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Statistical Mechanics

• is the theory with which we analyze the behavior of natural or spontaneous fluctuations
— Chandler “Introduction to Modern Statistical Mechanics” (1987)

• provides a set of tools for understanding simple behavior that emerges from underlying
complexity — Sethna “Statistical Mechanics” (2007)

• provides the basic tools for analyzing the behavior of complex systems in thermal
equilibrium — Sachs, Sen and Sexten “Elements of Statistical Mechanics” (2006)

• involves systems with a larger number of degrees of freedom than we can conveniently
follow explicitly in experiment, theory or simulation — Halley “Statistical Mechanics”
(2007).

The main purpose of this course is to provide enough statistical mechanics background to
the Molecular Simulation courses (ME 346 B and C), including fundamental concepts such
as ensemble, entropy, free energy, etc.

We also try to identify the connection between statistical mechanics and all major branches
of “Mechanics” taught in the Mechanical Engineering department.
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Textbook

• Frederick Reif, “Fundamentals of Statistical and Thermal Physics”, (McGraw-Hill,
1965). (required) $67.30 on Amazon, paperback. Available at bookstore. Several
copies on reserve in Physics library.

• James P. Sethna, “Statistical Mechanics: Entropy, Order Parameters, and Complex-
ity”, (Claredon Press, Oxford). Suggested reading. PDF file available from Web (free!)
http://pages.physics.cornell.edu/sethna/StatMech/.

First Reading Assignment

• Reif § 1.1-1.9 (by next class, Monday Jan 10).

• Sethna Chap. 1 and Chap. 2

What will be covered in this class: (Sethna Chapters 1 to 6)

• classical, equilibrium, statistical mechanics

• some numerical exercises (computer simulations)

What will be touched upon in this class:

• non-equilibrium statistical mechanics (phase transition, nucleation)

What will NOT be covered in this class:

• quantum statistical mechanics

Acknowledgement
I would like to thank Seunghwa Ryu for helping convert the earlier hand-written version of
these notes to electronic (Latex) form.
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1 What is di↵usion?

Di↵usion is the process by which molecules spread from areas of high concentration to
areas of low concentration.

It is a spontaneous, natural process that has also been widely used in technology, such as

• doping of semiconductors by impurities ( to create P-N junction and transistor )

• di↵usional bonding ( between two metals )

• transdermal drug delivery ( patches )

• · · · (can you think of other examples of di↵usion?)

Here we use di↵usion to illustrate many aspects of statistical mechanics

• the concept of “ensemble”

• the emergence of simple laws at the larger scale from complex dynamics at the smaller
scale

• the “Boltzmann” distribution

• the Einstein relation

• the relationship between random walk and di↵usion equation is analogous to that
between Hamiltonian dynamics ( classical mechanics ) and Liouville’s theorem ( flow
in phase space )

You can watch an on-line demo “Hot water di↵usion” (with sound e↵ects) from a link in
the Materials/Media section on coursework. (Unfortunately, this is not a purely di↵usive
process. We can clearly see convection and gravity playing a role here.)
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You can read more about di↵usion from many classic books, such as The Mathematics of
Di↵usion, by John Crank, whose Section 1.1 reads,

“Di↵usion is the process by which matter is transported from one part of a system to
another as a result of random molecular motions. It is usually illustrated by the classical
experiment in which a tall cylindrical vessel has its lower part filled with iodine solution,
for example, and a column of clear water is poured on top, carefully and slowly, so that no
convection currents are set up.· · ·”

“This picture of random molecular motions, in which no molecule has a preferred direction
of motion, has to be reconciled with the fact that a transfer of iodine molecules from the
region of higher to that of lower concentration is nevertheless observed.· · ·”

2 The di↵usion equation

Di↵usion equation in 1-dimension:

@C(x, t)

@t
= D

@2C(x, t)

@x2
(1)

where D is the di↵usion coe�cient.

Di↵usion equation in 3-dimension:

@C(x, t)

@t
= Dr2C(x, t) ⌘ D

✓
@2C

@x2
+

@2C

@y2
+

@2C

@z2

◆
(2)

where x = (x, y, z): position vector in 3-D space.

The di↵usion equation is the consequence of two “laws” :

1. Conservation of Mass: (no ink molecules are destroyed; they can only move from
one place to another.)

Let J(x, t) be the flux of ink molecules (number per unit area per unit time).
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Conservation of mass in 1-D means (equation of continuity):

@

@t
C(x, t) = � @

@x
J(x, t) (3)

Equation of continuity in 3-D:

@

@t
C(x, t) = �r · J(x, t) ⌘ �

✓
@

@x
Jx +

@

@y
Jy +

@

@z
Jz

◆
(4)

Physical interpretation: change of concentration = accumulation due to net influx.

2. Fick’s Law:
In 1-D:

J(x, t) = �D
@

@x
C(x, t) (5)

In 3-D

J(x, t) = �DrC(x, t) = �D

✓
@

@x
C,

@

@y
C,

@

@z
C

◆
(6)

Physical interpretation: flux always points in the direction from high concentration to
low concentration.

Combining 1 and 2, we get the following partial di↵erential equation (PDE) in 1-D:

@

@t
C = � @

@x
J = � @

@x

✓
�D

@

@x
C

◆
= D

@

@x2
C (7)

(if D is a constant).

3 Useful solutions of the di↵usion equation

Consider the 1-D di↵usion equation

@

@t
C = D

@2C

@x2
, (8)

A useful solution in the infinite domain (-1 < x < 1) with the initial condition C(x, 0) =
�(x) is

C(x, t) =
1p

4⇡Dt
e�

x2

4Dt ⌘ G(x, t) (9)

where G(x, t) is the Green function for di↵usion equation in the infinite domain. This solution
describes the spread of “ink” molecules from a concentrated source.

We can plot this solution as a function of x at di↵erent t in Matlab and observe the shape
change.
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4 Physical origin of the di↵usion equation

Q: How can we explain the di↵uion equation?

A: Di↵usion equation comes from (1) the conservation of mass and (2) Fick’s law. Con-
servation of mass is obvious. But Fick’s law is based on empirical observation similar to
Fourier’s law for heat conduction that “Heat always goes from regions of high temperature
to regions of low temperature”. So what is the physical origin of Fick’s law?

Q: Does the ink molecule know where is the region of low concentration and is smart enough
to go there by itself?

A:

Q: Is the di↵usion equation a consequence of a particular type of interaction between ink
and water molecules?

A: No. The di↵usion equation can be used to describe a wide range of material pairs -
metals, semiconductors, liquids, · · · — in which the nature of interatomic interaction is very
di↵erent from one another.

) Hypothesis: The di↵usion equation emerges when we consider a large ensemble (i.e. a
large collection) of ink molecules, and the di↵usion equation is insensitive to the exact nature
of their interactions. On the other hand, the value of di↵usion coe�cient D depends on the
nature of interatomic interactions. For example,

• A bigger ink molecule should have smaller D

• Di↵usion coe�cient of di↵erent impurities in silicon can di↵er by more than 10 orders
of magnitude.

Q: How can we test this hypothesis?

A: We will construct a very simple (toy) model for ink molecules and see whether the
di↵usion equation jumps out when we consider many ink molecules

— Now, this is the spirit of the statistical mechanics!

5 Random walk model

For simplicity, we will consider a one-dimensional model. First, consider only one ink
molecule. Let’s specify the rules that it must move.

5



The random walk model:

Rule 1: The molecule can only occupy positions x = 0, ± a, ± 2a,· · ·

Rule 2: The molecule can only jumps at times t = ⌧ , 2⌧ ,· · ·

Rule 3: At each jump, the molecule moves either to the left or to the right with equal proba-
bility.

x(t + ⌧) =

⇢
x(t) + a prob = 1

2
x(t)� a prob = 1

2

(10)

This model is very di↵erent from the “real picture” of an ink molecule being bombarded by
water molecules from all directions. In fact, it is more similar to the di↵usion of impurity
atoms in a crystalline solid. However, since our hypothesis is that “the details should not
matter”, let’s continue on with this simple model.

Trajectory of one random walker:

It is easy to generate a sample trajectory of a random walker.

Suppose the walker starts at x = 0 when t = 0.

Q: Where is the average position of the walker at a later time t, where t = n⌧?

A: x(t) = x(0) + l1 + l2 + l3 + . . . + ln, where li is the jump distance at step i (i = 1, . . . , n)

li is a random variable, li =

⇢
+a prob = 1

2
�a prob = 1

2

(11)

li is independent of lj (for i 6= j)
since x(0) = 0,

hx(t)i = h
X

i

lii =
X

i

hlii = 0 (12)
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because hlii = (+a) · (1
2) + (�a) · (1

2) = 0.
On the average, the molecule is not going anywhere!

Q: What is the variance and standard deviation of x(t)?

A: variance:

hx2(t)i = h(
X

i

li)
2i

= h
X

i

(l2i ) +
X

i6=j

(lilj)i =
X

i

hl2i i+
X

i6=j

hlilji

hl2i i = (+a)2 · 1

2
+ (�a)2 · 1

2
= a2

hlilji = hliihlji = 0

hx2(t)i =
X

i

hl2i i = na2 (13)

standard deviation:
�x(t) =

p
hx2(t)i =

p
na (14)

These are the statements we can make for a single ink molecule.

To obtain the di↵usion equation, we need to go to the “continuum limit”, where we need to
consider a large number of ink molecules.

There are so many ink molecules that

(1) in any interval [x, x+dx] where dx is very small, the number of molecules inside is still
very large N([x, x + dx])� 1

(2) we can define C(x) ⌘ lim
dx!0

N([x, x + dx])/dx as a density function.

(3) C(x) is a smooth function.

The number of molecules has to be very large for the continuum limit to make sense. This
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condition is usually satisfied in practice, because the number of molecules in (1 cm3) is on
the order of 1023.

Suppose each ink molecule is just doing independent, “mindless” random walk,

Q: how does the density function evolve with time?

Q: can we derive the equation of motion for C(x, t) based on the random-walk model?

First, we need to establish a “correspondence” between the discrete and continuum variables.

discrete: Ni = number of molecules at x = xi = i · a.

continuum: C(x) = number density at x.

Hence

C(xi) =
hNii
a

(15)

Notice that average hi is required because Ni is a random variable whereas C(x) is a normal
variable (no randomness).

6 From random walk to di↵usion equation

6.1 Method I

At present time, the number of molecules at x0, x1, x2 are N0, N1, N2.

What is the number of molecules at time ⌧ later?

• all molecules originally on x1 will leave x1
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• on the average, half of molecules on x0 will jump right to x1.

• on the average, half of molecules on x2 will jump left to x1.

therefore,

hNnew
1 i =

1

2
hN0i+

1

2
hN2i

@C(x1)

@t
=

hNnew
1 i � hN1i

a⌧
=

1

2a⌧
(hN0i+ hN2i � 2hN1i)

=
1

2⌧
[C(x0) + C(x2)� 2C(x1)]

=
a2

2⌧

C(x1 � a) + C(x1 + a)� 2C(x1)

a2
(16)

in the limit ofa! 0

=
a2

2⌧

@2

@x2
C(x) (17)

@C

@t
= D

@2

@x2
C (18)

A brief discussion on the numerical derivative of a function is given in the Appendix.

6.2 Method II

Via Fick’s Law, after time ⌧ , on the average half of molecules from x1 will jump to the right,
half of molecules from x2 will jump to the left. Next flux to the right across the dashed line:

J(x) =
1
2hN1i � 1

2hN2i
⌧

=
a

2⌧
[C(x1)� C(x2)]

=
a2

2⌧

C(x1)� C(x2)

a
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= � a2

2⌧

@C

@x
(19)

in the limit of a! 0

J(x) = �D
@C

@x
(20)

Di↵usion equation follows by combining with equation of continuity.

A third way to derive the di↵usion equation is given by Sethna (p.20). It is a more formal
approach.

7 Two interpretations of the di↵usion coe�cient D

) Two ways to measure/compute D

(1) Continuum (PDE)

@C

@t
= D

@2C

@x2
(21)

solution for C(x, t) =
Np
4⇡Dt

exp

✓
� x2

4Dt

◆
(22)

(2) Discrete (Random Walk)

X(t)�X(0) =
nX

i=1

li (23)

hX(t)�X(0)i = 0 (24)

h(X(t)�X(0))2i =
nX

i=1

hl2i i = na2 =
t

⌧
a2 = 2Dt (25)

h(X(t) � X(0))2i is called “Mean Square Displacement” (MSD) — a widely used way to
compute D from molecular simulations.

10



8 Di↵usion under external potential field

example a: sedimentation of fine sand particles under gravity (or centrifuge) The equilibrium
concentration Ceq(x) is not uniform.

example b: why oxygen density is lower on high mountain ) breathing equipment.

Q: Are the molecules staying at their altitude when the equilibrium density is reached?

A:

We will

(1) Modify the random-walk-model to model this process at the microscopic scale

(2) Obtain the modified di↵usion equation by going to the continuum limit

(3) Make some important “discoveries” as Einstein did in 1905!

(4) Look at the history of Brownian motion and Einstein’s original paper (1905) on course-
work. (This paper is fun to read!)
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Let us assume that the molecule is subjected to a force F .
(in the sedimentation example, F = �mg)
that bias the jump toward one direction

li =

⇢
+a prob = 1

2 + p jump to right
�a prob = 1

2 � p jump to left
(26)

So the walk is not completely random now.

hX(t)�X(0)i =
nX

i=1

hlii, hlii = a(1/2 + p) + (�a)(1/2� p) (27)

= n · 2ap (28)

=
2ap

⌧
t (29)

hvi =
2ap

⌧
, average velocity of molecule (30)

Define mobility µ = hvi
F , hvi = µF , which leads

µ =
2ap

⌧F
(31)

or

p =
µ⌧F

2a
(32)

i.e. our bias probability p is linked to the mobility µ and force F on the molecule.

Q: what is the variance of X(t)�X(0)?

A:

V (X(t)�X(0)) = h(X(t)�X(0)2i � hX(t)�X(0)i2 (33)

= h(
X

i

li)
2i � (

X

i

hlii)2 (34)

= h
X

l2i i+
X

i6=j

hlilji �
X

i

hlii2 �
X

i6=j

hliihlji (35)
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but hlilji = hliihlji for i 6= j.

V (X(t)�X(0)) =
X

i

hl2i i � hlii2 =
X

i

V (li) (36)

hl2i i = a2(1/2 + p)+) + (�a)2(1/2� p) = a2 (37)

V (li) = hl2i i � hlii2 = a2 � (2ap)2 = a2(1� 4p2) (38)

V (X(t)�X(0)) = na2(1� 4p2) =
a2t

⌧
(1� 4p2) (39)

Again, based on the central limit theorem, we expect X(t) � X(0) to satisfy Gaussian
distribution with

mean =
2ap

⌧
= µFt

variance =
a2(1� 4p2)

⌧
t

⇡ a2

⌧
t (if p⌧ 1) (40)

= 2Dt

✓
define D =

a2

2⌧

◆
(41)

fx(x, t) =
1p

4⇡Dt
exp


�(x� µFt)2

4Dt

�
(42)

C(x, t) =
Np
4⇡Dt

exp


�(x� µFt)2

4Dt

�
(43)

This is the modified di↵usion equation.

Derivation of Continuum PDE for C(x, t) from discrete model.

hNnew
1 i = (1/2 + p)hN0i+ (1/2� p)hN2i (44)

@C(x1)

@t
=

hNnew
1 i � hN1i

a⌧
(45)

=
1

2a⌧
[(1 + 2p)hN0i+ (1� 2p)hN2i � 2hN1i] (46)

=
1

2⌧
[C(x0) + C(x2)� 2C(x1) + 2p(C(x0)� C(x2))] (47)

=
a2

2⌧

C(x0) + C(x2)� 2C(x1)

a2
+

2ap

⌧

C(x0)� C(x2)

2a
(48)

=
a2

2⌧
C 00(x1)�

2ap

⌧
C 0(x1) (49)
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Notice: a2

2⌧ = D, 2ap
⌧ = µF . Finally, we obtain the following PDE for C(x, t),

@C(x, t)

@t
= D

@2

@x2
C(x, t)� µF

@

@x
C(x, t) (50)

First term in the right hand side corresponds to di↵usion, while second term corresponds to
drift.

We can rewrite the equation into:

(1) mass conservation: @C(x,t)
@t = � @

@xJ(x, t)

(2) Fick’s law: J(x, t) = �D @
@xC(x, t) + µFC(x, t)

Molecules are constantly at motion even at equilibrium. Di↵usional and drift flows balance
each others to give zero flux J .

The above discussion can be further generalized to let external force F be non-uniform, but
depend on x.

We may assume that F (x) is the negative gradient of a potential function �(x), such that

F (x) = �@�(x)

@x
(51)

The variation of F is smooth at the macroscopic scale. We will ignore the di↵erence of F at
neighboring microscopic sites, i.e. F (x0) ⇡ F (x1) ⇡ F (x2).

J(x, t) = �D
@

@x
C(x, t) + µF (x)C(x, t) (52)

@C(x, t)

@t
= D

@2

@x2
C(x, t)� µ

@

@x
[F (x)C(x, t)] (53)

9 Einstein’s relation

At equilibrium, we expect net flux to be zero.

C(x, t) = Ceq(x), J(x) = 0 = �D
@

@x
Ceq(x) + µF (x)Ceq(x) (54)

@

@x
Ceq(x) =

µF (x)

D
Ceq(x) = � µ

D

@�(x)

@x
Ceq(x) (55)

Solution: Ceq(x) = A e�
µ�(x)

D where A is normalization constant giving
R +1
�1 Ceq(x) = N .

Compare with Boltzman’s distribution Ceq(x) = A e
� �(x)

kBT where T is absolute temperature
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and kB is Boltzmann constant. This leads to Einstein’s relation

µ =
D

kBT
(56)

Interpretation of equilibrium distribution

Ceq(x) = Ae�
µ
D �(x) = Ae

� 1
kBT �(x)

(57)

Example: under gravitational field �(x) = mgx, the number density will be

Ceq(x) = Ae�
µmgx

D = Ae
�mgx

kBT (58)

µ, D, T can be measured by 3 di↵erent kinds of experiments.

