
DDLAB Primer

A. Arsenlis, Lawrence Livermore National Laboratory (arsenlis1@llnl.gov)
W. Cai, Stanford University (caiwei@stanford.edu)

Introduction

The purpose of this document is to give a brief description of the DDLAB software for
end users who are interested in writing input files and running simulations using the software.
This is document does not provide an exhaustive description of the algorithms in the code, but
rather gives a description of necessary elements of the input deck for the code and the execution
procedures. If advanced users are interested in the algorithms of the code, they may simply look
at the source code. We have tried to write and organize the subroutines in a compact yet
readable manner.

 DDLAB consists of a series of MATLAB functions that can be used to perform small
dislocation dynamics simulations. The functions are driven by a main MATLAB script named
dd3d.m. The dd3d.m script calculates the forces on the dislocation line segments, updates the
positions of nodes, performs topological changes (including collisions between lines and splitting
of highly connected dislocation nodes), and remeshes the system as needed. It conducts these
operations for as many cycles as specified by the user in the input deck. The code is designed for
small dislocation geometries with relatively few dislocation segments because it scales with the
square of the total number of segments, or links, in geometry. It was originally written as a
development and debug tool for the ParaDiS code developed at LLNL. We do not guarantee the
results obtained by DDLAB. Use it at your own risk. For your information, ParaDiS (Parallel
Dislocation Simulator) is a massively parallel code written in C. To obtain a copy of ParaDiS
please contact Vasily Bulatov (bulatov1@llnl.gov).

Execution Procedure

 To execute the software you must first install MATLAB or Octave. MATLAB is a
commercial software package sold by MathWorks and may be obtained from
www.mathworks.com. If you don’t have access to MATLAB, you may try Octave
(www.octave.com), which is shareware that has some of the same core capabilities as MATLAB.
DDLAB has not been fully tested with Octave.

To execute the code from on an input script named input.m type the following lines on the
MATLAB Command Line:

 >>input
 >>dd3d

To execute the code from a saved dataset named saveddata.mat type the following lines on the
MATLAB Command Line:

http://www.mathworks.com/
http://www.octave.com/

 >>load saveddata
 >>dd3d

The dd3d.m script automatically saves a restart file at the end of every cycle. The restart file is
overwritten every cycle. The name of the restart file that is saved is restart.mat. To load a
restart file and execute the code follow the execution procedure given for the saved dataset.

The user may interrupt the code execution with a by pressing Ctrl-C while the MATLAB
Command Line window is active. To continue the execution of the simulation after a Ctrl-C
termination, it is recommended that the user reload the restart file followed by the dd3d
execution statement.

DDLAB input deck

Please look at the sample DDLAB input deck below:

inputgeomfrinit.m

rn = [-500 -500 1000 7;
 500 500 -1000 7;
 0 0 0 0];

links = [1 3 0.5 0.5 0.5 -1 1 0;
 3 2 0.5 0.5 0.5 -1 1 0];

MU = 1;
NU = 0.305;
maxconnections=8;
lmax = 2000;
lmin = 200;
areamin=lmin*lmin*sin(60/180*pi)*0.5;
areamax=20*areamin;
a=lmin/sqrt(3)*0.5;
Ec = MU/(4*pi)*log(a/0.1);
totalsteps=200;
dt0=1e7;
mobility='mobbcc1';
integrator='int_eulerbackward';
rann = 10.0;
rntol = 2*rann;
doremesh=1;
docollision=1;
doseparation=1;
plotfreq=1;
plim=10000;
appliedstress =1e-3.*[2 0 1; 0 2 -1; 1 -1 0];
viewangle=[45 45];
printfreq=1;
printnode=3;
rmax=100;

The input deck above contains the basic information that must be given before the dd3d
execution can be run in the MATLAB Command Line window. The geometry of the system is
given in two data structures: rn and links. This example can be run by:

 >>inputgeomfrinit
 >>dd3d

The rn data structure gives the positions of the physical and discretization nodes in the
system and any flags associated with those positions. The size of rn is four columns wide and
the number of nodes long. The first three columns, contains the x,y,z coordinates of the node,
and the fourth column contains a flag. Currently there are only two node flags used in the code.
A flag equal to zero means that the node is regular node, a flag equal to 7 means that the node is
immobile (fixed).

The links data structure gives the information of the dislocation segments that connect

the nodes. The links data structure is eight columns wide and the total number of links long.
The first two columns give the node-ids of the starting and ending nodes of the dislocation
segment. The 3rd-5th columns of links give the Burgers vector of the dislocation line in
Cartesian coordinates, and the 6th-8th columns of links gives glide plane of the dislocation
segment.

