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1 Introduction of DDLab and ParaDiS 
 
DDLab and ParaDiS are dislocation dynamics simulation codes.  They use the same 
algorithm for the calculation of node force, node velocity and topological changes, etc.  
The difference between them is that DDLab is a MATLAB code which is mainly used in 
simulations with a small number of dislocation segments, whereas ParaDiS is a C code 
which can perform well on massively parallel computers and suitable for large systems.  
DDLab was initially written as a development and debug tool for ParaDiS. 
 
The purpose of this course is to help users understand the basic theory behind the code, 
how to set up the simulation and how to run the code. The users may then become better 
prepared for more complex cases in the future. 
 
This course consists of 10 sections, section 2 describes how to represent a dislocation 
loop in the code, section 3 shows the flow chart of the code. Sections 4 and 5 discuss how 
to calculate the node force and the node velocity, and section 6 describes the topological 
changes. Sections 7 to 10 give examples of how to use DDLab and ParaDiS to simulate 
FR source and junction. 
 
2 How to represent a dislocation structure 
 

 
 



Figure 1 shows a simple approach that can represent an arbitrary dislocation network. 
The dislocations are specified by a set of nodes that are connected with each other by 
straight segments. Each segment has a nonzero Burgers vector. Because the Burgers 
vector is defined only after a sense of direction is chosen for the dislocation line, we can 
define bij as the Burgers vector for the segment going from node i to node j. Then bji is 
the Burgers vector of the same segment going in the reverse direction, and bij+bji=0. 
Under this convention, the conservation of Burgers vectors means that the Burgers 
vectors for all the segments going out of every node sum up to zero. These sum rules 
provide a useful check for topological self-consistency during the line-DD simulation. 
 
From above we know, the fundamental degrees of freedom in this model are the position 
of nodes and the nonzero Burgers vectors: {ri, bij}, i, j = 1, ... , N, where N is the total 
number of nodes. The nodes can be positioned anywhere in space, hence the nodal 
position ri and the connectivity between the nodes as specified by bij may change from 
time to time during a line-DD simulation. 
 
The data structures used to describe these nodes and connections in DDLab and ParaDiS 
are different. 
 
In DDLab, the geometry of the dislocation loop is given in two data structures: rn and 
links. 
 
The rn data structure gives the position of physical and discretization nodes and their 
flags. The size of the rn array is four columns wide and the number of nodes long. The 
first three columns contain the x, y, z coordinates of the node, and the fourth column 
contains a flag. Currently, there are only two node flag used in the code. A flag equal to 0 
means that the node is a regular node, a flag equal to 7 means that the node is immobile 
(fixed). 
 
The links data structure gives the information of the discretization segments that 
connect the nodes. The “links” data structure is eight columns wide and the total number 
of links long. The first two columns gives the nodeids of the starting and ending nodes 
of the dislocation segments. The 3rd – 5th columns give the burgers vector of the 
dislocation line in Cartesian coordinates, and the 6th – 8th

 columns give the glide plane of 
dislocation segments. 
 
For example, suppose that 
 
rn = [ -500 -500  1000 7; 
        500  500 -1000 7; 
       0   0   0    0]; 
links = [ 1 3 0.5 0.5 0.5 -1 1 0; 
          3 2 0.5 0.5 0.5 -1 1 0]; 
 
This means that there are three nodes in the system, 1, 2, and 3.  Node 1 and node 2 are 
fixed and node 3 is mobile.  There are two segments with Burgers vectors b13 and b32. 
From this we see that each segment is only represented once in this data structure. For 



example, if b13 is in the links array, then there is no need to include b31 in the links 
array as well. 
 
In ParaDiS, the nodal data structure is defined as (in Node.h): 
  
struct _node { 

....... 
real8 x, y, z;                /* nodal position */ 
...... 
int numNbrs;                  /* number of neighboring nodes */ 
real8 *burgX, *burgY, *burgZ; /* Burgers vectors of segments */ 
real8 *nx, *ny, *nz;          /* Glide plane normal */ 
...... 
Tag_t myTag;                  /* Tag of node (domainID,index) */ 
Tag_t *nbrTag;                /* Tag of neighboring nodes */ 

      ...... 
} 
 
 
Therefore, the data structure in ParaDiS is based on each node.  Thus each segment is 
represented twice – once in each node connected to this segment. 
 