Einstein’s relation µ = D
kBT says that they are not independent. µ, the response of a system

to external stimulus and D, the spontaneous fluctuation of the system without external
stimulus are related to each other. ) More details on the relations will be dealt with by the
Fluctuation-Dissipation Theorem.

History and Significance of Einstein’s Relation

3 Landmark papers published by Einstein in 1905 as a clerk in a patent o�ce in Bern,
Switzerland
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• special theory of relativity

• photoelectric e↵ect (Nobel Prize 1921)

• Brownian motion (µ = D
kBT )

History of Brownian Motion

• 1827 British Botanist Robert Brown: Using light microscope, he noticed pollen grains
suspended in water perform a chaotic and endless dance

• It took many years before it was realized that Brownian motion reconcile an apparent
paradox between thermodynamics (irreversible) and Newtonian mechanics (reversible).
Einstein played a key role in this understanding (1905)

• Einstein’s work allowed Jean Perrir and others to prove the physical reality of molecules
and atoms.

• “We see the existence of invisible molecules (d < 1 nm) through their e↵ects on the
visible pollen particles (d < 1µm).”

• Einstein laid the ground work for precision measurements to reveal the reality of atoms.

10 Random walk model exercise

16



17



18



A Numerical derivatives of a function f (x)

We discretize a continuous function f(x) by storing its value on a discrete set of points.

fi = f(xi), xi = i · a, a is the grid spacing.

There are several ways to compute f 0(x) at some point x.

(1) f 00 = f1�f0

a f 00 ⇠= f 0(x = 0)

(2) f 00 = f1�f�1

a f 00 ⇠= f 0(x = 0)

(3) f 01/2 = f1�f0

a f 01/2
⇠= f 0(x = a

2)

f 0�1/2 = f0�f�1

a f 0�1/2
⇠= f 0(x = �a

2)

Notice that Scheme (1) is not centered (bigger error) schemes (2) and (3) are centered
(smaller error, preferred).

By the same approach, we can approximate f 00(x) by centered di↵erence.

f 000 =
f 01/2 � f 0�1/2

a
=

f1�f0

a � f0�f�1

a

a
=

f1 + f�1 � 2f0

a2
(59)

f 000 = f 00(x = 0) (60)

This topic will be discussed in detail in ME300B (CME204) “Partial Di↵erential Equations”.

References

1. The Mathematics of Di↵usion, John Crank, 2nd Ed., Clarendon Press, Oxford, 1975.
(You can read Section 1.1 The Di↵usion Process from Google books.)

2. Fundamentals of statistical and thermal physics, F. Reif, McGraw-Hill, 1976. § 1.1-1.4,
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Statistical mechanics is an inherently probabilistic description of the system. Familiarity
with manipulations of probability is an important prerequisite – M. Kadar, “Statistical
Mechanics of Particles”.

1 Definitions

The Sample Space ⌦ is the set of all logically possible outcomes from same experiment
⌦ = {w1, w2, w3, · · ·} where wi is referred to each sample point or outcome.

The outcomes can be discrete as in a dice throw

⌦ = {1, 2, 3, 4, 5, 6} (1)

or continuous
⌦ = {�1 < x < +1} (2)

An Event E is any subset of outcomes E ✓ ⌦ (For example, E = {w1, w2} means outcome
is either w1 or w2) and is assigned a probability p(E), 1 e.g. pdice({1}) = 1

6 , pdice({1, 3}) = 1
3 .

The Probabilities must satisfy the following conditions:

i) Positivity p(E) � 0

ii) Additivity p(A or B) = p(A) + p(B) if A and B are disconnected events.

iii) Normalization p(⌦) = 1

Example 1.

Equally likely probability function p defined on a finite sample space

⌦ = {w1, w2, · · · , wN} (3)

assigns the same probability

p(wi) =
1

N
(4)

to each sample point.2

When E = {w1, w2, · · · , wk} (interpretation: the outcome is any one from w1, · · · , wk), then
p(E) = k/N .

1 p is called a probability measure (or probability function). It is a mapping from a set E to real numbers
between 0 and 1.

2This is an important assumption in the statistical mechanics, as we will see in the micromechanical
ensemble.
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Example 2.

Consider a party with 40 people in a ball room. Suddenly one guy declares that there are
at least two people in this room with the same birthday. Do you think he is crazy? Would
you bet money with him that he is wrong?

2 Interpretations of probability

Frequency interpretation of probability

When an experiment is repeated n times, with n a very large numbers, we expect the relative
frequency with which event E occurs to be approximately equal to p(E).

lim
n!1

number of occurrence of event E

n
= p(E) (5)

The probability function on discrete sample space can be visualized by ’stem-plots’. ⌦ =
{!1, !2, · · · , !N},

PN
i=1 p(!i) = 1.
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Two possible approaches to assign probability values:

Objective Probabilities
Perform a lot of experiments, record the number of times event E is observed NE.

pE = lim
n!1

NE

N
(6)

Subjective Probabilities
Theoretical estimate based on the uncertainty related to lack of precise knowledge of
outcomes (e.g. dice throw).

• all assignment of probability in statistical mechanics is subjectively based (e.g.
uniform distribution if no information is available)

• information theory interpretation of Entropy

• whether or not the theoretical estimate is correct can be checked by comparing
its prescriptions on macroscopic properties such as thermodynamical quantities
with experiments. (Isn’t this true for all science?)

• theoretical estimate of probability may need to be modified if more information
become available

Example 3. Binomial distribution

Let X denote the number of heads in n tosses of a coin. Each toss has probability p for
heads. Then the probability function of X is

p(X = x) = C
x
n p

x (1� p)n�x (7)

where C
x
n =

�
n
x

�
= n!

x!(n�x)! . C
k
n is called the number of combinations of k objects taken from

n objects. For example, consider a set S = {a, b, c} (n=3). There are 3 ways to take 2
objects (K = 2) from S.

{a, b}, {b, c}, {a, c} (8)

In fact, C
2
3 = 3!

2!(3�2)! = 3.
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Example 4. Random walk

Consider a random walker that jumps either to the left or to the right, with equal probability,
after every unit of time.

X(n + 1) =

⇢
X(n) + 1, prob = 1/2
X(n)� 1, prob = 1/2

(9)

What is the probability p(X(n) = x) that after n steps the random walker arrives at x?

3 Probability rules

1) Additive rule: If A and B are two events, then

p(A [B) = p(A) + p(B)� p(A \B) (10)

(A [B means A or B, A \B means A and B.)

2) If A and B are mutually exclusive (disconnected), then

p(A [B) = p(A) + p(B) (11)

(Mutually exclusive means A \B = �, where � is the empty set. p(�) = 0.)

3) Conditional probability: The conditional probability of B, given A is defined as,

p(B|A) =
p(A \B)

p(A)
provided p(A) > 0 (12)

4) Events A and B are independent if

p(B|A) = p(B) (13)
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5) Multiplicative rule:
p(A \B) = p(B|A) p(A) (14)

6) If two events A and B are independent, then

p(A \B) = p(A) p(B) (15)

Example 5. Dice throw.

The sample space of a dice throw is ⌦ = {1, 2, 3, 4, 5, 6}.

The event of getting an even number is A = . p(A) = .

The event of getting an odd number is B = . p(B) = .

The event of getting a prime number is C = . p(C) = .

The event of getting a number greater than 4 is D = . p(D) = .

The probability of getting a prime number given that the number is even is

p(C|A) = (16)

The probability of getting a prime number given that the number is greater than 4

p(C|D) = (17)

The probability of getting a number greater than 4 given that the number is a prime number
is

p(D|C) = (18)

6



4 Discrete random variable

For example: X could be the number of heads observed in throwing a coin 3 times. The
event {X = x} has a probability p(X = x), which is also written as fX(x), and is called
probability mass function.

The Expected Value of a random variable X is

hXi =
X

x

x p(X = x) =
X

x

x fX(x) (19)

The k-th Moment of random variable X is

µk = hXki (20)

The Variance of random variable X is

V (X) = h(X � hXi)2i = hX2i � hXi2 = µ2 � (µ1)
2 (21)

The Standard Deviation is defined as

�(X) =
p

V (X) (22)

5 Continuous random variable

The event {X  x} has probability p(X  x) = FX(x), which is called cumulative
probability function (CPF).

The event {x1  X  x2} has probability FX(x2) � FX(x1). fX(t) = dFX(x)
dx (if it exists) is

called the probability density function (PDF).

In the limit of �x ! 0, the event {x  X  x + �x} has probability fX(x) · �x. (We will
omit X in the following.)

Obviously,

lim
x!�1

F (x) = 0 (23)

lim
x!+1

F (x) = 1 (24)
Z +1

�1
f(x) dx = 1 (normalization) (25)
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Example 6. Uniform distribution on interval [a, b]

f(x) =

⇢
1

b�a a < x < b

0 elsewhere
(26)

Example 7. Exponential distribution

f(x) =

⇢
� e��x 0 < x < 1
0 x < 0

(27)

Example 8. Gaussian distribution

f(x) =
1p

2⇡�2
exp


�(X � µ)2

2�2

�
. (28)
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6 Multivariate probability distributions

If random variables X and Y are independent, then

p(X = x, Y = y) = p(X = x) · p(Y = y) for discrete case, and

fXY (x, y) = fX(x) · fY (y) for continuum case.

Additive Rule
haX + bY i = ahXi+ bhY i (29)

This rule is satisfied regardless of whether or not X, Y are independent.

Covariance

Cov(X, Y ) = h(X � µX)(Y � µY )i = hXY i � µXµY (30)

Cov(X, X) = V (X) (31)

If X and Y are independent, then hXY i = hXihY i ! If X and Y are independent, then
Cov(X, Y ) = 0.

Correlation function is defined by ⇢(X, Y ) = Cov(X,Y )
�X�Y

and �1  ⇢(X, Y )  1.

Example 9. Average of n independent random variables X1, X2, · · · , XN with identical
distributions (i.i.d.) is

X =
1

n

nX

i=1

Xi

Suppose hXii = µ and V (Xi) = �
2, then

hXi = µ

V (X) =
�

2

n

and the standard deviation of the average is

�(X) =
p

V (X) =
�p
n

9



7 Useful theorems

Central Limit Theorem (CLT)

Let X1, X2, · · · , Xn be a random sample from an arbitrary distribution with mean µ and
variance �

2. Then for n su�ciently large, the distribution of the average X is approximately
a Gaussian distribution with mean µ and standard deviation �(X) = �p

n .

Stirling’s Formula

ln N ! = N ln N �N +
1

2
ln(2⇡N) + O

✓
1

N

◆
(32)

or

N ! ⇡
p

2⇡N

✓
N

e

◆N

for large N (33)

For a numerical verification of Stirling’s formula, visit
http://micro.stanford.edu/⇠caiwei/Download/factorial.php. In this page we com-
pute N ! to arbitrary precision (using unlimited number of digits to represent an integer) and
then compute its logarithm, and compare it with Stirling’s formula.
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In this lecture, we will discuss

1. Hamilton’s equation of motion

#

2. System’s trajectory as flow in phase space

#

3. Ensemble of points flow in phase space as an incompressible fluid

#

4. Evolution equation for density function in phase space (Liouville’s Theorem)

The path from Hamilton’s equation of motion to density evolution in phase space is analogous
to the path we took from the random walk model to di↵usion equation.

Reading Assignment

• Landau and Lifshitz, Mechanics, Chapters 1, 2 and 7

Reading Assignment:

2



1 Lagrangian and Hamiltonian

In statistical mechanics, we usually consider a system of a large collection of particles (e.g.
gas molecules) as the model for a macroscopic system (e.g. a gas tank).

The equation of motion of these particles are accurately described by classical mechanics,
which is, basically,

F = m a (1)

In principle, we can use classical mechanics to follow the exact trajectories of these particles,
(just as we can follow the trajectories fo planets and stars) which becomes the method of
Molecular Dynamics, if you use a computer to solve the equation of motion numerically.

In this section, we review the fundamental “machinery” (math) of classical mechanics. We
will discuss

• Hamiltonian and Lagrangian formulations of equation of motion.

• Legendre transform that links Lagrangian$ Hamiltonian. We will use Legendre trans-
formation again in both thermodynamics and statistical mechanics, as well as in clas-
sical mechanics.

• The conserved quantities and other symmetries in the classical equation of motion.
They form the basis of the statistical assumption.

1.1 Notation

Consider a system of N particles whose positions are (r1, r2, · · · , rN) = (q1, q2, · · · , q3N),
where r1 = (q1, q2, q3), r2 = (q4, q5, q6), · · · .

The dynamics of the system is completely specified by trajectories, qi(t), i = 1, 2, · · · , 3N .

The velocities are: vi = q̇i ⌘ dq

dt
.

The accelerations are: ai = q̈i ⌘ d
2
q

dt2

For simplicity, assume all particles have the same mass m. The interaction between particles
is described by a potential function U(q1, · · · , q3N) (such as the gravitation potential between
planets and stars).

The equation of motion for the system was given by Newton:

Fi = mai (2)

where Fi = �@U/@qi and ai ⌘ q̈i, which leads to

q̈i = � 1

m

@U

@qi

i = 1, · · · , 3N (3)
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The trajectory can be solved from the above ordinary di↵erential equation (ODE) given the
initial condition qi(t = 0), q̇i(t = 0), i = 1, · · · , 3N .

All these should look familiar and straightforward. But we can also write into more “odd-
looking” ways in terms of Hamiltonian and Lagrangian. But why? Why create more work
for ourselves?

Reasons for Hamiltonian/Lagrangian of classical Mechanics:

1. Give you something to brag about after you have learned it. (Though I have to admit
that the formulation is beautiful and personally appealing.)

2. Hamiltonian formulation connects well with Quantum Mechanics.

3. Lagrangian formulation connects well with Optics.

4. Provides the language to discuss conserved quantities and symmetries in phase space.
i.e. the symplectic form (and symplectic integrators in molecular simulations).

5. Allows derivation of equation of motion when qi’s are not cartesian coordinates.

1.2 Lagrangian formulation

At the most fundamental level of classical mechanics is the Lagrangian Formulation.

Lagrangian is a function of qi (position) and q̇i (velocity), and is kinetic energy K minus
potential energy U .

L({qi}, {q̇i}) = K � U (4)

when qi’s are cartesian coordinates of particles,

L({qi}, {q̇i}) =
3NX

i=1

1

2
mq̇

2
i
� U({qi}) (5)

Lagrange’s equation of motion

d

dt

✓
@L

@q̇i

◆
�
✓

@L

@qi

◆
= 0 for every i = 1, · · · , 3N (6)

Equivalence between Lagrange’s equation of motion and Newton’s can be shown by

@L

@q̇i

= mq̇i ⌘ pi (7)

@L

@qi

= �@U

@qi

(8)

d

dt
(mq̇i)�

✓
�@U

@qi

◆
= 0 (9)

) q̈i = � 1

m

@U

@qi

(10)
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Note that L is a function of qi and q̇i. This means that

dL =
X

i

@L

@qi

dqi +
@L

@q̇i

dq̇i

How does L change with time?

dL

dt
=

X

i

@L

@qi

dqi

dt
+

@L

@q̇i

dq̇i

dt

=
X

i

d

dt

✓
@L

@q̇i

◆
q̇i +

@L

@q̇i

d

dt
(q̇i)

=
d

dt

X

i

@L

@q̇i

q̇i (11)

Hence L is not a conserved quantity, but

d

dt

 
X

i

@L

@q̇i

q̇i � L

!
= 0 (12)

In other words,

H =
X

i

@L

@q̇i

q̇i � L (13)

is a conserved quantity, i.e.
dH

dt
= 0 (14)

1.3 Legendre transform

The above expression can be rewritten (simplified) using the definition of momentum

pi ⌘
@L

@q̇i

(15)

Using the Lagrange’s equation of motion

@L

@qi

=
d

dt

✓
@L

@q̇i

◆
=

d

dt
pi = ṗi (16)

we have

pi ⌘
@L

@q̇i

(17)

ṗi ⌘
@L

@qi

(18)

5



Using the new variable pi, the change of Lagrangian L can be expressed as,

dL =
X

i

@L

@qi

dqi +
@L

@q̇i

dq̇i =
X

i

ṗidqi + pidq̇i (19)

dL

dt
=

X

i

ṗi

dqi

dt
+ pi

dq̇i

dt
=
X

i

dpi

dt
q̇i + pi

dq̇i

dt

=
d

dt

 
X

i

piq̇i

!
(20)

d

dt
(
X

i

piq̇i � L) = 0 (21)

Hence H =
P

i
piq̇i � L is a conserved quantity.

The transformation from L to H is a Legendre transform.

Notice what happened when going from L to H:

1. L({qi}, {q̇i}) ) L is a function of qi and q̇i.

2. pi ⌘ @L

@q̇i

3. H ⌘
P

i
piq̇i � L

We notice that dH =
P

i
�ṗidqi + q̇idpi, which means H is a function of qi and pi, no longer

a function of qi and q̇i. This is an important property of the Legendre transform.

Example 1.

To help illustrate the point, we can perform Legendre transform on a one-dimensional func-
tion f(x). Notice that

df =
@f

@x
dx (22)

Define p ⌘ @f/@x, then df = p dx. The Legendre transform of f(x) is g(p) = p x�f . Notice
that,

dg = p dx + x dp� p dx = x dp (23)

This means that g is a function of p and x = @g/@p.

Find the Legendre transform of f(x) = x
3.

6



1.4 Hamiltonian formulation

Because H is a function of qi and pi, (i.e., we will treat qi and pi as independent variables
when discussing H).