For example, if we want to find out the vector that connects the starting node to the end

node of segment i in the links array, it can be calculated by,
vec = rn(links(i,2),1:3) - rn(links(i,1),1:3);

The line direction (unit vector) of segment i is then,
unitvec = vec / norm(vec);

With rn and links defined, the geometry of the problem is completely defined. When

initializing the geometry with these definitions please make sure that Burgers vector are
conserved at all of the nodes in the system. The rest of the lines in the input deck set the
conditions for the simulation. Here is a short description of the rest of the input variables:

MU shear modulus
NU Poisson’s ratio
maxconnections maximum number of segments a node may have
lmax maximum length of a dislocation segment (for remesh)
lmin minimum length of a dislocation segment (for remesh)
areamin minimum area criterion (for remesh)
areamax maximum area criterion (for remesh)
a dislocation core radius used for non-singular force calculation
Ec dislocation core energy per unit length and burgers vector squared

for a screw dislocation (should always be a function of a)
totalsteps number of cycles that are run for completion of dd3d command
dt0 largest timestep that can be taken during a cycle
mobility name of the function used to calculate the velocity of the nodes
integrator name of the time integration scheme used to update nodal

positions

rann annihilation distance used to calculate the collision of dislocation
lines

rntol solution tolerance used to control the automatic timestepping
doremesh a flag set either to 0 or 1 that turns the remesh functions off or on

respectively
docollision a flag set either to 0 or 1 that turns the collision detection off or on

respectively
doseparation a flag set either to 0 or 1 that turns the splitting algorithms for

highlyconnected nodes off or on respectively
plotfreq number of cycles between plots of geometry
plim limits of plotting space
appliedstress external stress given in a three by three symmetric tensor
viewangle angle of viewpoint for the 3D plot of the geometry
printfreq number of cycles between monitored node write statements
printnode nodeid of the monitored node
rmax maximum distance a node may travel in one cycle

Along with inputgeomfrinit.m which shows the operation of a Frank-Read source, we have also
included some other simple demonstration geometries:

inputgeombinaryjunction.m shows zipping of a binary junction under no applied
stress

inputgeommultijunction.m shows zipping of a ternary junction under no

applied stress

Along with the two data structures rn and links there are other data structures that the code
creates that may be useful to the end user:

fn(nodeid, :) force as a row vector on node number nodeid in

Cartesian coordinates

fseg(linkid, :) force as a row vector on link number linkid in Cartesian

coordinates. The first three entries correspond to the force
on the start node of the link and the last three entries
correspond to the force on the end node due to the segment

vn(nodeid, :) velocity as a row vector on node number nodeid in

Cartesian coordinates

connectivity(nodeid, :) connectivity information of node number nodeid. The

connectivity array can be considered as the “inverse”
of the links array. It specifies the position of a node in
the links array. The first column (nlinks) specifies the
total number of links that node nodeid has. It is then

followed by (2 * nlinks) columns, specifying the
linkid and a flag (1 or 2) for the links that node nodeid
is connected to. The flag equals 1 if the node is the start
node of the link and equals 2 if the node is the end node of
the link.

A series of mobility functions are included in the distribution named mobbcc0 mobbcc0b and
mobfcc1. mobbcc0 and mobbcc0b are intended to simulate bcc behavior in which the the
screw dislocations are able to glide in any plane normal to their Burgers vector. The difference
between them is slight and appears in the mobility of dislocations of mixed character. mobfcc1
is intended to simulate fcc behavior in which the screw dislocation are not able to cross-slip. The
mobility function is chosen in the input deck with the mobility input parameter.

A series of time integration schemes are also included with the distribution named
int_eulerforward, int_eulerbackward, int_newtonkrylov.
int_eulerforward is an explicit forward integration scheme. int_eulerbackward is a
simple implicit time integration scheme, and int_newtonkylov is a more sophisticated
inexact implicit time integration scheme based on the Newton-Krylov matrix-free solution
method. The core of the int_newtonkrylov employs software written by C. T. Kelley. The
time integration scheme is specified in the input deck with the integrator input parameter.

Included in the software distribution is a geometry checker that will not allow a simulation to
begin unless it is given a valid geometry and generates error messages for bad initial geometries
guiding the user as to what need to be corrected.

Enjoy simulating dislocation dynamics with DDLAB. Feel free to send comments to the email
addresses listed above.

 A. Arsenlis and W. Cai