Detailed description of each data structure can be found in reference [2] and [3]. 
 

Q: What are the relative advantages and disadvantages of the DDLab and 
ParaDiS data structure?  
A: The data structure in DDLab requires less memory because it represents 
each segment only once. But if we need to change the connectivity between 
nodes, we need to maintain the rn and links array, which is rather 
cumbersome to do especially if the number of nodes and segments is large.   
In comparison, the nodal data structure in ParaDiS is more flexible and easier 
to maintain.  This makes ParaDiS more suitable to large-scale simulations. 

 
 
3  Flow chart of the code 
 
After setting up the initial configuration of dislocation loops and other parameters, both 
DDLab and ParaDiS will follow the same algorithm to simulate dislocation dynamics, 
as is listed below: 
 
(1) calculate the force of each node 
(2) calculate the velocity of each node 
(3) calculate the new position of each node 
(4) make necessary topological changes 
(5) repeat (1) to (4) until the maximum step is reached 
 
The following sections will discuss these steps in more detail. 
 



 
 
4 How to calculate the nodal force 
 
There are two ways to calculate the nodal force.  The first way is to directly take 
derivatives from the total energy.  The second way is to use the stress field and the Peach-
Koelher formula.  Both ways should give identical results.  In both DDLab and ParaDiS 
we use the second approach. 
 
Energy and force 
 
The driving force on each node, say node i, can be defined as the derivative of the total 
energy with respect to its position ri, i. e. , 
 

                                                                (1)  
 
In other words, the driving force is the rate of energy drop in response to an infinitesimal, 
virtual displacement of node i, while keeping the node connectivity (Burgers vectors) and 
other nodal positions constant. 
 
The total energy can be split into an elastic energy term and a core energy term, i. e. 
 

                                                                             (2) 
 
But since the calculation of core energy requires atomistic input, the core term is usually 
ignored in line-DD simulations.  We also ignore the core energy term in the following 
discussions. Then the relation between force and energy becomes 
 

                                                                                   (3)  
 
From the linear elasticity theory, the elastic energy of a dislocation network can be 
expressed in terms of double line integrals along the dislocation 
 

   
                                                                                                                            (4) 
 



 
 
Since the derivative of R diverges as || x – x' || approaches zero, Eel is infinite.  A good 
method to solve this problem is to replace every R inside Eq. (4) by 

,  i.e., 
    

                                                                                                                            (5)                                  
 
where a is the core radius parameter. 
 
For a piece-wise straight dislocationo network as shown in Figure 1, the elastic energy 
can be written as a sum of self energies, and interaction energies between the segments, 
whose expressions are available in analytic form (Ref. 4). 
 
The nodal forces can be obtained by directly computing the derivatives of these 
expressions. 
 
Stress and Peach-Koehler force 
 
The Peach-Koehler formula expresses the elastic force per unit length on the dislocation 
line in terms of the local stress field, 
 

                                                                              (6)  
 
where σ(x) is stress, b and ξ is the Burgers vector and line direction of the segment 
respectively. 
 
The self stress field due to a dislocation loop is 
 

    (7)  
 
In order to get the relation between PK force and nodal force, we define a shape function 
Ni(x) for every node i, and that function is nonzero only if x lies on a segment connected 



to node i. Suppose x lies on segment ij, then 
 

                                                                                               (8)  
 
i. e. , Ni(x) goes linearly from zero at node j to 1 at node i, as illustrated in Figure 2. 
 
 
Based on shape function and PK force, the elastic force on node i is: 

                                                             (9)                   
 
From Eq.(9) we know that the nodal force are weighted averages of the PK force along 
the segments connected to the node. 