We expect

dH =
X

i

@H

@qi

dqi +
@H

@q̇i

dq̇i (24)

Comparing with the previous equation (dH =
P

i
�ṗidqi + q̇idpi), we get the

Hamilton’s equation of motion

ṗi = �@H

@qi

(25)

q̇i =
@H

@pi

(26)

⇤ In principle, classical mechanics can also be formulated, starting from a Hamiltonian
H({qi}, {pi}) and the Lagrangian L can be obtained from Legendre transform. But it is
conceptually easier to start with L(qi, q̇i) = K �U . It is easy to make mistakes when trying
to identify the correct (qi, pi) pair when qi is not a Cartesian coordinate.

Example 2.

When qi is the Cartesian coordinate of particles,

L({qi}, {q̇i}) =
X

i

1

2
mq̇i

2 � U({qi}) (27)

pi =
@L

@q̇i

= mq̇i (28)

H =
X

i

piq̇i � L =
X

i

mq̇i
2 � 1

2
mq̇i

2 + U({qi})

=
X

i

1

2
mq̇i

2 + U({qi})

=
X

i

p
2
i

2m
+ U({qi}) (29)

H = K + U (30)

where K, U correspond to kinetic energy and potential energy, respectively.

dH/dt = 0 means conservation of energy.
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Example 3. Pendulum (motion in 2D)

Consider a mass m attached to rigid rode of length R.

The coordinate (x, y) must satisfy the constraint
p

x2 + y2 = R. If we write the equation in
terms of x, y then, we need to worry about the constraint. Alternatively, we can deal with
a single variable ✓ and forget about the constraint. Then what is the equation of motion in
terms of ✓? This is when the Lagrangian formulation becomes handy.

Here are the 4 steps to derive the equation of motion for a generalized (i.e. non-cartesian)
coordinate. (The direction of y-axis is opposite to that of Landau and Lifshitz “Mechanics”,
p.11.)

1. Write down L(✓, ✓̇) = K � U .

K =
1

2
m(ẋ2 + ẏ

2)

=
1

2
m(R2cos2

✓ + R
2sin2

✓)✓̇2

=
1

2
mR

2
✓̇

2 (31)

U = mgy = �mgR cos ✓ (32)

) L(✓, ✓̇) =
1

2
mR

2
✓̇

2 + mgR cos ✓ (33)

2. Write down Lagrangian equation of motion

d

dt

✓
@L

@✓̇

◆
� @L

@✓
= 0 (34)

@L

@✓̇
= mR

2
✓̇ ,

@L

@✓
= �mgR sin ✓ (35)

d

dt
(mR

2
✓̇) + mgR sin ✓ = 0 (36)

) ✓̈ = � g

R
sin ✓ (37)
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3. Find Hamiltonian by Legendre transformation, starting with the momentum

p✓ ⌘
@L

@✓̇
= mR

2
✓̇ (38)

Notice that p✓ 6= mR✓̇, as might have been guessed naively. This is why it’s always a
good idea to start from the Lagrangian.

The Hamiltonian is

H = p✓✓̇ � L

= mR
2
✓̇

2 � 1

2
mR

2
✓̇

2 �mgR cos ✓

=
1

2
mR

2
✓̇

2 �mgR cos ✓ (39)

H(✓, p✓) =
p

2
✓

2mR2
�mgR cos ✓ (40)

4. Double check by writing down Hamiltonian’s equation of motion

ṗ✓ = �@H

@✓
✓̇ =

@H

@p✓

(41)

Example 4. Pendulum with moving support (from Landau & Lifshitz, p.11)

Write down the Lagrangian for the following system. A simple pendulum of mass m2, with
a mass m1 at the point of support which can move on a horizontal line lying in the plane in
which m2 moves.
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2 Phase space

The instantaneous state of a system of N particles is completely specified by a 6N -dimensional
vector,

µ = (q1, q2, · · · , q3N , p1, p2, · · · , p3N)

Given µ(0) (initial condition), the entire trajectory µ(t) is completely specified by Hamilto-
nian’s equation of motion.


q̇i = @H

@pi

ṗi = �@H

@qi

�
() µ̇ =


0 I3N⇥3N

�I3N⇥3N 0

�
@H

@µ
(in matrix form) (42)

Equation of motion in phase space can be written as

µ̇ = !
@H

@µ
(43)

where

! ⌘


0 I3N⇥3N

�I3N⇥3N 0

�
(44)

This seems deceivingly simple.

The trajectories of all N -particles are equivalent to the motion of a point ( µ(t) ) in 6N -
dimensional space, which is called the phase space (�).

⇤ The 3N -dimensional space of all the positions qi is called the configurational space.

A system of N particles
()

{qi}, {pi}, i = 1, 2, · · · , 3N .

An ensemble of systems,
()

each containing N particles.

How do we imagine “an ensemble of systems, each consisting a large number N of particles”?

Let’s say each system is a gas tank containing N = 109 particles. Now imagine 106 gas tanks
! that’s 1015 particles.
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1. That’s a lot of molecules to think about!

Fortunately, the 1,000,000 gas tanks only exist in our imagination (which has 1 ca-
pacity). We do not need to really create 1,000,000 gas tanks and do experiments on
them to test the predictions of statistical mechanics .

2. Ok, so the other 999,999 gas tanks are not real. That’s great, because I only have one
gas tank in my lab. But why do I need to even imagine those “ghost” gas tanks?

– They form the concept of “microcanonical” ensemble from which all laws of thermo-
dynamics can be derived. The price we pay is to imagine many-many gas tanks — I’d
say it’s a good deal!
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From Random Walk From Classical Mechanics
to Di↵usion Equation to Thermodynamics

Step 1

one particle jump on a lattice one point move in 6N -dimensional
(random) phase space (deterministic)

Step 2

many independent particles many copies of the system
(random walkers) (gas tanks) corresponding to

on a lattice many points in the 6N -dimensional
phase space

– an ensemble of random walkers – an ensemble of gas tanks
– so many that a density function – so many that a density function

C(x) makes sense ⇢({qi}, {pi}) in � make sense

Step 3
X(t) = X(0) +

P
i
li µ̇ = !

@H

@µ

going to the continuum limit ! going to the continuum limit !

Di↵usion equation Liouville’s theorem

@C(x,t)
@t

= D
@
2
C(x,t)
@x2

d⇢

dt
⌘ D

@⇢

@t
+
P

i

@⇢

@qi
q̇i +

P
i

@⇢

@pi
ṗi = 0

PDE for C(x, t) PDE for ⇢({qi}, {pi}, t)
(incompressible flow in �)
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3 Liouville’s theorem

Liouville’s theorem states that the phase space density ⇢(µ, t) behaves like an
incompressible fluid.

So, after going to the continuum limit, instead of the di↵usion equation, we get an equation
in fluid mechanics.

How can we prove it?

3.1 Flow of incompressible fluid in 3D

Let’s first familiarize ourselves with the equations in fluid mechanics. Imagine a fluid con-
sisting of a large number of particles with density ⇢(x, t) ⌘ ⇢(x, y, z, t). Imagine that the
particles follow a deterministic (no di↵usion) flow field v(x), i.e. vx(x, y, z), vy(x, y, z),
vz(x, y, z) (velocity of the particle only depends on their current location). This tells us how
to follow the trajectory of one particle.

How do we obtain the equation for ⇢(x, t) from the flow field v(x)?

1. mass conservation (equation of continuity)

@⇢(x, t)

@t
= �r · J = �

✓
@

@x
Jx +

@

@y
Jy +

@

@z
Jz

◆
. (45)

2. flux for deterministic flow J(x) = ⇢(x)v(x)

@⇢(x, t)

@t
= �r · (⇢(x)v(x))

= �


@

@x
(⇢vx) +

@

@y
(⇢vy) +

@

@z
(⇢vz)

�

= �
✓

@

@x
⇢

◆
vx +

✓
@

@y
⇢

◆
vy +

✓
@

@z
⇢

◆
vz

�
+


⇢

✓
@

@x
vx

◆
+ ⇢

✓
@

@y
vy

◆
+ ⇢

✓
@

@z
vz

◆�
(46)

@⇢

@t
= �(r⇢) · v � ⇢ (r · v) (47)
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@⇢(x, y, z, t)/@t describes the change of ⇢ with it at a fixed point (x, y, z).

We may also ask about how much the density changes as we move together with a particle,
i.e., or how crowded a moving particle “feels” about its neighborhood. This is measured by
the total derivative,

d⇢

dt
=

@⇢

@t
+ (r⇢) · v =

@⇢

@t
+

@⇢

@x
vx +

@⇢

@y
vy +

@⇢

@z
vz (48)

Hence the density evolution equation can also be expressed as

d⇢

dt
= �⇢ (r · v) (49)

For incompressible flow,
d⇢

dt
= 0 , r · v = 0 (50)

a particle always feels the same level of “crowdedness”.

3.2 Flow in phase space

Why do we say the collective trajectories of an ensemble of points following Hamiltonian
dynamics can be described by incompressible flow in phase space?

14



All points considered together follows incompressible flow. A point always find the same
numbers of neighbors per unit volume as it moves ahead with time.

real flow in 3D flow in 6N -D phase space

x, y, z q1, q2, · · · , q3N , p1, p2, · · · , p3N

r =
⇣

@

@x
,

@

@y
,

@

@z

⌘
r =

⇣
@

@q1
,

@

@q2
, · · · ,

@

@q3N
,

@

@p1
,

@

@p2
, · · · ,

@

@p3N

⌘

v = (ẋ, ẏ, ż) v = (q̇1, q̇2, · · · , q̇3N , ṗ1, ṗ2, · · · , ṗ3N)

@⇢

@t
= �r(⇢v) @⇢

@t
= �

hP3N

i=1
@

@qi
(⇢q̇i) + @

@pi
(⇢ṗi)

i

= �(r⇢)v � ⇢(r · v) = �
hP3N

i=1
@⇢

@qi
q̇i + @⇢

@pi
ṗi

i
�
hP3N

i=1 ⇢
@q̇i

@qi
+ ⇢

@ṗi

@pi

i

d⇢

dt
⌘= @⇢

@t
+ (r⇢) · v = �⇢(r · v) d⇢

dt
⌘ @⇢

@t
+
P3N

i=1
@⇢

@qi
q̇i + @⇢

@pi
ṗi = �⇢

hP3N

i=1
@q̇i

@qi
+ @ṗi

@pi

i

flow is incompressible if flow is incompressible if
r · v = 0

P
i

@q̇i

@qi
+ @ṗi

@pi
= 0 (is this true?)
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Proof of Liouville’s theorem (d⇢/dt = 0)

Start from Hamilton’s equation of motion

q̇i =
@H

@pi

! @q̇i

@qi

=
@

2
H

@pi@qi

(51)

ṗi = �@H

@qi

! @ṗi

@pi

= � @
2
H

@pi@qi

(52)

@q̇i

@qi

+
@ṗi

@pi

=
@

2
H

@pi@qi

� @
2
H

@pi@qi

= 0 (53)

Therefore, we obtain
d⇢

dt
=

@⇢

@t
+
X

i

@⇢

@qi

q̇i +
@⇢

@pi

ṗi = 0 (54)

which is Liouville’s theorem.

Using Liouville’s theorem, the equation of evolution for the density function ⇢({qi}, {pi}, t)
can be written as

@⇢

@t
= �

X

i

✓
@⇢

@qi

q̇i +
@⇢

@pi

ṗi

◆

= �
X

i

✓
@⇢

@qi

@H

@pi

� @⇢

@pi

@H

@qi

◆
(55)

This can be written concisely using Poisson’s bracket,

@⇢

@t
= �{⇢, H} (56)

Poisson’s bracket

{A, B} ⌘
3NX

i=1

✓
@A

@qi

@B

@pi

� @A

@pi

@B

@qi

◆
(57)

Obviously, {A, B} = �{B, A} and {A, A} = 0.

Not so obviously, {A, A
2} = 0, and {A, B} = 0 if B is a function of A, i.e. B = f(A).
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4 Ensemble

An ensemble is a large number of points in the phase space that can be described by a
density function ⇢({qi}, {pi}).

⇢({qi}, {pi}) is like a probability density function (PDF) — the probability of picking any
particular point out of the entire ensemble.

Now, consider an arbitrary function A({qi}, {pi}) which takes di↵erent value at di↵erent
points in phase space, such as the kinetic energy

Ekin =
3NX

i=1

p
2
i

2m

What is the average value for A among all these points?

The ensemble average can be written as

hAi ⌘
Z

�

3NY

i=1

dqi dpi A({qi}, {pi}) ⇢({qi}, {pi}) (58)

This is same as expectation value if we interpret ⇢({qi}, {pi}) as PDF.

Notice that A({qi}, {pi}) is not an explicit function of time. It is a function defined on the
phase space. But the ensemble average will depend on time t if ⇢ evolves with time.

hAi(t) ⌘
Z

�

3NY

i=1

dqi dpi A({qi}, {pi}) ⇢({qi}, {pi}, t) (59)

How does the ensemble average evolve with time?

dhAi(t)
dt

⌘
Z

�

3NY

i=1

dqidpiA({qi}, {pi})
@

@t
⇢({qi}, {pi}, t)

=

Z

�

3NY

i=1

dqidpiA({qi}, {pi})
3NX

j=1

✓
@⇢

@pj

@H

@qj

� @⇢

@qj

@H

@pj

◆

= �
Z

�

3NY

i=1

dqidpi

3NX

j=1

✓
@A

@pj

@H

@qj

� @A

@qj

@H

@pj

◆
· ⇢({qi}, {pi}, t)

=

Z

�

3NY

i=1

dqidpi {A, H} · ⇢({qi}, {pi}, t) (60)

dhAi
dt

= h{A, H}i (61)
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(Very similar equation appears in quantum mechanics!)

For example, average total energy among all points in the ensemble

Etot ⌘ hHi (62)

dEtot

dt
=

dhHi
dt

= h{H,H}i = 0 (63)

This is an obvious result, because the total energy of each point is conserved as they move
through the phase space. As a result, the average total energy also stays constant.

Example 5. Pendulum with Hamiltonian

H(✓, p✓) =
p

2
✓

2mR2
+ mgR cos ✓

Phase space is only 2-dimensional (✓, p✓).

Equilibrium motion of one point in phase space is

✓̇ =
@H

@p✓

ṗ✓ = �@H

@✓
(64)

Now consider a large number of points in the (✓, p✓) space. p(✓, p✓, t) describes their density
distribution at time t.

What is the evolution equation for ⇢?

@p(✓, p✓, t)

@t
= �@⇢

@✓
✓̇ � @⇢

@p✓

ṗ✓

= �@⇢

@✓

@H

@p✓

+
@⇢

@p✓

@H

@✓
⌘ �{⇢, H} (65)
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From @H

@p✓
= p✓

mR2 ,
@H

@✓
= �mgR sin ✓

) @⇢

@t
= �@⇢

@✓

p✓

mR2
� @⇢

@p✓

mgR sin ✓ (66)

Suppose A = ✓
2, the ensemble average of A is

hAi =

Z
d✓dp✓ ✓

2
⇢(✓, p✓, t) (67)

How does hAi changes with time?

dhAi
dt

= h{A, H}i (68)

{A, H} =
@✓

2

@✓

@H

@p✓

� @✓
2

@p✓

@H

@✓
= 2✓(�mgR sin ✓) (69)

) dhAi
dt

=
dh✓2i
dt

= �2mgR h✓ sin ✓i (70)

Example 6. Consider an ensemble of pendulums described in Example 5. At t = 0, the
density distribution in the ensemble is,

⇢(✓, p✓, t = 0) =
1

2⇡

1p
2⇡�

exp


� p

2
✓

2�2

�
(71)

where �⇡  ✓ < ⇡, �1 < p✓ < 1.

(a) Verify that ⇢(✓, p✓, t = 0) is properly normalized.

(b) What is @⇢/@t|t=0? Mark regions in phase space where @⇢/@t|t=0 > 0 and regions where
@⇢/@t|t=0 < 0.

(c) How can we change ⇢(✓, p✓, t = 0) to make @⇢/@t = 0?
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5 Summary

By the end of this lecture, you should:

• be able to derive the equations of motion of a mechanical system by constructing a La-
grangian, and obtain the Hamitonian through Legendre transform. (This is important
for Molecular Simulations.)

• agree with me that the flow of an ensemble of points in phase space, each following the
Hamilton’s equation of motion, is the flow of an incompressible fluid.

• be able to write down the relation between partial derivative and total derivative of
⇢({qi}, {pi}, t).

• be able to write down the equation of Liovielle’s theorem (close book, of course).

• be able to express the ensemble average of any quantity as an integral over phase space,
and to write down the time evolution of the ensemble average (be ware of the minus
sign!)

The material in this lecture forms (part of) the foundation of statistical mechanics.

As an introductory course, we will spend more time on how to use statistical mechanics.

A full appreciation of the foundation itself will only come gradually with experience.

Nonetheless, I think an exposure to the theoretical foundation from the very beginning is a
good idea.

References
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The purpose of this lecture is

1. To justify the “uniform” probability assumption in the microcanonical ensemble.

2. To derive the momentum distribution of one particle in an ideal gas (in a container).

3. To obtain the entropy expression in microcanonical ensemble, using ideal gas as an
example.

Reading Assignment: Sethna § 3.1, § 3.2.

1 Properties of flow in phase space

1.1 Trajectories in phase space

Q: What can we say about the trajectories in phase space based on classical
mechanics?

A:

1. Flow line (trajectory) is completely deterministic

⇢
q̇i = @H

@pi

ṗi = �@H

@qi

(1)

Hence two trajectories never cross in phase space.

This should never happen, otherwise the flow direction of point P is not determined.

2. Liouville’s theorem
d⇢

dt
⌘ @⇢

@t
+ {⇢, H} = 0 (2)

So there are no attractors in phase space.
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This should never happen, otherwise d⇢/dt > 0. Attractor is the place where many
trajectories will converge to. The local density will increase as a set of trajectories
converge to an attractor.

3. Consider a little “cube” in phase space. (You can imagine many copies of the system
with very similar initial conditions. The cube is formed all the points representing the
initial conditions in phase space.) Let the initial density of the points in the cube be
uniformly distributed. This can be represented by a density field ⇢(µ, t = 0) that is
uniform inside the cube and zero outside.

