t) /sqrt(2)+sin(t)/sqrt(6));
2000* (2xsin(t) /sqrt(6));

figure(2)

plot3(x,y,z,’-0’, x1,y1,z1,’-0%);

x1im([-2500 2500]);ylim([-2500 2500]) ;zlim([-2500 2500]);
grid on

view([30 -30 40]) ;

D1 = [x’ y’ z’];

D2 = [x1’ y1’ z1’];
% Get phi

phil = t’;

phi2 = t7;

phill = phil*ones(1,21);
phi22 = ones(21,1)*phi2’;

% initialize junction length
junc_length = phill*phi22;
5.2 The initial configuration dependence on the junction lengths
totalsteps=100;
appliedstress = zeros(3,3);
mobility=’mobfccl’;

make_dis;
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for disl_no=1:21;
for dis2_no=1:21;

rn = [ D1(disl_no,:) 7
0 0 0 0
-D1(disl1_no,:) 7
D2(dis2_no,:) 7
0 0 0 0
-D2(dis2_no, :) 71;
bl =1[ 1 -1 1/2;
b2 =[ 0 1 1 1/2;
nl=[ 1 1 1 J1; 7% no glide constraint
n2 =1[ 1 1 -1 1; % no glide constraint
links = [ 1 2 bl ni
2 3 bl ni
4 5 b2 n2
56 b2n2];

maxconnections=8;
Imax = 1000;

Imin = 200;
a=lmin/sqrt(6) ;

MU = 27%1079; % for gold
NU = 0.44; 7 for gold
Ec = MU/ (4*pi)*log(a/0.1);

areamin=lmin*1min*sin(60/180%pi)*0.5; % minimum discretization area
areamax=20*areamin; ’% maximum discretization area

dtO=1e-5; Jmaximum time step

rmax=10.0; Jmaximum allowed displacement per timestep
plotfreqg=1; %plot nodes every how many steps

plim=2500; hplot x,y,z limit (nodes outside not plotted)

viewangle=[-40 30];
printfreq=1; Jprint out information every how many steps
printnode=3;

integrator=’int_trapezoid’;

rann = 10; hannihilation distance (capture radius)
hrntol=le-1; %tolerance for integrating equation of motion
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rntol = 2*rann; % on Tom’s suggestion
rmax=30;

doremesh =1;
docollision =1;
doseparation=1;

% run DDLAB simulation
dd3d;

move_pos = find(rn(:,4)==0);
move_coord = [rn(move_pos,1) rn(move_pos,2), rn(move_pos,3)];
junc_pos = find(-10"-2<move_coord(:,3) & move_coord(:,3)<107-2 );

if length(junc_pos)==1;
junc_length(disl_no,dis2_no)=0;

elseif isempty(junc_pos)==0;
junc_coord = [move_coord(junc_pos,1) move_coord(junc_pos,2),...
move_coord(junc_pos,3)];
junc_max = find(max(junc_coord(:,1)));
junc_length(disl_no,dis2_no) = sqrt(2)x*...
sqrt (junc_coord (junc_max, 1) “2+junc_coord(junc_max,3)"2...
+junc_coord(junc_max,3)"2);

elseif isempty(junc_pos)==1;
junc_length(disl_no,dis2_no)=0;

end

end
end

% Modification of junction lengths at the extreme angles
junc_length(1,1)=2000;

junc_length(21,1)=2000;

junc_length(1,21)=2000;

junc_length(21,21)=2000;

junc_length(11,11)=2000;

% Plot the initial configuration-dependent junction length
figure(2)
surf (phill,phi22, junc_length/2000);
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colormap jet;

axis([-pi pi -pi pi 0 11);

xlabel (’\phi_{1}’) ;ylabel (’\phi_{2}’);zlabel (°1_{j}/1_{0}’);
grid on;

view([5 30 40]);
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