                                  
 
Figure 2:  The shape function N2(x) for node 2 varies linearly from 1 at node 2 to 0 at its 
two neighbors: node 1 and node 3. 
 
Notice that the PK force is proportional to the local stress field, which is the 
superposition of stress fields from all dislocation segments in the system. 
 
In both DDLab and ParaDiS, we use the second approach, Eq.(9), to compute nodal 
force. The detailed description of nodal force can be found in Ref. 1. 
 
 
 

Q: What does integral along C mean if it is not a loop? 
A: If C is not a loop, then the integral along C is evaluated over a set of 
directed paths that traverse the entire network visiting every point on it 
exactly once. 
 
Q: Do we need to compute stress field along the entire line C to obtain the 
force on one node from Eq.(9)? 
A: No.  Because the shape function is only nonzero at the segments connected 
to the node, the integrand vanishes on the segments which do not connect to 
the node and do not need to be evaluated. 
 



Q: In both DDLab and ParaDiS codes, nodal force contribution from 
interaction between any two segments is computed using a function 
 
 [f1,f2,f3,f4]=RemoteNodeForce(x1,x2,x3,x4,b12,b34,a,mu,nu); 
 
in which x1,x2,x3,x4 are endpoints of the two segments, b12 and b34 are the 
Burgers vectors of the two segments.  a is core radius, mu is shear modulus 
and nu is possion's ratio.   f1, f2, f3 and f4 are the force on the four nodes. 
Can we use this function to compute the self force of a segment 12? 
A: Since the singularity is completely removed, the way to calculate self force 
is the same as to calculate the force between two different segments, the only 
difference is that we need to use the parameters of segment 12 to replace the 
parameters of segment 34 in the function call, i.e., 
when using that function, then the function actually becomes  
 
 [f1,f2,f1,f2]=RemoteNodeForce(x1,x2,x1,x2,b12,b12,a,mu,nu); 
 
Q: How many times do we need to call the function described above to 
compute the force on a given node i, assuming there are totally N segments? 
A: Suppose node i is connected to n segments.  We need to include the 
interaction between these n segments with all N segments to compute the 
nodal force on node i.  Therefore we need to call the above function nN times. 
 
Q: How many times do we need to call the function described in last problem 
to compute the nodal force for all nodes? 
A: N2/2 times. 

 
 
5 Mobility law and nodal velocity 
 
There are several mobility laws to obtain nodal velocity from the nodal force, such as 
FCC1, BCC0 and BCC1. To specify FCC1 student in DDLab, the input file should 
contain the following line: 
  

mobility = ’mobfcc1’; 
 
To do so in ParaDiS, then the input file should contain: 
 

MobilityLaw = ”FCC_1” 
 
The detailed description of mobility law can be found in Ref. 1. 
 
In the following, we discuss the FCC1 mobility law in more detail as an example. 
 
In FCC1, the nodal velocity and nodal force are related by,  



                                                                                        (10) 
where the summation is over all nodes j connected to node i, and Lij is the length of 
segment i-j.  B is the drag coefficient, which is taken to be a constant (unity) in DDLab.  
This means that the mobility anisotropy (e.g. between edge and screw dislocations) is 
ignored here.  After the nodal velocity is computed from Eq.(10), it needs to be 
orthogonalized with respect to all normal vectors nij of the neighboring segments, i.e., 
                                                                                                 (11) 
for every node j connected to i. 
 
 

Q: If node i is connected to several segments, how to orthogonalize vi with all 
glide plane normals nij of these segments? 
A: For example, assume that node 1 has three segments, 1-2, 1-3 and 1-4, 
with three glide plane normal vectors n12, n13 and n14. A naïve approach 
would be to use the following procedure to orthogonalize v1 with respect to 
these three normal vectors. 
 
v1’ = ( I – n12 ⊗ n12 ) * v1            ( v1’ is normal to n12) 
v1’’ =  ( I – n13 ⊗ n13 ) * v1’         ( v1’’ is normal to n13) 
v1’’’=  ( I – n14 ⊗ n14 ) * v1’’        ( v1’’’ is normal to n14) 
 