As every point inside the cube flows to a di↵erent location at a later time, the cube is
transformed to a di↵erent shape at a di↵erent location.

Due to Liouville’s theorem, the density ⇢ remain ⇢ = c (the same constant) inside the
new shape and ⇢ = 0 outside. Hence the volume of the new shape remains constant
(V0).

1.2 One trajectory over long time

Q: Can a trajectory from on point µ1 in phase space always reach any other
point µ2, given su�ciently long time?

A: We can imagine the following possibilities:
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1. We know that the Hamiltonian H (total energy) is conserved along a trajectory.

So, there is no hope for a trajectory to link µ1 and µ2 if H(µ1) 6= H(µ2).

Hence, in the following discussion we will assume H(µ1) = H(µ2), i.e. µ1 and µ2

lie on the same constant energy surface: H(µ) = E. This is a (6N � 1)-dimensional
hyper-surface in the 6N -dimensional phase space.

2. The trajectory may form a loop. Then the trajectory will never reach µ2 if µ2 is not
in the loop.

3. The constant energy surface may break into several disjoint regions. If µ1 and µ2 are
in di↵erent regions, a trajectory originated from µ1 will never reach µ2.

Example: pendulum

4. Suppose the trajectory does not form a loop and the constant energy surface is one
continuous surface. The constant energy surface may still separate into regions where
trajectories originated from one region never visit the other region.

— This type of system is called non-ergodic.
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5. If none of the above (1-4) is happening, the system is called Ergodic. In an ergodic
system, we still cannot guarantee that a trajectory starting from µ1 will exactly go
through any other part µ2 in phase space. (This is because the dimension of the phase
space is so high, hence there are too many points in the phase space. One trajectory,
no matter how long, is a one-dimensional object, and can “get lost” in the phase space,
i.e. not “dense enough” to sample all points in the phase space.)

But the trajectory can get arbitrarily close to µ2.

“At time t1, the trajectory can pass by the neighborhood of µ2. At a later time t2, the
trajectory passes by µ2 at an even smaller distance...”

After a su�ciently long time, a single trajectory will visit the neighborhood of every point
in the constant energy surface.

— This is the property of an ergodic system. Ergodicity is ultimately an assumption,
because mathematically it is very di�cult to prove that a given system (specified by
its Hamiltonian) is ergodic.
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1.3 An ensemble of points flowing in phase space

Now imagine a small cube (page 1) contained between two constant-energy surfaces H = E,
H = E + �E.

As all points in the cube flows in
phase space. The cube transforms
into a di↵erent shape but its volume
remains V0.

The trajectories of many non-linear
systems with many degrees of free-
dom is chaotic, i.e. two trajecto-
ries with very similar initial con-
ditions will diverge exponentially
with time.

Q. How can the volume V0 remain
constant while all points in the orig-
inal cube will have to be very far
apart from each other as time in-
creases?

A: The shape of V0 will become very
complex, e.g. it may consists of
many thin fibers distributed almost
every where between the two con-
stant energy surface.

At a very late time t, ⇢(µ, t) still
has the form of

⇢(µ, t) =

⇢
C µ 2 V0

0 µ /2 V0
(3)

except that the shape of V0 is dis-
tributed almost every where be-
tween constant energy surface.
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A density function ⇢(µ, t) corresponds to an ensemble of points in phase space. Suppose we
have a function A(µ) defined in phase space. (In the pendulum example, we have considered
A = ✓

2.)

The average of function A(µ) over all points in the ensemble is called the ensemble average.

If ⇢ changes with time, then the ensemble average is time dependent

hAi(t) ⌘
Z

d
6Nµ A(µ) ⇢(µ, t) (4)

From experience, we know that many system will reach an equilibrium state if left alone for
a long time. Hence we expect the following limit to exist:

lim
t!1

hAi(t) = hAieq (5)

hAieq is the “equilibrium” ensemble average.

Q: Does this mean that
lim
t!1

⇢(µ, t) = ⇢eq(µ)? (6)

No. In previous example, no matter how large t is,

⇢(µ, t) =

⇢
C µ 2 V0

0 µ /2 V0
(7)

The only thing that changes with t is the shape of V0. The shape continues to transform
with time, becoming thinner and thinner but visiting the neighborhood of more and more
points in phase space.

So, lim
t!1

⇢(µ, t) DOES NOT EXIST!

What’s going on?

2 Microcanonical Ensemble

2.1 Uniform density assumption

In Statistical Mechanics, an ensemble (microcanonical ensemble, canonical ensemble, grand
canonical ensemble, ...) usually refers to an equilibrium density distribution ⇢eq(µ) that does
not change with time.

The macroscopically measurable quantities is assumed to be an ensemble average over ⇢eq(µ).

hAieq ⌘
Z

d
6Nµ A(µ) ⇢eq(µ) (8)
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In the microcanonical ensemble, we assume ⇢eq to be uniform inside the entire region
between the two constant energy surfaces, i.e.

⇢eq(µ) = ⇢mc(µ) =

⇢
C
0

E  H(µ)  E + �E

0 otherwise
(9)

There is nothing “micro” in the microcanonical ensemble. It’s just a name with an obscure
historical origin.

Q: How do we justify the validity of the microcanonical ensemble assumption, given that
lim
t!1

⇢(µ, t) 6= ⇢mc(µ) (recall previous section)?

A:

1. As t increases, ⇢(µ, t) becomes a highly oscillatory function changing volume rapidly
between C and 0, depending on whether µ is inside volume V0 or not.

But if function A(µ) is smooth function, as is usually the case, then it is reasonable to
expect

lim
t!1

Z
d

6Nµ A(µ) ⇢(µ, t) =

Z
d

6Nµ A(µ) ⇢mc(µ) (10)

In other words, lim
t!1

⇢(µ, t) and ⇢eq(µ) give the same ensemble averages.

2. A reasonable assumption for ⇢eq(µ) must be time stationary, i.e.

@⇢eq

@t
= �{⇢eq, H} = 0 (11)

Notice that
⇢mc(µ) = [⇥(H(µ)� E)�⇥(H(µ)� E ��E)] · C 0 (12)

where ⇥(x) is the step function.
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Because ⇢mc is a function of H ) {⇢mc, H} = 0.

Hence
@⇢mc

@t
= 0 (13)

The microcanonical ensemble distribution ⇢mc is stationary!.

3. The microcanonical ensemble assumption is consistent with the subjective probability
assignment. If all we know about the system is that its total energy H (which should
be conserved) is somewhere between E and E + �E, then we would like to assign
equal probability to all microscopic microstate µ that is consistent with the constraint
E  H(µ)  E + �E.

2.2 Ideal Gas

(ensemble of containers each having N

ideal gas molecules)

Ideal gas is an important model in statis-
tical mechanics and thermodynamics. It
refers to N molecules in a container. The
interaction between the particles is su�-
ciently weak so that it will be ignored in
many calculations. But conceptually, the
interaction cannot be exactly zero, other-
wise the system would no longer be ergodic
— a particle would never be able to trans-
fer energy to another particle and to reach
equilibrium when there were no interac-
tions at all.

Consider an ensemble of gas contain-
ers containing ideal gas particles (mono-
atomic molecules) that can be described
by the microcanonical ensemble.

Q: What is the velocity distribution
of on gas particle?

The Hamiltonian of N -ideal gas molecules:

H({qi}, {pi}) =
3NX

i=1

p
2
i

2m
+

NX

i=1

�(xi) (14)
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where �(x) is the potential function to represent the e↵ect of the gas container

�(x) =

⇢
0 if x 2 V (volume of the container)
1 if x /2 V

(15)

This basically means that xi has to stay within volume V and when this is the case, we can
neglect the potential energy completely.

H({qi}, {pi}) =
3NX

i=1

p
2
i

2m
(16)

The constant energy surface H({qi}, {pi}) = E is a sphere in 3N -dimensional space, i.e.,

3NX

i=1

p
2
i

= 2mE = R
2 (17)

with radius R =
p

2mE.

Let’s first figure out the constant C
0 in the microcanonical ensemble,

⇢mc(µ) =

⇢
C
0

E  H(µ)  E + �E

0 otherwise
(18)

Normalization condition:

1 =

Z
d

6Nµ ⇢mc(µ) =

Z

EH(µ)E+�E

d
6NµC

0 =
h
⌦̃(E + �E)� ⌦̃(E)

i
· C 0 (19)

where ⌦̃(E) is the phase space volume of region H(µ)  E and ⌦̃(E + �E) is the phase
space volume of region H(µ)  E + �E. This leads to

C
0 =

1

⌦̃(E + �E)� ⌦̃(E)
(20)

How big is ⌦̃(E)?

⌦̃(E) =

Z

H(µ)E

d
6Nµ = V

N ·
Z

P3N
i=1 p

2
i2mE

dp1 · · · dpN (21)

Here we need to invoke an important mathematical formula. The volume of a sphere of
radius R in d-dimensional space is,1

Vsp(R, d) =
⇡

d/2
R

d

(d/2)!
(22)

1
It may seem strange to have the factorial of a half-integer, i.e. (d/2)!. The mathematically rigorous

expression here is �(d/2 + 1), where �(x) is the Gamma function. It is defined as �(x) ⌘
R1
0 tx�1

e
�t dt.

When x is a positive integer, �(x) = (x � 1)!. When x is not an integer, we still have �(x + 1) = x�(x).

�
�

1
2

�
=
p

⇡. Hence �
�

3
2

�
=

1
2

p
⇡, �

�
5
2

�
=

3
4

p
⇡, etc. We can easily verify that Vsp(R, 3) =

4
3 ⇡ R3

and

Vsp(R, 2) = ⇡ R2
.
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The term behind V
N is the volume of a sphere of radius R =

p
2mE in d = 3N dimensional

space. Hence,

⌦̃(E) = V
N · ⇡

3N/2
R

3N

(3N/2)!
(23)

lim
�E!0

⌦̃(E + �E)� ⌦̃(E)

�E
=

@⌦̃(E)

@E

=
3N

2

1

E

(2⇡mE)3N/2

(3N/2)!
V

N

=
(2⇡m)3N/2

E
3N/2�1

V
N

(3N/2� 1)!
(24)

In the limit of �E ! 0, we can write

C
0 =

1

�E
· �E

⌦̃(E + �E)� ⌦̃(E)

=
1

�E
· (3N/2� 1)!

(2⇡m)3N/2 E3N/2�1 V N
(25)

Q: What is the probability distribution of p1 — the momentum of molecule i = 1 in the
x-direction?

A: The probability distribution function for p1 is obtained by integrating the joint distribution
function ⇢mc(q1, · · · , q3N , p1, · · · , p3N) over all the variables except p1.

f(p1) =

Z
dp2 · · · dp3N · dq1dq2 · · · dq3N ⇢mc(q1, · · · , q3N , p1, · · · , p3N)

=

Z

2mE
P3N

i=1 p
2
i  2m(E+�E)

dp2 · · · dp3N V
N

C
0

=

Z

2mE�p
2
1

P3N
i=2 p

2
i  2m(E+�E)�p

2
1

dp2 · · · dp3N V
N

C
0

=


Vsp

✓q
2m(E + �E)� p

2
1, 3N � 1

◆
� Vsp

✓q
2mE � p

2
1, 3N � 1

◆�
V

N
C
0(26)
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In the limit of �E ! 0,

Vsp

⇣p
2m(E + �E)� p

2
1, 3N � 1

⌘
� Vsp

⇣p
2mE � p

2
1, 3N � 1

⌘

�E

=
@

@E
Vsp

✓q
2mE � p

2
1, 3N � 1

◆

=
@

@E

"
⇡

(3N�1)/2(2mE � p
2
1)

(3N�1)/2

�
3N�1

2

�
!

#

=
3N � 1

2

2m

2mE � p
2
1

⇡
(3N�1)/2(2mE � p

2
1)

(3N�1)/2

�
3N�1

2

�
!

= 2m
⇡

(3N�1)/2(2mE � p
2
1)

3(N�1)/2

⇣
3(N�1)

2

⌘
!

(27)

Returning to f(p1), and only keep the terms that depend on p1,

f(p1) /
�
2mE � p

2
1

� 3(N�1)
2 /

✓
1� p

2
1

2mE

◆ 3(N�1)
2

(28)

Notice the identity

lim
n!1

⇣
1 +

x

n

⌘n

= ex (29)

and that N ⇡ N � 1 in the limit of large N . Hence, as N !1,

f(p1) /
✓

1� 2

3N

3N

2E

p
2
1

2m

◆3N/2

! exp

✓
� p

2
1

2m

3N

2E

◆
(30)

Using the normalization condition
Z 1

�1
dp1 f(p1) = 1 (31)

we have,

f(p1) =
1p

2⇡m(2E/3N)
exp

✓
� p

2
1

2m

3N

2E

◆
(32)

Later on we will show that for an ideal gas (in the limit of large N),

E =
3

2
N kB T (33)

where T is temperature and kB is Boltzmann’s constant. Hence

f(p1) =
1p

2⇡mkBT
exp

✓
�p

2
1/2m

kBT

◆
(34)

Notice that p
2
1/2m is the kinetic energy associated with p1. Hence f(p1) is equivalent

to Boltzmann’s distribution that will be derived later (in canonical ensemble).
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2.3 Entropy

Entropy is a key concept in both thermodynamics and statistical mechanics, as well as in
information theory (a measure of uncertainty or lack of information). In information theory,
if an experiment has N possible outcomes with equal probability, then the entropy is

S = kB log N (35)

In microcanonical ensemble,

S(N, V, E) = kB log

2

4
number of microscopic states between
the constant energy surfaces:
E  H(µ)  E + �E

3

5 (36)

For an ideal gas,

S(N, V, E) = kB log
⌦̃(E + �E)� ⌦̃(E)

N ! h3N
(37)

The numerator inside the log is the volume of the phase space between the two constant
energy surfaces. h is Planck’s constant, which is the fundamental constant from quantum
mechanics.

Yes, even though we only discuss classical equilibrium statistical mechanics, a bare minimum
of quantum mechanical concepts is required to fix some problems in classical mechanics.

We can view this as another evidence that classical mechanics is really just an approximation
and quantum mechanics is a more accurate description of our physical world. Fortunately,
these two terms can be intuitively understandable without working with quantum mechanics
equations. The following are the justifications of the two terms in the denominator.

1. N ! term: Quantum mechanics says that the gas molecules are all identical or indistin-
guishable. Even though we would like to label molecules as 1, 2, ..., N there is really
no way for us to tell which one is which! Therefore, two molecular structures with
coordinates: x1 = (1, 2, 3), x2 = (4, 5, 6) and x1 = (4, 5, 6), x2 = (1, 2, 3) are indistin-
guishable from each other.

Swapping the location between two molecules does not give a new microscopic state.

2. h
3N term: h = 6.626⇥ 10�34 J·s is Planck’s constant.

The numerator, ⌦̃(E), is the phase space volume and has the unit of (momentum ·
distance)3N .

The term inside log has to be dimensionless, otherwise, the magnitude of entropy would
depend on our choices for the units of length, time, mass, and etc, which would be
clearly absurd.

h has the unit of momentum · distance. Therefore h
3N has exactly the right unit to

make the entire term inside the log dimensionless.
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The uncertainty principle in quantum mechanics states that we cannot measure both
the position and the momentum of any particle to infinite accuracy. Instead, their
error bar must satisfy the relation:

�qi · �pi � h for any i = 1, · · · , 3N (38)

Therefore, ⌦̃(E)/(N ! h3N) gives us the number of distinguishable states contained in-
side a phase space volume of ˜⌦(E).

We can show that the entropy expression for the ideal gas in microcanonical ensemble is

S(N, V, E) = NkB

"
log

 
V

N

✓
4⇡mE

3Nh2

◆3/2
!

+
5

2

#
(Sackur-Tetrode formula) (39)

We will derive the Sackur-Tetrode formula later. (Stirling’s formula is used to derive it.)

Define number density ⇢ = N

V
, and de Broglie wavelength

� =
hp

4⇡mE/3N

✓
=

hp
2⇡mkBT

◆
(40)

then

S(N, V, E) = NkB


5

2
� log(⇢�

3)

�
(41)

In molecular simulations, the microcanonical ensemble is usually referred to as the
NV E ensemble.
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In the 1st lecture, we will discuss the concepts of thermodynamics, namely its 4 laws. The
most important concepts are the second law and the notion of Entropy.

(reading assignment: Reif § 3.10, 3.11)

In the 2nd lecture, We will discuss the mathematics of thermodynamics, i.e. the machinery to
make quantitative predictions. We will deal with partial derivatives and Legendre transforms.

(reading assignment: Reif § 4.1-4.7, 5.1-5.12)

1 Laws of thermodynamics

Thermodynamics is a branch of science connected with the nature of heat and its conver-
sion to mechanical, electrical and chemical energy. (The Webster pocket dictionary defines,
Thermodynamics: physics of heat.)

Historically, it grew out of e↵orts to construct more e�cient heat engines — devices for ex-
tracting useful work from expanding hot gases (http://www.answers.com/thermodynamics).

Sethna says “Thermodynamics is a zoo of partial derivatives, transformations and relations”.

Thermodynamics is summarized by its Four laws, which are established upon a large number
of empirical observations.

These laws describes what you cannot do, if you are in the business (or game) of converting
heat into work.

• Zeroth law: you CANNOT ignore the temperature of your heat engine.

• First law: you CANNOT win, the best you can do is to break even. Here “winning”
means you extract MORE work than your net in-take of heat.

• Second law: you CANNOT break even, unless you can reach zero temperature.

• Third law: you CANNOT reach zero temperature in your life time.

What is the conclusion on your prospect in this game?
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1.1 The zeroth law

The zeroth law of thermodynamics established the existence of temperature in macro-
scopic systems.

Temperature is a state quantity which is unknown in classical mechanics. It is specially
introduced for thermodynamics. — Greiner.

Zeroth law — “transitivity of thermodynamic equilibrium”

If systems A and B are in thermal equilibrium,
and systems B and C are in thermal equilibrium,
then systems A and C are in thermal equilibrium.

Q: What does thermal equilibrium mean?

A: If a closed system is left alone for a long time, it will automatically reach an equilibrium
state and its macroscopic state quantities will no longer change with time.

Suppose system A and B have individually reached equilibrium.

If we bring A and B in thermal contact with each other, i.e. allowing them to exchange
heat, then the state quantities of A and B (generally speaking) will change until the
combined system A + B reaches equilibrium again.

System A and B are said to be in thermal equilibrium if none of the state quantities
change when they are brought in thermal contact with each other. Hence, systems
which are in thermal equilibrium with each other have a common (intensive) quantity,
called temperature.

An extensive property scales linearly with the size of the system, e.g. number of
molecules N , volume V , energy E, entropy S.

An intensive property is independent of the system size. e.g. pressure p, temperature
T .

In other words, if we bring two identical copies of a system together to form a new
system, all the extensive properties will double, while all the intensive properties will
remain unchanged.

Notice that the zeroth law applies to any system, so we can let system B be a thermometer.
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The height of the liquid h can be used to define the temperature values of all other systems
(e.g. A and C) that it can be in thermal contact with.

It is often reasonable to speak of thermodynamic equilibrium even if the state quantities
still change very slowly. Any living organism cannot be in a state of complete equilibrium,
yet the doctor still wants to know your temperature. — You wouldn’t tell the doctor your
temperature is not well defined since you are still alive.

1.2 The first law

The first law of thermodynamics establishes the total energy as a state variable.

Heat is nothing but a special form of energy — Mayer (1842)

First law — “conservation of energy”

Statement 1: you can change the total energy of the system by doing work d̄W to it, and/or
giving it heat d̄Q. The change of total energy is

dE = d̄W +d̄Q (1)

dE is a complete di↵erential (path independent).

d̄W and d̄Q are not complete di↵erentials (they are path dependent).

Suppose we want to transform the system from an equilibrium state 1 to another equilibrium
state 2. There are infinite number of paths (ways) to do this.
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The intermediate states along the path do not even need to be equilibrium states!
Although it is often convenient to imagine a path that goes through a sequence of
equilibrium states.

E2 � E1 = �E =
R

a dE =
R

b dE is independent of the path.

�Wa =
R

ad̄W 6= �Wb =
R

bd̄W and
�Qa =

R
ad̄Q 6= �Qb =

R
bd̄Q are dependent on path chosen.

) Energy is a state property, whereas work and heat are not.

Statement 2: you can never “gain energy”.
H

dE = 0 =
H
d̄W +d̄Q.

1.3 The second law

The second law of thermodynamics establishes the entropy as a state variable.

Consider two arbitrary reversible paths from state 1 to state 2.

From the first law, we know that �Qa =
R

ad̄Qrev 6= �Qb =
R

bd̄Qrev, i.e. the total heat
deposited into the system depends on the chosen path.

However, experiments confirm that dS = d̄Q
T is an exact di↵erential, i.e.

S2 � S1 = �S =

Z

a

dS =

Z

a

d̄Qrev

T
=

Z

b

dS =

Z

b

d̄Qrev

T
(2)

S is thus a state property called Entropy. We can think of 1
T as the factor to convert the

incomplete di↵erential d̄Qrev to a complete di↵erential dS = d̄Qrev

T .

1.3.1 E�ciency of Carnot engine

Entropy is usually discussed together with the Carnot cycle — A heat engine using ideal gas
and operating between two temperatures.
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Step I: isothermal expansion at higher temperature Th. volume from V1 to V2. engine take in
heat �QI > 0 and produce work.

Step II: adiabatic expansion �QII = 0. T drops to lower temperature Tc. volume from V2 to
V3.

Step III: isothermal compression at low temperature Tc. volume from V3 to V4. engine release
heat �QIII < 0.

Step IV: adiabatic compression �QIV = 0.

After the Carnot engine has completed one cycle, it returns to state 1. Hence total energy
change �E = �Q + �W = 0. Since �QII = �QIV = 0 (adiabatic steps, no heat exchange
by definition), the total heat intake for the entire cycle is,

�Q = �QI + �QIII (3)

Notice that �QI > 0 (�QI is the heat absorbed from high temperature reservoir Th) and
�QIII < 0 (|�QIII | is the heat dumped to low temperature reservoir Tc).

�W = ��Q = ��QI ��QIII < 0 (4)

Since �QIII < 0, |�W | < �QI not all heat absorbed from Th can be converted to useful
work, some of them |�QIII | are wasted and has to be dumped to Tc. Hence the e�ciency
of the Carnot engine is,

⌘ =
|�W |
�QI

= 1 +
�QIII

�QI
< 1 (5)

The e�ciency ⌘ can be obtained using the fact that entropy S is a state property.

After the Carnot engine has completed one cycle �S = 0.

Since �QII = �QIV = 0, �S = �SI + �SIII = 0,

�QI

Th
+

�QIII

Tc
= 0 ! �QIII = �Tc

Th
�QI (6)

⌘ = 1� Tc

Th
(7)

Hence, you break even (⌘ = 1) only if Tc = 0 (or Th !1).
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1.3.2 Alternative statements of the second law

The second law has many equivalent statements:

1. The entropy of an isolated system never decreases.

2. A system in contact with one thermal reservoir cannot produce positive work in a cycle
(Kelvin’s statement).

3. A system operates in a cycle cannot produce heat flow from a colder body to a hotter
body — unless it consumes work (Clausius statement).

— i.e. heat never flows from a low temperature to a high temperature place unless you
have a refrigerator (e.g. a Carnot engine running backward).

Statement 3 is probably the most intuitive.

We all experience spontaneous heat flow from high T to low T but never the opposite. This
also means the Carnot engine, being a reversible engine, is the most e�cient heat engine
between Th and Tc. Otherwise, if you have another engine that is more e�cient than the
Carnot engine. Then we could give the work produced by this engine to the Carnot engine
which now runs backwards - consuming work and carry heat from Tc to Th without consuming
external work.

— The two engines together form a refrigerator that requires no power!

One can use similar ideas to show that statements 1 and 2 are both equivalent to statement
3.

For example, according to statement 1, having absorbed heat �QI , the engine has increased
its own entropy. It has to dump this entropy somewhere else (to Tc) before it can start a
new cycle. Therefore, the Carnot engine cannot have ⌘ = 100% e�ciency.

If there is a “magic stone” that can spontaneously decrease its entropy, an engine coupled
to this “magic stone” will no longer need to find another heat reservoir to dump entropy
through heat exchange. It’s e�ciency (work output / heat intake) can then achieve 100%.

7



This “magic heat engine” coupled with a Carnot engine running in reverse, would lead to
refrigerator requiring no power.

Any system, when left alone, will go to equilibrium. In other words, going to equilibrium
is a spontaneous process. Hence entropy only increases during equilibration and reaches
maximum at equilibrium.

In an adiabatic (�Q = 0) irreversible process, entropy only increases.

During this process, there is no external work and no heat exchange. The process is irre-
versible. Hence S2 > S1.

1.4 The third law

The third law of thermodynamics is an axiom of nature regarding entropy and the impossi-
bility of reaching absolute zero of temperature.

Third law: “As a system approaches absolute zero temperature, all processes cease and
the entropy of the system approaches an minimum value” (which can be defined as zero) —
also known as Nernst’s theorem.

Alternative statement: “It is impossible by any procedure, no matter how idealized, to reduce
any system to the absolute zero of temperature in a finite number of operations.”

(Unfortunately, showing the equivalence between the above two statements of this third law
is beyond this class.)

Since S = kB ln ⌦, entropy is related to the number of microscopic states consistent
with macroscopic states variables. Third low states that at zero temperature, there
is only one microscopic state, i.e., the system can only occupy the ground state at
T = 0.
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Here we list some world records of reaching down to zero K.
Doug Oshero↵, a Cornell graduate student, discovered (in 1970’s) superfluid phase
of helium-3 at 0.002K. (Oshero↵ is currently a physics professor at Stanford. He won
the 1996 Nobel Prize for this discovery.)

NIST (1994) T = 7⇥ 10�7K.

MIT (2003) T = 4.5⇥ 10�10K

2 Mathematics of thermodynamics

In this lecture, we will go through the mathematics of thermodynamics.

2.1 Equation of state

Let’s start by considering an isolated system — A gas tank of volume V , containing N gas
molecules, the total energy of the gas molecules is E.

If the gas tank is left alone for a time, it should go to a thermal equilibrium state, and
N, V, E stay constant.

For a given type of gas, the three
variables (N, V, E) will completely
specify the state of this (pure) gas.

From 2nd law of thermodynamics, we also know that every equilibrium state has a well
defined entropy S. Therefore, S must be a function of N, V, E i.e. S(N, V, E) — This
function is specific to the type of material (gas) that we are studying and can be considered
as an “equation of state”.

Notice that S,N, V,E are all extensive state functions. Any three of them uniquely specifies
a state. The fourth one then has to be a function of these three.

For example, the equation of state of ideal gas can be written as

S(N, V, E) = NkB

"
log

 
V

N

✓
4⇡mE

3Nh2

◆3/2
!

+
5

2

#
(8)

(See “microcanonical ensemble” notes. We will derive it later.)
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Now let’s start taking partial derivatives!

Because S,N, V,E are all state functions, dS, dN, dV, dE are all complete di↵erentials.

dS =

✓
@S

@E

◆

N,V

dE +

✓
@S

@N

◆

E,V

dN +

✓
@S

@V

◆

E,N

dV (9)

— be careful which variables we keep fixed while taking the derivatives.

The above equation is valid for an arbitrary di↵erential change of a equilibrium state.

Let us now consider a more specific change, where we pass heat d̄Q to the gas tank while
keeping N, V fixed. In this case

dN = 0, dV = 0, dE = d̄Q (10)

we also know dS = 1
T d̄Q, which leads to d̄Q

T =
�

@S
@E

�
N,V

d̄Q. Hence

1

T
=

✓
@S

@E

◆

N,V

(11)

We can consider this as the definition of temperature — from the equation of state S(N, V, E).

It is perhaps more convenient to rewrite the equation of state as E(S, V, N).

Then

dE =

✓
@E

@S

◆

V,N

dS +

✓
@E

@V

◆

S,N

dV +

✓
@E

@N

◆

S,V

dN (12)

Thus,

T ⌘
✓

@E

@S

◆

V,N

(13)

Let us now consider a di↵erent (reversible) change of state.

Suppose we do mechanical work d̄W to the gas tank by changing its volume (dV ). The work
will be done adiabatically (d̄Q = 0). Hence,

dS = 0, dN = 0, dE = dW

We also know that dW = �p dV , so �p dV =
�

@E
@V

�
S,N

dV .

Hence we arrive at the definition of pressure.

p ⌘ �
✓

@E

@V

◆

S,N

(14)
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We can also do “chemical work” to the gas tank by injecting more gas molecules (dN).

In this case, dW = µ dN , µ is called chemical potential. Again,

dS = 0, dN = 0, dE = dW

So, µ dN =
�

@E
@N

�
S,V

dN .

Hence we arrive at the definition of chemical potential.

µ ⌘
✓

@E

@N

◆

S,V

(15)

Therefore,
dE = T dS � p dV + µ dN (16)

Summary: Equation of state E(S, V, N) — material specific

T ⌘
✓

@E

@S

◆

V,N

, p ⌘ �
✓

@E

@V

◆

S,N

, µ ⌘
✓

@E

@N

◆

S,V

(17)

E, S, V, N are extensive variables. T, p, µ are intensive variables.

dE = T dS � p dV + µ dN (18)

2.2 Gibbs-Duhem relation

Let’s prove some mathematical identities now!

2.2.1 Homogeneous function

Suppose we collect � gas tanks, each having energy E, entropy S, volume V , and number
of molecule N , and put them together to form a big gas tank. The result is a system that
should have energy �E, entropy �S, volume �V and number of molecule �N . This means
that the equation of state function E(S, V, N) should have the following property.

E(�S,�V,�N) = �E(S, V, N) (19)

This means E(S, V,N) is a “homogeneous function of 1st order”.

Next we will apply Virial theorem (Euler’s theorem) to show some “surprising” properties.
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2.2.2 Virial theorem / Euler theorem

Consider function f(x1, x2, · · · , xn) which is homogeneous of 1st order.

Define ui = �xi,
f(u1, u2, · · · , un) = �f(x1, x2, · · · , xn) (20)

therefore
@

@�
f(u1, u2, · · · , un) = f(x1, x2, · · · , xn) (21)

At the same time,

@

@�
f(u1, u2, · · · , un) =

nX

i=1

@f

@ui
· @ui

@�
=

nX

i=1

@f

@xi
· xi (22)

Take � = 1, we get

f(x1, x2, · · · , xn) =
nX

i=1

@f

@xi
xi (23)

This is the Virial Theorem: for a homogenous function of 1st order, f(x1, x2, · · · , xn),

f(x1, x2, · · · , xn) =
nX

i=1

@f

@xi
· xi (24)

Applying this theorem to function E(S, V, N),

E(S, V, N) =

✓
@E

@S

◆

V,N

· S +

✓
@E

@V

◆

S,N

· V +

✓
@E

@N

◆

S,V

· N (25)

In other words,

E(S, V, N) = T · S � p · V + µ · N (26)

Recall that

dE = T · dS � p · dV + µ · dN (27)

(Both the above two equations are true!)

Let’s push the math one step further!

E(S, V, N) =

✓
@E

@S

◆

V,N

· S +

✓
@E

@V

◆

S,N

· V +

✓
@E

@N

◆

S,V

· N (28)

) dE = T dS + S dT � p dV � V dp + µ dN + N dµ (29)

But
dE = T dS � p dV + µ dN

12



This leads to the Gibbs-Duhem relation

S dT � V dp + N dµ = 0 (30)

Consequence of the Gibbs-Duhem relation: It is impossible to vary all the intensive variables
freely. This is contrary to extensive variables (N, V, E), which can be changed freely.

If you vary T and p, then µ will change in a predictable manner.

2.3 Maxwell relations

Mathematical identity 1:

Consider a function f(x, y),

df = a dx + b dy, a ⌘
✓

@f

@x

◆

y

, b ⌘
✓

@f

@y

◆

x

(31)

then, we get ✓
@a

@y

◆

x

=

✓
@b

@x

◆

y

(32)

because they both equal to @2f
@x@y .

Mathematical identity 2:

Consider a function z(x, y)

This function defines a relation between x, y, z, i.e. a 2D surface in 3D space. The same
relation can also be expressed by x(y, z) and y(x, z).

Then ✓
@x

@y

◆

z

= �
✓

@x

@z

◆

y

✓
@z

@y

◆

x

(33)

(Shouldn’t be confused with the chain rule! Note the minus sign!)

Equivalently, we can write
✓

@x

@y

◆

z

·
✓

@y

@z

◆

x

·
✓

@z

@x

◆

y

= �1 (34)
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This is because ✓
@x

@y

◆

z

= �a

b
,

✓
@y

@z

◆

x

= �b

c
,

✓
@z

@x

◆

y

= � c

a
(35)

An alternative, algebraic way to prove this identity is the following.

dz =

✓
@z

@x

◆

y

dx +

✓
@z

@y

◆

x

dy (36)

dx =

✓
@x

@y

◆

z

dy +

✓
@x

@z

◆

y

dz (37)

Plug the second equation into the first, we obtain,

dz =

✓
@z

@x

◆

y

·
"✓

@x

@y

◆

z

dy +

✓
@x

@z

◆

y

dz

#
+

✓
@z

@y

◆

x

dy (38)

The dz term cancel and we have
✓

@z

@x

◆

y

✓
@x

@y

◆

z

dy +

✓
@z

@y

◆

x

dy = 0 (39)

Because this has to be true for arbitrary dy, we have proved the identity of interest.

We can now apply these two identities to function E(S, V, N). Because,

dE = TdS � pdV + µdN (40)

the first identity leads to the following Maxwell’s relations.
✓

@T

@V

◆

S,N

= �
✓

@p

@S

◆

V,N

(41)

✓
@T

@N

◆

S,V

=

✓
@µ

@S

◆

V,N

(42)

✓
@p

@N

◆

S,V

= �
✓

@µ

@V

◆

S,N

(43)

Let’s fix N , then E(V, S) is similar to x(y, z). The second identity leads to the following
Maxwell’s relation.

✓
@E

@V

◆

S,N

= �
✓

@E

@S

◆

V,N

·
✓

@S

@V

◆

E,N

i.e. � p = �T ·
✓

@S

@V

◆

E,N

(44)

Similarly, we can fix S, and consider E(V, N) as x(y, z). The following Maxwell relation
appears. ✓

@E

@V

◆

N,S

= �
✓

@E

@N

◆

V,S

·
✓

@N

@V

◆

E,S

(45)
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All of these Maxwell relations are mathematically true. But the physical meaning of some
of them is not obvious. So some of them are not very useful.

2.4 Legendre transform

The equation of state E(S, V, N) is not convenient to work with. This is because we usually
do not do experiments at adiabatic conditions (d̄Q = 0).

Very often, experiments are performed at constant temperature T . The sample is allowed
to exchange heat with a thermostat at temperature T .

The Legendre transform allows us to work with a di↵erent equation of state A(T, V,N) where
A is called the Helmholtz free energy — another very important concept in thermodynamics
and statistical mechanics (as important as entropy S)

Recall the same Legendre transformation in classical mechanics

L(q, q̇)! H(q, p), p ⌘ @L

@q̇
(46)

Notice that as we change variable q̇ to its conjugate variable p, the Lagrangian L is trans-
formed to Hamiltonian H.

Here, we want the following Legendre transformation,

E(S, V, N)! A(T, V,N), T ⌘
✓

@E

@S

◆

V,N

(47)

As we change variable S to its conjugate variable T , the energy E is transformed to Helmholtz
free energy A.