The problem of this method is that if n12, n13 and n14 are not normal to each 
other, the final velocity v1’’’ may be not normal to n12 and n13. Therefore we 
first need to orthogonalize n12, n13 and n14 to each other. If we let, 
n13’ =  ( I – n12 ⊗ n12 ) * n13               ( n13’ is normal to n12) 
n13’’ = n13’ / || n13’||                             ( if  || n13’|| > 0) 
n14’ =  ( I – n13’ ⊗ n13’ ) * n14             ( n14’ is normal to n13’) 
n14’’ = n14’ / || n14’||                             ( if  || n14’|| > 0) 
and then follow the same sequence as above: 
v1’ = ( I – n12’’ ⊗ n12’’ ) * v1              ( v1’ is normal to n12) 
v1’’ =  ( I – n13’’ ⊗ n13’’ ) * v1’           ( v1’’ is normal to n13’’) 
v1’’’=  ( I – n14’’ ⊗ n14’’ ) * v1’’          ( v1’’’ is normal to n14’’) 
Then the final velocity is orthogonal to all n12, n13 and n14.  
 
Q: How to calculate nij?  
A: Since the glide plane includes both Burgers vector and dislocation 
segment, the normal direction nij will be normal to both Burgers vector and 
dislocation segment, so the glide plane normal is,  
 

                                      

 

              (12) 
From Eq. (12) we find that if the segment is screw, i.e. the Burgers vector is 
nearly parallel to the line direction, nij in the above equation becomes ill-



defined. Physically, this corresponds to the fact that the motion of screw 
dislocation is not confined to a plane.  Correspondingly, in this case, we may 
not need to orthogonalize nodal velocity with any plane normal vector (this is 
the case for the BCC0 mobility law, the FCC0 case is different as discussed 
below).  
 
Q: What is the difference in nij between FCC and BCC mobility laws?  
A: From above we have seen that for a screw dislocation, a glide plane cannot 
be uniquely defined.  Thus in BCC crystals, the screw dislocation is equally 
likely to move on several planes.  However, in FCC crystals, even screw 
dislocations may have a preferred glide plane because of the existence of low-
energy stacking fault on certain planes. Consequently, the dislocation core 
prefers to spread itself on one of those planes (in the form of two partial 
dislocations bounding a stacking fault area), so the dislocation motion is 
confined to the chosen plane.  To account for this core property in the code, 
each segment i-j may carry an extra variable nij that represents the normal 
vector of the chosen glide plane. nij may be given as part of the initial 
condition. During the simulation, the glide planes can remain unchanged, or it 
can be changed stochastically to model the cross slip event.  
 

 
 
6 Topological changes 
 
For numerical and physical reasons, line-DD simulations need to handle topological 
changes, i.e. changes on the connectivity between nodes since we may want to adjust the 
number of nodes that represent a dislocation line if the line gets longer or shorter during 
the simulation, or when two dislocation lines meet in space, they may either annihilate or 
zip together to form a junction, which also results in a change of nodal topology.  
 
Thus many types of topological changes can be encountered in a line-DD simulation. 
Fortunately, since we use a nodal representation here, all topological changes can be 
implemented through two basic operators: merge (two nodes merge into one ) and split 
(one node split into two ).  The implementation of these two operators is straightforward 
– all one needs to do is to make sure that at the end of the operation the Burgers vector 
sum rule at every node and segment is still satisfied, moreover, two nodes are either 
disconnected or connected only once, and each node is connected with at least two other 
nodes, if a node has no segment, it will be deleted.  
 
Detailed description of merge and split operation can be found in Ref. 1.  
 

Q:  If a node has many ways to split, how do we determine which way to split 
the node or shall we keep the node intact?  
A: For example, for a 4-arm node such as P’ in Figure 3, there are 3 different 
ways to partition its arms: (12)(34), (13)(24) and (14)(23).  It is reasonable to 
expect that the way nature would choose should be the one that gives rise to 



the maximum energy dissipation rate, which is defined below. 