Start with E(S, V, N), we know dE = TdS � pdV + µdN

Define
A = E � TS (48)

What is A a function of?

dA = dE � d(TS) = dE � TdS � SdT

= TdS � pdV + µdN � TdS � SdT

= �SdT � pdV + µdN

So A is a function of T , V , N !

A(T, V,N) (49)

dA = �SdT � pdV + µdN (50)
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The equation of state A(T, V,N) is convenent to use when experimental condition is at
constant temperature T , volume V and number of particles N (e.g. gas tank at room
temperature).

We can also formulate thermodynamics starting from A(T, V,N) and define S, p, µ as

S ⌘ �
✓

@A

@T

◆

V,N

, p ⌘ �
✓

@A

@V

◆

T,N

, µ ⌘
✓

@A

@N

◆

T,V

(51)

these definitions are completely consistent with earlier equations.

Notice here that p and µ are defined as derivatives with T fixed! — this is easier to do in
experiments than to keep S fixed.

2.5 Thermodynamic potentials

Both E(S, V, N) and A(T, V,N) are thermodynamic potentials. Recall Euler’s theorem:
E = TS � pV + µN , and the definition A ⌘ E � TS, we have

) A = �pV + µN (52)

together with dA = �SdT � pdV + µdN (53)

From A(T, V,N), we can obtain another set of Maxwell relations, e.g.

✓
@S

@V

◆

T,N

=

✓
@p

@T

◆

V,N

(54)

. . .

. . .

This Legendre transform is fun!

We can continue the Legendre transform with other variables, e.g. V and N , and we will
get more and more mathematical identities.

What a harvest!

Suppose we no longer keep our gas tank at constant volume. Instead, we would like to allow
volume to adjust automatically but want to keep the pressure p as well as temperature T

constant.

In thermodynamics, this correspond to another Legendre transform

A(T, V,N)! G(T, p, N), p ⌘ �
✓

@A

@V

◆

T,N

(55)
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Legendre transform again:

A(T, V,N) (56)

dA = �SdT � pdV + µdN (57)

Define
G = A + pV = E � TS + pV (58)

dG = dA + d(pV ) (59)

= �SdT � pdV + µdN + pdV + V dp (60)

= �SdT + V dp + µdN (61)

G is a function of T, p, N !

G(T, p, N) (62)

dG = �SdT + V dp + µdN (63)

G(T, p, N) is an equation of state useful at constant T, p, N .

We can also formulate thermodynamics starting from G(T, p, N) and define S, V, µ as

S ⌘ �
✓

@G

@T

◆

p,N

, V ⌘
✓

@G

@p

◆

T,N

, µ ⌘
✓

@G

@N

◆

T,p

(64)

This seems a little bit of a stretch, because the volume V doesn’t require such an
obscure definition — “It is obvious what is the volume of my gas tank!” But these
definitions are mathematically exact and completely consistent with the previous
definitions.

Recall: E = TS � pV + µN and A = �pV + µN

Now G = A + pV , therefore
G = µN (65)

Hence,

µ =
G

N
(66)

Therefore, chemical potential is the same as Gibb’s free energy per particle!

Recall

µ ⌘
✓

@G

@N

◆

T,p

(67)

(both the above two expressions for µ are true)
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From G(T, p, N), we can derive more Maxwell relations!

Another Legendre transform

H = E + pV (68)

H(S, p, N) (69)

H is called enthalpy and is good for constant S (adiabatic) and constant p, N conditions.

H = TS � µN (70)

dH = TdS + V dp + µdN (71)

T ⌘
✓

@H

@S

◆

p,N

, · · · (72)

more Maxwell relations!
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The four thermodynamic potentials consider above: E, A, H, G form a square.

Here we have always kept N fixed.

As a result, G, µ seem special, because they are the only ones for which we can write

G = µN, µ =
G

N
(73)

But it does not have to be that way.

Let’s get really “energetic” about the Legendre transform and consider ...
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The “thermodynamic-potential Cube”!

The thermodynamic potentials I(S, V, µ), J(S, p, µ), and K(T, V, µ) do not have names (that
I know of), because nobody uses them (yet). — Hey, you can get more Maxwell relations
out of them.

Notice that

µ =
G

N
, T =

J

S
, p = �K

V
(74)

So µ and G are not that special after all! Well.... except that nobody uses J and K...

What happened to L(T, p, µ)? It is zero!

So, it is not a useful thermodynamic potential, e.g. we can’t get any Maxwell relation out
of it.

Recall the Gibbs-Duhem relation SdT � V dp + Ndµ = 0, you cannot specify all 3 intensive
variables as free variables. That’s why L(T, p, µ) has no meaning!
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3 Worked examples

3.1 Thermodynamic potentials and Maxwell’s relation

Consider a gas tank of volume V containing N gas molecules with total energy E. For all 7
thermodynamic potentials,

E(S, V, N) (75)

A(T, V,N) (76)

H(S, p, N) (77)

G(T, p, N) (78)

I(S, V, µ) (79)

J(S, p, µ) (80)

K(T, V, µ) (81)

write down the corresponding 3 conjugate variables. For example, for E(S, V, N), they are
the definitions of T , p, and µ. Also write down 3 Maxwell relations for each thermodynamic
potential. There should be 7⇥ (3 + 3) = 42 equations in total.

Solution

Energy: E(S,V,N)

dE = TdS � pdV + µdN

T ⌘
✓

@E

@S

◆

V,N

, p ⌘ �
✓

@E

@V

◆

S,N

, µ ⌘
✓

@E

@N

◆

S,V

✓
@T

@V

◆

S,N

= �
✓

@p

@S

◆

V,N

,

✓
@T

@N

◆

S,V

=

✓
@µ

@S

◆

V,N

,

✓
@p

@N

◆

S,V

= �
✓

@µ

@V

◆

S,N

Helmoltz Free Energy: A(T,V,N)

A = E � TS

dA = dE � TdS � SdT = �SdT � pdV + µdN

S = �
✓

@A

@T

◆

V,N

, p = �
✓

@A

@V

◆

T,N

, µ =

✓
@A

@N

◆

T,V

✓
@S

@V

◆

T,N

=

✓
@p

@T

◆

V,N

,

✓
@S

@N

◆

T,V

= �
✓

@µ

@T

◆

V,N

,

✓
@p

@N

◆

T,V

= �
✓

@µ

@V

◆

T,N
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Enthalpy: H(S,p,N)

H = E + pV

dH = dE + pdV + V dp = TdS + V dp + µdN

T =

✓
@H

@S

◆

p,N

, V =

✓
@H

@p

◆

S,N

, µ =

✓
@H

@N

◆

S,p

✓
@T

@p

◆

S,N

=

✓
@V

@S

◆

p,N

,

✓
@T

@N

◆

S,p

=

✓
@µ

@S

◆

p,N

,

✓
@V

@N

◆

S,p

=

✓
@µ

@p

◆

S,N

Gibbs Free Energy: G(T,p,N)

G = A + pV

dG = dA + pdV + V dp = �SdT + V dp + µdN

S = �
✓

@G

@T

◆

p,N

, V =

✓
@G

@p

◆

T,N

, µ =

✓
@G

@N

◆

T,p

✓
@S

@p

◆

T,N

= �
✓

@V

@T

◆

p,N

,

✓
@S

@N

◆

T,p

= �
✓

@µ

@T

◆

p,N

,

✓
@V

@N

◆

T,p

=

✓
@µ

@p

◆

T,N

I(S,V,µ)

I = E � µN

dI = dE � µdN �Ndµ = TdS � pdV �Ndµ

T =

✓
@I

@S

◆

V,µ

, p = �
✓

@I

@V

◆

S,µ

, N = �
✓

@I

@µ

◆

S,V

✓
@T

@V

◆

S,µ

= �
✓

@p

@S

◆

V,µ

,

✓
@T

@µ

◆

S,V

= �
✓

@N

@S

◆

V,µ

,

✓
@p

@µ

◆

S,V

=

✓
@N

@V

◆

S,µ

J(S,p,µ)

J = H � µN

dJ = dH � µdN �Ndµ = TdS + V dp�Ndµ
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T =

✓
@J

@S

◆

p,µ

, V =

✓
@J

@p

◆

S,µ

, N = �
✓

@J

@µ

◆

S,p

✓
@T

@p

◆

S,µ

=

✓
@V

@S

◆

p,µ

,

✓
@T

@µ

◆

S,p

= �
✓

@N

@S

◆

p,µ

,

✓
@V

@µ

◆

S,p

= �
✓

@N

@p

◆

S,µ

K(T,V,µ)

K = A� µN

dK = dA� µdN �Ndµ = �SdT � pdV �Ndµ

S = �
✓

@K

@T

◆

V,µ

, p = �
✓

@K

@V

◆

T,µ

, N = �
✓

@K

@µ

◆

T,V

✓
@S

@V

◆

T,µ

=

✓
@p

@T

◆

V,µ

,

✓
@S

@µ

◆

T,V

=

✓
@N

@T

◆

V,µ

,

✓
@p

@µ

◆

T,V

=

✓
@N

@V

◆

T,µ
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3.2 Properties of ideal gas

The Sackur-Tetrode equation gives the analytic expression for the entropy of an ideal gas,

S = kBN

"
ln

 
V

N

✓
4⇡mE

3Nh2

◆3/2
!

+
5

2

#
(82)

(a) Invert this equation to obtain E(S, V, N). Derive the expression for T , p, and µ. Verify
the ideal gas law pV = NkBT .

(b) Obtain A(T, V,N) and recompute S from A(T, V,N).

(c) Obtain G(T, p, N) and compare it with µ N .

(d) Compute the heat capacity at constant volume CV , heat capacity at constant pressure
Cp, coe�cient of thermal expansion ↵ and compressibility �, which are defined as follows

CV =

✓
d̄Q

dT

◆

V,N

(83)

Cp =

✓
d̄Q

dT

◆

p,N

(84)

↵ =
1

V

✓
@V

@T

◆

p,N

(85)

� = � 1

V

✓
@V

@p

◆

T,N

(86)

Verify that Cp �CV = ↵
2
V T/� (this relation is valid for arbitrary thermodynamic system).

Solution

(a) At fixed S, V , N , the property thermodynamic potential is E(S, V, N).

E(S, V, N) =
3Nh

2

4⇡m

✓
N

V

◆2/3

exp


2S

3NkB
� 5

3

�

T =

✓
@E

@S

◆

V,N

= E
2

3NkB
) E =

3NkBT

2

p = �
✓

@E

@V

◆

S,N

= E
2

3V
=

NkBT

V
) pV = NkBT

µ =

✓
@E

@N

◆

S,V

=
E

N


5

3
� 2S

3NkB

�
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(b) At fixed T , V , N , the property thermodynamic potential is A(T, V,N). Recall that
A = E � T S. But we need to be careful about rewriting everything in terms of T , V , N

now.

E =
3

2
NkBT

S = NkB

"
ln

 
V

N

✓
2⇡mkBT

h2

◆3/2
!

+
5

2

#
(87)

A(T, V,N) = E � TS =
3NkBT

2
�NkBT

"
ln

 
V

N

✓
2⇡mkBT

h2

◆3/2
!

+
5

2

#

= �NkBT

"
ln

 
V

N

✓
2⇡mkBT

h2

◆3/2
!

+ 1

#

S = �
✓

@A

@T

◆

V,N

= �A

T
+ NkBT

3

2 T
= �A

T
+

3NkB

2

= NkB

"
ln

 
V

N

✓
2⇡mkBT

h2

◆3/2
!

+
5

2

#

which reproduces Eq. (87).

(c) At fixed T , p, N , the property thermodynamic potential is G(T, p, N). Recall that
G = A+p V . But we need to be careful about rewriting everything in terms of T , p, N now.

A = �NkBT

"
ln

 
kBT

p

✓
2⇡mkBT

h2

◆3/2
!

+ 1

#

p V = NkBT

G = A + pV

= �NkBT

"
ln

 
kBT

p

✓
2⇡mkBT

h2

◆3/2
!#

(88)

At the same time, Eq. (87) leads to

µN = E


5

3
� 2S

3NkB

�
=

5NkBT

2
� TS

=
5NkBT

2
�NkBT

"
ln

 
kBT

p

✓
2⇡mkBT

h2

◆3/2
!

+
5

2

#

= �NkBT

"
ln

 
kBT

p

✓
2⇡mkBT

h2

◆3/2
!#

(89)

Comparing Eqs. (88) and (89), we have

G = µ N
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(d) To compute heat capacity at constant volume, CV , the proper thermodynamic potential
to consider is A(T, V,N), with

S = �
✓

@A

@T

◆

V,N

CV =

✓
d̄Q

dT

◆

V,N

= T

✓
@S

@T

◆

V,N

= �T

✓
@

2
A

@ T 2

◆

V,N

Recall that

S(T, V,N) = NkB

"
ln

 
V

N

✓
2⇡mkBT

h2

◆3/2
!

+
5

2

#

we have

CV = T

✓
@S

@T

◆

V,N

=
3

2
NkB

To compute heat capacity at constant pressure, Cp, the proper thermodynamic potential to
consider is G(T, p, N), with

S = �
✓

@G

@T

◆

p,N

Cp =

✓
d̄Q

dT

◆

p,N

= T

✓
@S

@T

◆

p,N

= �T

✓
@

2
G

@ T 2

◆

p,N

From

S(T, p, N) = NkB

"
ln

 
kBT

p

✓
2⇡mkBT

h2

◆3/2
!

+
5

2

#

we have

Cp = T

✓
@S

@T

◆

p,N

=
5

2
NkB

Cp � CV = NkB

To compute coe�cient of thermal expansion, ↵, the proper thermodynamic potential to
consider is G(T, p, N), with

V =

✓
@G

@p

◆

T,N

=
NkBT

p

↵ =
1

V

✓
@V

@T

◆

p,N

=
1

V

@
2
G

@ p @ T
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Therefore

↵ =
p

NkBT

NkB

p
=

1

T

To compute compressibility, �, the proper thermodynamic potential to consider is also
G(T, p, N), with

� = � 1

V

✓
@V

@p

◆

T,n

= � 1

V

@
2
G

@ p2

Therefore

� = � p

NkBT

NkBT

�p2
=

1

p

↵
2
V T

�
=

1

T 2
V T p = N kB = Cp � CV
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3.3 Gas expansion

Consider an insulated container of volume V2. N idea gas molecules are initially confined
within volume V1 by a piston and the remaining volume V2 � V1 is in vacuum. Let T1, p1,
E1, S1 A1, H1, G1 be the temperature, pressure, energy, entropy, Helmholtz free energy,
enthalpy, and Gibbs free energy of the ideal gas at this state, respectively.

V1 V2 - V1

(a) Imagine that the piston is suddenly removed so that the gas has volume V2. After some
time the system settles down to equilibrium again. What are the temperature T2, pressure
p2, energy E2, entropy S2, Helmholtz free energy A2, enthalpy H2, and Gibbs free energy G2

in the new equilibrium state? Mark the initial and final states in the p-V plot and the T -S
plot.

(b) Suppose we move the piston infinitely slowly (a reversible process) to let the gas expand
to the full volume V2. The gas container is thermally insulated during this process. What is
the work done �W to the system? What are T2, p2, E2, A2, H2, G2 in the final equilibrium
state? Express them in terms of the thermodynamic functions of state 1 and V2/V1. Mark
the initial and final states in the p-V plot and the T -S plot.

Solution:

(a) Because there is no heat flow or work done to the system during the free expansion, the
change of total energy is zero,

E2 = E1

From the Sackur-Tetrode equation for the entropy of ideal gas

S = kBN

"
ln

 
V

N

✓
4⇡mE

3Nh2

◆3/2
!

+
5

2

#
(90)

Hence

S2 = S1 + kBN ln
V2

V1

Because temperature is defined as

T =

✓
@S

@E

◆�1

V,N

=
2 E

3NkB
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we have,

T2 = T1 =
2E1

3NkB

Because p V = N kB T , we have

p2 =
NkBT2

V2
=

p1 V1

V2

Change of Helmholtz free energy,

A2 � A1 = (E2 � T2S2)� (E1 � T1S1)

= �T1(S2 � S1)

A2 = A1 �N kB T1 ln
V2

V1

Enthalpy,

H2 = E2 + p2V2 =
5

2
NkBT1 = H1

Change of Gibbs free energy,

G2 �G1 = (H2 � T2S2)� (H1 � T1S1)

= �T1(S2 � S1)

G2 = G1 �N kB T1 ln
V2

V1

Table 1: Change of thermodynamic properties if the piston suddenly disappears and the gas
settle down to the new equilibrium state with volume V2.

T2 � T1 0
p2 � p1 p1(V1/V2 � 1)
E2 � E1 0
S2 � S1 N kB ln(V2/V1)
A2 � A1 �N kB T ln(V2/V1)
H2 �H1 0
G2 �G1 �N kB T ln(V2/V1)

(b) Here the piston expansion is a reversible and adiabatic (no heat flow) process. Hence
the entropy change should be zero,

S2 = S1
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From Eq. (90),

V1 E
3/2
1 = V2 E

3/2
2

E2 =

✓
V1

V2

◆2/3

E1

Because E = 3
2NkBT ,

T2 =

✓
V1

V2

◆2/3

T1 (91)

Eq. (91) can also be obtained from the ideal gas law, p V = NkBT . During the
expansion process, the energy change corresponding to a di↵erential change of volume
dV is,

dE = d̄W = �p dV = �NkBT

V
dV

At the same time, E = 3
2NkBT , therefore dE = 3

2NkBdT , so that,

3

2
NkBdT = �NkBT

V
dV

3

2

dT

T
= �dV

V

3

2

Z T2

T1

dT

T
= �

Z V2

V1

dV

V

3

2
ln

T2

T1
= � ln

V2

V1

T2 =

✓
V1

V2

◆2/3

T1

Because

p2 V2 = N kB T2 =

✓
V1

V2

◆2/3

p1 V1

p2 =

✓
V1

V2

◆5/3

p1
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Helmholtz free energy, enthalpy and Gibbs free energy,

A2 = E2 � T2S2 =

✓
V1

V2

◆2/3

E1 �
✓

V1

V2

◆2/3

T1S1

=

✓
V1

V2

◆2/3

A1

H2 = E2 + p2V2 =
3

2
NkBT2 + NkBT2

=
5

2
NkBT2 =

✓
V1

V2

◆2/3 5

2
NkBT1

=

✓
V1

V2

◆2/3

H1

G2 = A2 + p2(V1 + V2) = A2 + NkBT2

=

✓
V1

V2

◆2/3

(A1 + NkBT1)

=

✓
V1

V2

◆2/3

G1

Table 2: Change of thermodynamic properties if the piston moves very slowly and adiabat-
ically expand the volume to V2.

T2/T1 (V1/V2)2/3

p2/p1 (V1/V2)5/3

E2/E1 (V1/V2)2/3

S2/S1 1
A2/A1 (V1/V2)2/3

H2/H1 (V1/V2)2/3

G2/G1 (V1/V2)2/3

1
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4 Irreversible processes

4.1 Entropy and irreversibility

Second Law: The entropy of an isolated system never decreases.

Interpretation:

When a system is in a thermal equilibrium state A, it has a definite entropy SA, which
is a function of N, V, E. If certain constraint is removed in the system, e.g. consider
the sudden removal of a separator between the gas and the rest of the container.

The system will (irreversibly) reach a new equilibrium state B, which has entropy SB.

The second law says: SB � SA.

In the above example, the process is adiabatic (no heat exchanges). We can make the
following statement about the entropy depending on whether heat is exchanged, or whether
the process is reversible.

For an adiabatic process, SB � SA.

For an adiabatic and reversible process, SB = SA.

For a non-adiabatic and reversible process SB = SA +
R
d̄Qrev/T , dS = d̄Qrev/T .

For a non-adiabatic, non-reversible process, dS >d̄Q/T

In summary, entropy is related to both heat and irreversibility.

4.2 Variational statement of second law

Let ⌘ represent an internal constraint, e.g., the
position of the separator.
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Let S(E, V,N ; ⌘) be the entropy of the system subjected to constraint ⌘.

S(E, V,N) is the entropy when the constraint is removed and is the global maximum of
S(E, V,N ; ⌘).

S(E, V,N) = max
⌘

S(E, V,N ; ⌘) (92)

Since
�

@S
@E

�
V,N

> 0, we have the following minimum principle for the entropy function

E(S, V,N).

E(S, V, N) = min
⌘

E(S, V, N ; ⌘) (93)

Care must be taken to interpret the physical meaning of this equation. Usually, when
we remove a constraint, E remains constant while S will spontaneously increase.
However, it if we want to restore entropy S to its original value, we must extract heat
from the system, which will lead to a decrease of energy.

The minimum energy principle becomes much easier to use and to interpret after Legendre
transform to A(T, V,N)

A(T, V,N) = min
⌘

A(T, V,N ; ⌘) (94)

In the following we will prove this and other minimum principles.

First, let us recall some relations:

For a reversible process: dS = d̄Qrev/T

For a irreversible process: dS >d̄Q/T , d̄Q < TdS.

From first law,

dE = d̄Q +d̄W

= d̄Q� pdV + µdN

dE < TdS � pdV + µdN (for irreversible processes)

Therefore, for irreversible processes, we can write

d̄Z ⌘ dE � TdS + pdV � µdN < 0 (95)

whereas
d̄Z = 0 (96)

for reversible processes.
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The above two equations can be used as a general criteria for irreversible processes.

• If we can keep S, V, N constant, then dZ = dE, then for an irreversible process
dE < 0. i.e. E(S, V, N) = min⌘ E(S, V, N ; ⌘). (We noted earlier that it is quite
di↵erent to keep S constant in an irreversible process).

• If we keep T, V, N constant, the proper thermodynamic potential to use is the
Helmholtz free energy A(T, V,N).

A = E � TS

dA = dE � TdS � SdT

dE = dA + TdS + SdT

d̄Z = dA + SdT + pdV � µdN = dA (97)

Hence, for an irreversible process, dA < 0,

) A(T, V,N) = min
⌘

A(T, V,N ; ⌘) (minimum Helmholtz free energy principle) (98)

• If we can keep S, p, N constant, (d̄Z = dH), then for an irreversible process dH < 0,

) H(S, p,N) = min
⌘

H(S, p, N ; ⌘) (minimum enthalpy principle) (99)

This one is not easy to use, because it is di�cult to keep S constant in an irreversible
process.

• If we keep T, p, N constant, (d̄Z = dG), then for an irreversible process dG < 0,

) G(T, p, N) = min
⌘

G(T, p, N ; ⌘) (minimum Gibbs free energy principle) (100)

Summary:

A system (when given a chance) will evolve toward minimizing its Helmholtz/Gibbs
free energy at constant (T, V,N)/(T, p, N) conditions.

When equilibrium is reached, its Helmholtz/Gibbs free energy will be at a global minimum.
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In this lecture, we will first discuss the relation between entropy and irreversibility. Then we
will derive the entropy formula for ideal gas,

S(N, V, E) = NkB

"
ln

 
V

N

✓
4⇡mE

3Nh2

◆3/2
!

+
5

2

#
(1)

from the microcanonical (NV E) ensemble. To do so, we will

1. Establish Boltzmann’s entropy expression

S = kB ln ⌦(N, V, E) (2)

where ⌦ is the number of microscopic states consistent with macroscopic state (N, V, E).

This is a special case of entropy defined in the information theory S =
Pn

i=1 pi ln pi

when pi = 1
⌦ for all i.

2. Count the number of microscopic state ⌦(N, V, E), carefully.

Reading Assignment, Reif §3.1-3.10.
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1 Reaching equilibrium after removal of constraint

First let us consider a specific example of irreversible process caused by the removal of a
constraint on a thermodynamic system (see Lecture Note 6.4. Irreversible processes).

Let the system settle down to an equilibrium state under the constraint ⌘. In this state,
the two sides should have the same temperature T . Given the ideal gas equation of state
PV = NkBT , the two sides will not have the same pressure, unless ⌘ = L/2. This means
that, in general, force must be applied on the separator to maintain the constraint ⌘.

Let S(N, V, E; ⌘) be the entropy of the system in this state (with constraint ⌘).

Now imagine removing the constraint ⌘, by allowing the separator to slide in response to the
pressure di↵erence between the two sides.

Initially the separator may oscillate due to inertia e↵ects. Imagine there is friction between
the gas tank wall and the separator. Then the oscillation will eventually die down. Me-
chanical motion is converted to heat in the process, while the total energy remains constant
(assuming the system is isolated from the rest of the world).

Entropy S will increase in this process.

When the system eventually settle down to the new equilibrium state (without constraint
⌘), the new entropy is

S(N, V, E) = max⌘S(N, V, E; ⌘) (3)

If the system is in contact with a thermostat at temperature T , then N, V, T remain constants
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during the irreversible process. One can show that the Helmholtz free energy decreases in
the process (heat generated by friction flows to the thermostat). The Helmholtz free energy
in the new equilibrium state is

A(N, V, T ) = min⌘A(N, V, T ; ⌘) (4)

2 Entropy and irreversibility

2.1 Birth of entropy

Entropy is first defined by German physicist Clasius, “On various forms of the laws of
thermodynamics that are convenient for applications”, (1865).

Entropy is the Greek word for “transformation” — Hans C. von Baeyer, “Maxwell’s Demon”,
(1998), p.61.

Entropy — stays constant in reversible processes.

Entropy — always increases in irreversible processes.

2.2 Entropy increase defines arrow of time

This should be very puzzling for everybody, because all microscopic theories of nature (e.g.
classical mechanics, electromagnetism, relativity, quantum mechanics) are time reversible.

In classical mechanics, the trajectories of individual
particles are completely reversible. One cannot tell
whether the movies is playing forward or backward.

Einstein was very puzzled by the arrow of time.

In the theory of relativity, time is just one of the
axes of the 4-dimension “space-time”.

Past-v.s.-future is not so di↵erent from left-v.s.-right.

Einstein remarked “... this separation between part, present and future is an illusion, albeit
a stubborn one.” — “Maxwell’s Demon” p.129.
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Indeed the illusion of “the arrow of time” is a very stubborn one. It is one of the most
fundamental aspect of human experience.

Obviously, we remembers the past, but are usually not so good at predicting the future.

Why cannot we “remember” the future?

Clausius stated that: Entropy always increases as we move into the future.

What is this entropy anyway? How can we explain it in terms of the microscopic particles
(atoms)?

Why does it always increase with time?

2.3 Boltzmann’s entropy expression

S = kB ln ⌦ (5)

where ⌦ is the number of microscopic states consistent with the macroscopic state, e.g.
(N, V, E).

Phase space

• As we remove some internal constraint on the system, it “di↵uses” out of its original
volume in the phase space into a much larger volume in phase space: ⌦1 ! ⌦2.

• Microscopic dynamics is reversible. It does not prevent the system from spontaneously
moving back into region ⌦1 — but to see that happen you will have to wait a LONG
time.

• The waiting time easily exceeds the age of the universe, which has been only 14 billion
years anyway. The age of the earth is about 4.5 billion years.
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• If you want to reverse the change in your (very limited) life time, you will have to
spend work.

• Hence irreversibility is connection to the finite span of our existence (yes, mortality,
alas). — After all, God (being immortal) may not see irreversibility.

• Entropy increases because the system’s initial condition has lower entropy than the
equilibrium state. No irreversibility can be observed if the system is already in thermal
equilibrium.

• Almost all irreversible processes (e.g. life) on earth are fuelled (ultimately) by sun
light. The evolution of stars obeys thermodynamics, i.e. entropy always increases in a
burning star. This means entropy is increasing everywhere in the universe.

• Future — will it be the “heat death of the universe”? Maybe. But not so eminent. I
suggest we don’t worry about it.

• Past — If the entropy has been always increasing, then the universe must have a beginning.
The initial state of the universe must have very low entropy.

• “Big bang” — 14 billion years ago, all energy/mass of the universe is concentrated at
one point (smaller than one atom). This initial state has very low entropy. Boltzmann
(1844-1906) already realized that!
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3 Boltzmann’s entropy expression

S, V, N,E are all state functions in thermodynamics.

Furthermore, S is a function of (N, V, E). S(N, V, E) is a material specific equation of state
from which all thermodynamic relations of this material can be derived.

In thermodynamics, the equation of state is obtained from experiments:

In statistical mechanics, we can derive S(N, V, E) from fundamental dynamics of the mi-
croscopic particles. Other equation of state (e.g. pV = NkBT ) can be derived from this
fundamental relation.

Statistical Mechanics

Microcanonical (N, V, E) ensemble.
There are many microscopic states
{qi, pi} consistent with (N, V, E).
Suppose the number of such micro-
scopic states is ⌦.

Thermodynamics

Macroscopic variables: S, N, V, E

Boltzmann proposes:
S = kB ln ⌦ (6)

where kB = 1.38⇥ 10�23 J·K�1 is Boltzmann’s constant.

Boltzmann’s tombstone in Vienna reads: S = K log W .

4 Shannon’s entropy and information theory

Later on, people realize that Boltzmann’s entropy formula is a special case of the entropy
expression in Shannon’s information theory.

S = �K

nX

i=1

pi log(pi) (7)
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This expression is called Shannon Entropy or Information Entropy.

Unfortunately, in the information theory, the symbol for entropy is H and the constant kB

is absent. We have changed their notation to avoid confusion.

4.1 How to understand Shannon’s information entropy

Entropy measures the degree of our lack of information about a system. Suppose you throw
a coin, which may land either with head up or tail up, each with probability 1

2 . Then we
have some uncertainty about the outcome of each “experiment”. The uncertainty can be
quantified by a positive number S.

Now suppose you modified the coin (somehow) that you know for sure that each time you
throw it, it will always land with head up (i.e. probability = 1). Then there is no uncertainty
about the possible outcome of each “experiment”. The information entropy should be S = 0.

In general, consider an experiment with n possible outcomes, each with probability pi, i =
1, · · · , n with normalization condition

Pn
i=1 pi = 1.

We are looking for a general formula S(p1, p2, · · · , pn) that can characterize the uncertainty
in all these experiments.

Intuitively, we expect

(1) S(p1 = 1/n, p2 = 1/n, · · · , pn = 1/n) should be the maximum among all values
S(p1, · · · , pn) with a fixed n.

(2) S(p1 = 0, p2 = 1, · · · , pn = 0) = 0 should be the minimum (no uncertainty).

But to develop a general formula for arbitrary {pi} seems impossible!

That’s why Shannon is so smart. He did it!

4.2 Derivation of Shannon entropy

Shannon showed that if we assume the entropy function should satisfy a set of reasonable
properties then there is only one possible expression for it!

These conditions are:

(1) S(p1, p2, · · · , pn) is a continuous function.

(2) f(n) ⌘ S(1/n, 1/n, · · · , 1/n) is a monotonically increasing function of n.

(3) Composition law for compound experiments:

S(AB) = S(A) +
mX

k=1

pk S(B|A) (8)
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To understand the composition law, consider the following compound experiment
AB.

Experiment A: Select one out of m baskets. (Suppose basket k is selected.)

Experiment B: Select one out of nk objects from basket k.

In the end, all we did was to select one object from N =
Pm

k=1 nk objects.

Let the total uncertainty of the compound experiment be S(AB).

The composition law states that we should be able to quantify the uncertainty at
each step and add them together.

The uncertainty in 1st step is simply S(A) = S(p1, · · · , pn).

The uncertainty in 2nd step depends on the outcome of the 1st step. When basket k

is selected, let the uncertainty of 2nd step be S(B|Ak).

The expected value of the uncertainty in 2nd step is
Pm

k=1 pkS(B|Ak).

Hence we expect S(AB) = S(A) +
Pm

k=1 pk S(B|Ak)

To show Shannon’s entropy is the only expression that satisfy these three conditions, we
design a special compound experiment.

Consider an experiment in which we randomly pick 1 object out of N objects. The probability
of picking any object is 1/N . The uncertainty of this experiment is

S(1/N, 1/N, · · · , 1/N) ⌘ f(N) (9)
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Now imagine that we artificially break down the experiment into two steps. Imagine that
we divide the N objects into m groups.

Each group k contains nk objects and k runs from 1 to m, i.e.
Pm

k=1 nk = N . In the first
step, we randomly pick one of the m groups, the probability of picking group k is

pk =
nk

N
(10)

In the second step, we pick one object from the selected group. Suppose group k is selected
in the first step, then the probability of selecting one object in the second step is 1/nk.

The uncertainty in the first step is S(p1, · · · , pm).

The expected value for the uncertainty in the second step is
Pm

k=1 pkf(nk). Hence

f(N) = S(p1, · · · , pm) +
mX

k=1

pkf(nk) (11)

Now consider a special case of n1 = n2 = · · · = nm = n, pk = 1/m for all k.

Every group has n objects, n · m = N .

f(N) = S(1/m, · · · , 1/m) +
mX

k=1

1

m
f(n) (12)

f(mn) = f(m) + f(n), for arbitrary m, n (13)

Thus
f(m) = K log m (14)

where K is arbitrary positive constant.

Plug it back to the general case

K log N = S(p1, · · · , pm) +
mX

k=1

pkK log nk (15)

S(p1, · · · , pm) = K log N �
mX

k=1

pkK log nk

= K

mX

k=1

pk log N �K

mX

k=1

pk log nk

= K

mX

k=1

pk log
N

nk

= �K

mX

k=1

pk log pk (16)
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Of course, in the special case of pk = 1/⌦, k = 1, 2, · · · , ⌦, we get back to Boltzmann’s
entropy expression

S = �K

⌦X

k=1

(1/⌦) log(1/⌦)

= K log ⌦ (17)

5 Entropy of ideal gas

Now, let’s count how many (⌦) microscopic states are consistent with macroscopic state
variables N, V, E.

In the microcanonical ensemble, all microstates with E  H({qi}, {pi})  E + �E have
equal probability density. (Yes, we need to talk about probability density because qi and pi

are continuous variables).

From Lecture Notes “Microcanonical ensemble”

⌦ =
⌦̃(E + �E)� ⌦̃(E)

N ! h3N
(18)

⌦̃(E) is the phase space volume occupied by all micro states with H({qi}, {pi})  E. N !,
h

3N are correction factors from quantum mechanics.

For an ideal gas, H =
P3N

i=1
p2

i
2m , ⌦̃(E) is the volume of 3N -dimensional sphere (R =

p
2mE)

times V
N .

⌦̃ =
(2⇡mE)3N/2

(3N
2 )!

· V N (19)

⌦ =
1

N ! h3N
· @⌦̃(E)

@E
· �E

=
1

N ! h3N
· (2⇡m)3N/2 · E3N/2�1

(3N/2� 1)!
· V N · �E (20)

log ⌦ = � log N !� 3N log h + (3N/2) log(2⇡m)

+(3N/2� 1) log E � log(3N/2� 1)! + N log V + log �E (21)
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Apply stirling’s formula, and only keep terms of the order N ,

log ⌦ ⇡ �N log N + N �N log h
3 + N log(2⇡mE)3/2

�(3N/2) log(3N/2) + 3N/2 + N log V

= N [� log N + 1� log h
3 + log(2⇡mE)3/2

� log(3N/2)3/2 + 3/2 + log V ]

= N


log

(2⇡mE)3/2
V

Nh3(3N/2)3/2
+ 5/2

�

= N

"
log

 
V

N

✓
4⇡mE

3Nh2

◆3/2
!

+
5

2

#
(22)

Notice that Planck’s constant h remains in the final expression, but �E does not, because
the latter does not contribute a term of the order N .

Given the fundamental equation of state S(E, V,N), we can derive all other properties of
the ideal gas (Handout 6. Thermodynamics §3.2).