                                             
Figure 3: A node P’ with 4 arms, 1, 2, 3 and 4. 

 
Suppose an n-arm mode i stays intact (not splitting) and it feels a force fi and 
will move at velocity vi. Then the local energy dissipation rate is, 

                                                                               (13) 
Now suppose that node i splits into two nodes P and Q, such that node P 
retains 1,…,s of the original neighbors, and node Q retains the remaining 
neighbors. Let fP and fQ be the forces on the two nodes and vP and vQ be their 
velocities given by the mobility function. Then the local energy dissipation 
rate is,  

                                                     (14) 
If  ,  then node i prefers to split into two nodes P and Q instead of 
moving as a single node. The energy dissipation rate can be computed for all 
possible (topological distince) modes to split i. The mode with the highest 
energy dissipation rate is preferred.  
 
b. When we split one node into two nodes, where are the two new notes 
physically located?  
 
If a node will split in next step, the two new nodes actually stay at the same 
location as the “parent” node at the current step.  Because the velocities of the 
two nodes is different (otherwise the node should not split), the two nodes 
will be move away from each other in the next time step.  
 

 
7 How to run DDLab 
 
In order to execute the code, we need to first set the necessary parameters, dislocation 
configuration, then run dd3d.m to start the dislocation dynamics simulation.  
 
For example, if we want to simulate a Frank-Read source and frinit.m contains the 
initial condition data, then in the MATLAB command window, we type: 
 
>> frinit 
>> dd3d 



 
The result will be 

 
Figure 4: Line-DD simulation of Frank-Read source at (a) cycle N=20, (b) cycle N=100, 
and (c) cycle N =150. 
 
File frinit.m specifies the initial dislocation configuration and simulation parameters.  
Part of the file is listed below.  Notice that everything between % and end of line is a 
comment. 
  
frinit.m 
 
rn = [ -500 -500  1000 7;                  %% see section 2 
        500  500 -1000 7; 
        0    0    0    0];   
links = [ 1 3 0.5 0.5 0.5 -1 1 0;          %% see section 2 
          3 2 0.5 0.5 0.5 -1 1 0]; 
MU=1.0;                                    %% shear modulus 
NU=0.3;                                    %% poisson’s ratio 
a=0.1;                                     %% core radius 
Ec=0;                                      %% core energy 
totalsteps =300;                   %% total steps of simulation 
appliedstress = zero (3,3);        %% applied stress 
mobility = ’mobfcc1’;              %% mobility law 
...... 
 
 
Other parameters are explained in Ref. 2 and Appendix A.  
 
8 How to run ParaDiS code 
 
In order to run ParaDiS code, we need first compile the program then run the executable.  
 
To compile on a Linux (i686) machine, type, 

 
make dd3d   SYS= Linux 

 
To run a Frank-Read source example (the same problem as in Section 7), type, 
 

mpirun –np 1 dd3d Tests/fccFRsingle.cn 
 



where -np 1 specifies the number of processors (one), dd3d is the ParaDiS executable, 
and Tests/fccFRsingle.cn is the input script file. 
 
Part of the input file is given below to show its format and most important parameters.  
Notice that everything between # and end of line is a comment.  Notice that length is 
always specified in unit of the magnitude of the fundamental Burgers vector (burgMag). 
 
Tests/fccFRsingle.cn 
 
...... 
 
ShearModulus = 54.6e9       ### shear modulus (in unit of Pa) 
pois = 0.324                     ### Poisson’s ratio 
Ecore = 0                        ### core energy 
rc = 0.1       ### core radius (same as a in DDLab, in unit of burgMag) 
burgMag = 2.725e-10  ### magnitude of Burgers vector (in unit of meter) 
appliedStress=[ 0 0 0 0 0 4e8] ### [σ11, σ22, σ33, σ23, σ13, σ12] in Pa 
mobilityLaw = ”FCC_1”          ### mobility module 
 
...... 
 
config = [ 
### (1) Box X, Y, Z (in burgMag ) 
    -17500.0000      -17500.0000      -17500.0000 
     17500.0000       17500.0000       17500.0000 
### (2) Burgers vector array (number) 
0     (obsolete option, but retained for compatibility) 
### (3) Number of nodes 
3 
### (4) Nodal information 
###(primary line: node_id, old_id, x, y, z, numNbrs, constraint, domain, index) 
###( second line: nbr[i], bx[i], by[i], bz[i] nx[i], ny [i], nz[i])  
 1  0  500.0  6000.0  4000.0   1   7   0   0  ### in unit of burgMag 
     2  -0.5773503   -0.5773503    0.5773503   -1   1   0 
 2  0   500.0  6000.0  0.0       2   0   0   1         %% the unit is b 
    1    0.5773503    0.5773503   -0.5773503    -1   1   0 
    3   -0.5773503   -0.5773503    0.5773503   -1   1   0 
 3   0   500.0  6000.0  -4000.0   1   7   0   2       %% the unit is b 
    2    0.5773503    0.5773503   -0.5773503   -1   1   0 
...... 
] 
 
The dislocation structure is specified in the config = [ ...... ] complex.  The nodal 
information starts in section (3), which first gives the total number of nodes (here it is 3).  
It is then followed by 3 blocks of data, one for each node.  The first line of each block 
specifies the information (e.g. position, and number of neighbors numNbrs for this node).  
This line is then followed by numNbrs lines, one for each segments connected to the 
node. 
 
The above file specifies a Frank Read source represented by 3 interconnected nodes, with 
two end nodes fixed (constrain = 7).  Other parameters can be seen in Ref. 3 and 
Appendix C. 



 
Exercise: After the FR source have emitted a dislocation loop, what will 
happen if we set the applied stress to zero? 
 
Exercise: Try to reverse the direction of applied stress, what will happen for 
the same FR source? Is the Burgers vector of the emitted loop the same as 
before? 

 
9 Junction simulation in DDLab 
 

Exercise: Use DDLab to run the junction zipping example given in 
inputgeombinaryjunction.m 

 
fccjunc-init.cn 
 
10 Junction simulation in ParaDiS 
 

Exercise: Use ParaDiS to run the junction zipping example given in 
Tests/fccjunc-init.cn 
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Appendix A   Main parameters in DDLab 
 

 
 



 
 
 
Appendix B    Main subroutines in DDLab 
 
addline.m 
Add a straight line onto nodal structure rn, links 
 
addloop.m 
Add a dislocation loop onto nodal structure rn, links 
 
addrandloop.m 
Add a random dislocation loop 
 
bob.m 
A dislocation configuration and parameter setting file for core structure, including 
materials parameters, applied stresses, viewpoint, etc. 
 
cleanupnodes.m 
Cleanup the empty node and link entries 
 
collision.m 
Merge nodes if certain conditions are satisfied 
 
 



consistencycheck.m 
To check whether the burgers vector is consistent 
constructsegmentlist.m 
 
dd3d.m 
The main code to simulate the dislocation dynamics which includes calculating the forces 
on the dislocation line segments, updating the positions of nodes, performing topological 
changes and remeshing the system as needed. 
drndt.m 
Get the force and velocity of each node 
 
fccjunc_step500.mat 
A dislocation configuration and setting file for junction of two line segments, including 
applied stresses, viewpoint, etc. ( no parameter setting) 
 
FieldPointStress.m 
Calculate the stress at one point due to one segment 
 
findcollisionpoint.m 
To find the collision point of two nodes given that there are strict glide plane contraints 
 
findfsegcomb.m 
 
findsgeforcemajor.m 
 
findsubfseg.m 
To find the subforce 
of each segment, used in choosing the way of splitting 
 
frinit.m 
A dislocation configuration and parameter setting file for FR source, including materials 
parameters, applied stresses, viewpoint, etc. 
 
frsource.mat 
A dislocation configuration and setting file for FR source, including applied stresses, 
viewpoint, etc. ( no parameter setting) 
 
genconnectivity.m 
Generate the connectivity list from the list of links 
 
initparams.m 
Default parameter settings ( no configuration setting) 
 
int_eulerbackward.m 
Get the force, velocity and position of each node 
 



int_eulerforward.m 
Get the force, velocity and position of each node 
 
int_ode15s.m 
Get the force, velocity and position of each node 
 
juncinit.m 
A dislocation configuration and parameter setting file for junction of two loops, including 
materials parameters, applied stresses, viewpoint, etc. 
 
mergenodes.m 
To merge the connectivity information in nodeid with deadnode, then remove deadnode 
and repair the connectivity list and the link list so that there are no self links and no two 
nodes are linked more than once 
 
meshcoarsen.m 
Remesh nodes if certain conditions are satisfied 
 
meshrefine.m 
Remesh nodes if certain conditions are satisfied 
 
mindist.m 
To find the minimum distance between two line segments 
 
mobbcc1.m 
Get the force and velocity of each node 
 
mobbcc1b.m 
Get the force and velocity of each node 
 
mobfcc0.m 
Get the force and velocity of each node 
 
mobfcc1.m 
Get the force and velocity of each node 
 
pkforcevec.m 
Nodal force on dislocation segment 01 due to applied stress, the output is a 1*6 matrix, 
the first three columns give the force on node 0 and the last three columns give the force 
on node 1 
 
plotnodes.m 
Plot dislocation structure 
 
remesh.m 
Remesh nodes if certain conditions are satisfied, it is the sum of meshcoarsen and 



meshrefine 
 
remoteforcevec.m 
Nodal force on dislocation segment 01 due to another segment 23, the output is a 1*6 
matrix, the first three columns give the force on node 0 and the last three columns give 
the force on node 1 
 
RemoteNodeForce.m 
To calculate the force between two dislocation segments 12 and 34, the output is the 
remote force on nodes 1, 2, 3 and 4 respectively 
 
removedeadconnection.m 
To delete an entry in a node's connectivity list and update the linksinconnet array 
 
removedeadlink.m 
To replace the link in linkid with the link in llinks, repair the connectivity and then delete 
the llinks from links 
 
removedeadnode.m 
To remove the nodes that are no longer part of simulation and cleanup the data structure 
 
removelink.m 
To delete the link information from connectivity list, remove the link from the link list 
and replace the linkid with the last link 
 
rundd3d.m 
A whole code to simulate the dislocation dynamics, which includes the dislocation 
configuration and parameter setting, the run mode control and dynamics simulations 
 
segforcevec.m 
Nodal driving force of each segment. It is a n*6 matrix, n is the number of segments, the 
first three columns give the force on the first node and the last three columns give the 
force on the second node. It is the sum of pkforcevec, selfforcevec and remoteforcevec 
 
SegSegInteractionEnergy.m 
To calculate the interaction energy between two segments 
 
selfforcevec.m 
Nodal force on dislocation segment 01 due to itself (self stress), the output is a 1*6 
matrix, the first three columns give the force on node 0 and the last three columns give 
the force on node 1 
 
separation.m 
Split nodes with 4 or more connections if certain conditions are satisfied 
 
 



splitnode.m 
Split the connectivity of nodeid with a new node that is added to the end of rn after the 
node is added. 
 
writeParaDiS.m 
Write rn, links into ParaDiS restart file format 
 
zip.m 
A dislocation configuration and parameter setting file for core structure, including 
materials parameters, applied stresses, viewpoint, etc. 
 
zip2.m 
A dislocation configuration and parameter setting file for core structure, including 
materials parameters, applied stresses, viewpoint, etc. 
 
ziponefcc1.m 
A dislocation configuration and parameter setting file for a specific structure, including 
materials parameters, applied stresses, viewpoint, etc. 
 
ziptotom.m 
A dislocation configuration and parameter setting file for core structure, including 
materials parameters, applied stresses, viewpoint, etc. 
 
 
Appendix 3   Main parameters in ParaDiS 
 
(to be completed) 
 
Appendix4  Main subroutines in ParaDiS 
 
(to be completed) 
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