The statistical distribution of momentum of one particle in ideal gas in the microcanonical
ensemble has been derived in Handout 5. Microcanonical Ensemble §2.2.
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Outline

• In this chapter, we will establish the equilibrium statistical distribution for systems
maintained at a constant temperature T , through thermal contact with a heat bath.

• The resulting distribution is also called Boltzmann’s distribution.

• The canonical distribution also leads to definition of the partition function and an
expression for Helmholtz free energy, analogous to Boltzmann’s Entropy formula.

• We will study energy fluctuation at constant temperature, and witness another fluctuation-
dissipation theorem (FDT) and finally establish the equivalence of micro canonical
ensemble and canonical ensemble in the thermodynamic limit. (We first met a mani-
festation of FDT in di↵usion as Einstein’s relation.)

Reading Assignment: Reif §6.1-6.7, §6.10
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1 Temperature

For an isolated system, with fixed N – number of particles, V – volume, E – total energy, it
is most conveniently described by the microcanonical (NV E) ensemble, which is a uniform
distribution between two constant energy surfaces.

⇢mc({qi}, {pi}) =

⇢
const E  H({qi}, {pi})  E + �E

0 otherwise
(1)

Statistical mechanics also provides the expression for entropy S(N, V, E) = kB ln ⌦.

In thermodynamics, S(N, V, E) can be transformed to a more convenient form (by Legendre
transform) of Helmholtz free energy A(N, V, T ), which correspond to a system with constant
N, V and temperature T .

Q: Does the transformation from N, V, E to N, V, T have a meaning in statistical
mechanics?

A: The ensemble of systems all at constant N, V, T is called the canonical NV T ensemble.

Q: What is the probability distribution function for the canonical ensemble? Is it uniform?

A: The distribution is not uniform. It is called Boltzmann’s distribution, which we will
develop below.

Q: How do we define temperature in statistical mechanics?

A: In thermodynamics, temperature is established through the zeroth law — transitivity
of thermal equilibrium.

This means that temperature is a property that emerges in the thermodynamic limit,
N ! 1, where N is the number of particles. — The existence of temperature is
independent of the type of the material (e.g. gas, liquid, or solid).

On the other hand, a system with say, N < 10, particles does not have a well defined
temperature (in the usual thermodynamic sense), unless it is in thermal contact with
another system, i.e., a thermostat, which has a large number of particles and a well-
defined temperature.

The thermostat is considered to be many many times larger than the system of inter-
est, so that the heat exchange with the system has a negligible e↵ect on the energy per
particle and temperature of the thermostat.

Through thermal contact with the thermostat, the system will eventually settle down
to an equilibrium state with temperature equal to that of the thermostat.
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The only requirement for the thermostat is that it is much larger than the system of
interest. — You could imagine the rest of the universe as the thermostat. The only
problem there is that the universe is not in thermal equilibrium.

For convenience, the ideal gas is usually used as a model for the thermostat (because its
analytic expression for S(N, V, E) is known). But this is not necessary. The property
of the system of interest will not change if we use a di↵erent type of thermostat.

2 Boltzmann’s distribution

Because the system can exchange heat with the thermostat, its total energy is no longer
conserved. Hence, we should no longer expect its energy to be confined as

E  H({qi}, {pi})  E + �E

Instead, any energy is allowed.

Q: How can we obtain the equilibrium density distribution ⇢c({qi}, {pi}) for the canonical
ensemble?
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A: The key idea is that, the (system + thermostat) can be considered an isolated system,
and can be described by the microcanonical ensemble.

Let H be the Hamiltonian of the system and HB be the Hamiltonian of the heat bath.

H + HB = Ê is conserved. Hence the system and heat bath together can be described by
the microcanonical ensemble when they have reached thermal equilibrium.

⇢mc({qi}, {pi}; {qB

i
}, {pB

i
}) =

⇢
const Ê  H({qi}, {pi}) + HB({qB

i
}, {pB

i
})  Ê + �E

0 otherwise
(2)

where {qi}, {pi} represent the system’s degrees of freedom, and {qB

i
}, {pB

i
} represent the heat

bath’s degrees of freedom. If we only want to know the statistical distribution concerning
the system’s degrees of freedom, all we need to do is to integrate out the degrees of freedom
corresponding to the heat bath.

⇢c({qi}, {pi}) =

Z 3NBY

j=1

dq
B

j
dp

B

j
⇢mc({qi}, {pi}, {qB

i
}, {pB

i
}) (3)

This is very similar to the study of momentum distribution of one gas molecule in a gas tank
of N molecules (see “Microcanonical ensemble” notes).

) ⇢({qi}, {pi}) is proportional to the number of ways the thermostat molecules can rearrange
themselves such that Ê  H({qi}, {pi}) + HB({qB

i
}, {pB

i
})  Ê + �E.

⇢c({qi}, {pi}) = const · ⌦B(Ê �H({qi}, {pi})) (4)
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Recall that the entropy SB of the heat bath is a function of its energy EB.

SB(EB) = kB ln ⌦B(EB) EB = Ê �H({qi}, {pi}) (5)

Also notice that Ê, EB � E = H({qi}, {pi}). Hence we can do a Taylor expansion of SB

around E = 0.

SB(EB) ⇡ SB(Ê)�
✓

@SB

@EB

◆
· H({qi}, {pi}) (6)

The higher order terms are neglected.

We recognize that 1
T
⌘
⇣

@SB
@EB

⌘
, where T is the temperature of the thermostat. T must also

be the temperature of the system at thermal equilibrium. Therefore,

SB(EB) = const� H({qi}, {pi})
T

(7)

⌦B(EB) = exp

✓
SB(EB)

kB

◆
= const · exp

✓
�H({qi}, {pi})

kBT

◆
(8)

⇢c({qi}, {pi}) = const · exp

✓
�H({qi}, {pi})

kBT

◆
(9)

This is the canonical distribution, also called Boltzmann’s distribution or Boltzmann’s law.

⇢c({qi}, {pi}) =
1

Z̃
exp

✓
�H({qi}, {pi})

kBT

◆
(10)

The term in the exponential is called Boltzmann’s factor.

Z̃ is a normalization factor

Z̃ ⌘
Z 3NY

i=1

dqi dpi exp

✓
�H({qi}, {pi})

kBT

◆
(11)

We can compare this result with the momentum distribution of one gas molecule in the
microcanonical ensemble (see “Microcanonical ensemble” notes).

3 Helmholtz free energy

Do not say “it’s just a normalization factor”. We will see that Z̃ is actually very important.

In the miocrocanonical ensemble, we also have a nomalization constant ⌦̃ (volume of phase
space)

⇢mc({qi}, {pi}) =
1

⌦̃

⇢
1 E  H({qi}, {pi})  E + �E

0 otherwise
(12)
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⌦̃ is eventually connected to entropy

S(N, V, E) = kB ln
⌦̃

N !h3N
(13)

In other words,

S = kB ln ⌦, ⌦ ⌘ ⌦̃

N !h3N
(14)

Q: What’s the meaning of the normalization constant Z in the canonical ensemble?

Q: What is entropy in the canonical ensemble?

A: Use Shannon’s entropy formula,

S = �kB

X

i=1

pi ln pi

= �kB

Z

�

dq dp
1

Z
exp

✓
� H

kBT

◆
·
✓
� H

kBT
� ln Z̃

◆

=
1

T

Z

�

dq dp ⇢c(q, p) H(q, p) + kB ln Z̃ (15)

where
R

� means integration over the entire phase space.

Notice that the first term simply contains the ensemble average of energy.

E ⌘ hHi ⌘
Z

�

dq dp ⇢c(q, p) H(q, p) (16)

) S =
E

T
+ kB ln Z̃, kBT ln Z̃ = TS � E (17)

Recall in thermodynamics, the Helmholtz free energy is defined as A ⌘ E � TS.
Therefore,

A = �kBT ln Z̃ (18)

Adding quantum corrections

A(N, V, T ) = �kBT ln
Z̃

N ! h3N
(19)

Z ⌘ Z̃!
N !h3N is called the partition function.

Notice that energy E is the ensemble average of the Hamiltonian. But the free energy
A cannot be written as an ensemble average. A is proportional to the log of the
normalization constant A = �kB ln Z. (Analogous to Boltzmann’s entropy expression
for the canonical ensemble S = kB ln ⌦.)
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4 Fluctuation-dissipation theorem on energy

In the canonical ensemble, the system acquire a temperature by having a thermal contact
with a thermostat (heat bath) with temperature T . Thus the system is no longer isolated
any more. Its total energy, i.e., Hamiltonian H({qi}, {pi}) is no longer conserved. In other
words, we should expect some fluctuation of total energy in the canonical ensemble.

On the other hand, fluctuations are not considered in thermodynamics. At constant N, V, T ,
the appropriate thermodynamics potential is A(N, V, T ), from which we can compute a
definite value for energy E = A + TS, with S ⌘ � (@A/@T )

N,V
.

Hence, in thermodynamics, we expect the system to simultaneously have a definite tem-
perature T and total energy E. In statistical mechanics, if the system have a well defined
temperature, its total energy E must fluctuate.

Q: How do we reconcile this di↵erence between statistical mechanics and thermodynamics?

A: (1) The total energy in thermodynamics should be identified as the ensemble average of
the Hamiltonian in statistical mechanics.

E = hHi ⌘ 1

Z̃

Z 3NY

i=1

dqi dpi exp(��H({qi}, {pi})) · H({qi}, {pi}), � ⌘ 1

kBT
(20)

(2) We expect the statistical fluctuation of the Hamiltonian to diminish in the thermody-
namic limit (N !1). Q: Can we show this?

Define �E as the standard deviation of the Hamiltonian in the canonical ensemble, where

(�E)2 ⌘ hH2i � hHi2 (21)

We would like to compare the magnitude of �E with E ⌘ hHi itself.

To proceed, we need to introduce a widely used technique (or trick) in statistical mechanics,
which involves the all-important partition function (or normalization factor).

Z̃ ⌘
Z 3NY

i=1

dqi dpi e
��H({qi},{pi}) (22)

@Z̃

@�
= �

Z 3NY

i=1

dqi dpi e
��H({qi},{pi}) H({qi}, {pi}) (23)

) E ⌘ hHi = � 1

Z̃

@Z̃

@�
= � @

@�
ln Z̃ (24)

In fact, many other thermodynamic properties can be expressed in terms of derivatives of Z̃.
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Since

@Z̃

@�
= �

Z 3NY

i=1

dqi dpi e
��H({qi},{pi}) H({qi}, {pi}) (25)

@
2
Z̃

@�2
= �

Z 3NY

i=1

dqi dpi e
��H({qi},{pi}) H({qi}, {pi})2 (26)

hH2i =
1

Z̃

Z 3NY

i=1

dqi dpi e
��H

H
2 =

1

Z̃
· @

2
Z̃

@�2
(27)

hH2i � hHi2 =
1

Z̃

@
2
Z̃

@�2
�
 

1

Z̃

@Z̃

@�

!2

=
1

Z̃

@

@�

 
@Z̃

@�

!
+

@

@�

✓
1

Z̃

◆
@Z̃

@�
=

@

@�

 
1

Z̃

@Z̃

@�

!

) hH2i � hHi2 = � @

@�
hHi (28)

(�E)2 = hH2i � hHi2 = � @

@�
E = kBT

2

✓
@E

@T

◆
(29)

Notice that CV =
�

@E

@T

�
N,V

is the heat capacity — an extensive quantity.

CV = N · cV , where cV is the specific heat – an intensive quantity

(�E)2 = kB T
2
CV = N kB T

2
cV (30)

�E =
p

NkBT 2cV (31)

) �E /
p

N as N !1 (32)

On the other hand, we expect as an extensive quantity

E / N as N !1 (33)

) �E

E
/ 1p

N
! 0 as N !1 (34)

Therefore, the relative energy fluctuation diminishes in the thermodynamic limit. In this
limit, the di↵erence between canonical and microcanonical ensemble vanishes!

Notice that the variance of H, (�E)2 ⌘ hH2i � hHi2, is a measure of the energy fluctuation
of the system.

At the same time, the heat capacity CV ⌘ @E

@T
measures the response of the system to external

stimuli — How much energy is needed if we want to raise the temperature by one degree.
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Thus (�E)2 = kBT
2
CV is an example of the fluctuation-dissipation theorem (FDT). Spon-

taneous fluctuations at thermal equilibrium and response to external stimuli are not inde-
pendent of each other.

We have encountered another fluctuation-dissipation theorem (µ = D

kBT
) in the “Di↵usion”

chapter.

Other fluctuation-dissipation theorems can be derived similarly. For example, the sponta-
neous volume fluctuation at constant pressure is related to compressibility — see future notes
on the “(N, P, T ) ensemble”.

Because (�E)2 = kBT
2
CV , (�E)2 � 0, and kBT

2 � 0, we must have CV ⌘
�

@E

@T

�
N,V

� 0.
Hence the heat capacity is always positive.

5 Examples

5.1 Ideal Gas

Let’s obtain the explicit expression for A(T, V,N) from A = �kBT ln Z and compare it with
the results from the microcanonical ensemble + Legendre transform.

Z =
1

N ! h3N

Z 3NY

i=1

dqi dpi exp

✓
�H({qi}, {pi})

kBT

◆
(35)

H({qi}, {pi}) =
X

i

|pi|2

2m
+ U({qi}) (36)

Z =
V

N

N ! h3N

Z 1

�1
dp exp

✓
� p

2

2mkBT

◆�3N

=
V

N

N ! h3N
(2⇡mkBT )3N/2 (37)

A(T, V,N) = �kBT ln Z = �kBTN

"
ln

 
V

N

✓
2⇡mkBT

h2

◆3/2
!

+ 1

#
(38)

Same as in the previous chapter on “Thermodynamics”.

5.2 Molecules with three energy levels

Consider N molecules, each can be in one of the three energy states, E = 0, ", 2".

Q: What is the Helmholtz free energy, energy and the entropy of the system at the tem-
perature T?

Q: What is the heat capacity CV ?
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The degree of freedom in this problem is {ni}, i = 1, · · · , N .

The energy of molecule i is (ni · "), ni = 0, 1, 2.

This problem would be a nightmare if you have to solve it using the microcanonical ensemble
in your midterm. But algebra is fairly easy if we use the canonical ensemble. The results
must be the same. This is why people like to use canonical ensemble in derivations.

The first step is to find the partition function

Z =
X

{ni}

exp(��H), where H =
NX

i=1

ni · " (39)

notice the 1
N !h3N correction is no longer needed because the problem is already discrete and

molecules are distinguishable.

The sum
P

{ni} over all possible combinations seems impossible to obtain. But it can be
transformed to a much simpler form.

e��H = exp

 
��"

NX

i=1

ni

!
=

NY

i=1

e��"ni (40)

Z =
X

{ni}

NY

i=1

e��"ni =
NY

i=1

 
X

ni=0,1,2

e��"ni

!

=
�
1 + e��" + e�2�"

�N
(41)

Helmholtz free energy A = �kBT ln Z

A = �NkBT ln(1 + e��" + e�2�") (42)

S = �@A

@T
= NkBT ln

�
1 + e��" + e�2�"

�
+ NkBT

e��" "

kBT 2 + e�2�" 2"

kBT 2

1 + e��" + e�2�"
(43)

E = A + TS = N "
e��" + 2e�2�"

1 + e��" + e�2�"
(44)

Alternative, we can obtain E from

E = � @

@�
(ln Z) = � @

@�

⇥
N ln(1 + e

��" + e
�2�")

⇤

= N "
e��" + 2e�2�"

1 + e��" + e�2�"
(45)
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The heat capacity

CV =

✓
@E

@T

◆

N

(46)

has a very long expression. But the main point here is that its analytic expression exists.

As T ! 0, e
� "

kBT ! 0, E ! 0, S ! 0 (third law), A ! 0, CV !?

As T ! 1, e
� "

kBT ! 1, E ! N" (is this reasonable?), S ! NkB ln 3 (is this reasonable?),
A ! �NkBT ln 3 + N", CV !?
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1 Summary of NV E and NV T ensembles

Let us start with a quick summary of the microcanonical (NV E) ensemble. It describes
isolated systems with fixed number of particles N , volume V and energy E.

• The microcanonical ensemble is described by a uniform distribution with two constant
energy shells.

• The connection with thermodynamics is made through Boltzmann’s entropy formula:
S = kB ln ⌦, where ⌦ is the number of microscopic states consistent with thermody-
namic (macroscopic) variables N, V, E.

• Inverting S(N, V, E) we can obtain E(S, V, N). The other thermodynamic quantities
are defined through partial derivatives.

temperature T ⌘
�

@E

@S

�
V,N

, pressure p ⌘ �
�

@E

@V

�
S,N

, chemical potential µ ⌘
�

@E

@N

�
S,V

Next, a quick summary of the canonical (NV T ) ensemble. It describes systems in contact
with a thermostat at temperature T . As a result, the energy of the system no longer remain
constant. The number of particles N and volume V remain fixed.

• The canonical ensemble is described by Boltzmann’s distribution.

⇢({qi}, {pi}) =
1

Z̃
e��H({pi},{qi}) (1)

Z̃ =

Z 3NY

i=1

dqi dpi e
��H({pi},{qi}) (2)
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• The connection with thermodynamics is made through the expression of Helmholtz
free energy A(N, V, T ) through the partition function Z,

A = �kBT ln Z , Z =
1

N !h3N

Z 3NY

i=1

dqi dpi e
��H({pi},{qi}) (3)

• The other thermodynamic quantities are defined through partial derivatives.

entropy S ⌘
�

@A

@T

�
V,N

, pressure p ⌘ �
�

@A

@V

�
T,N

, chemical potential µ ⌘
�

@A

@N

�
T,V

• The energy (Hamiltonian) of system is no longer conserved, but fluctuate around its
average value.

E ⌘ hHi = � 1

Z

@Z

@�
= � @

@�
ln Z (4)

(�E)2 ⌘ hH2i � hHi2 = �@E

@�
= kBT

2
Cv = NkBT

2
cv (5)

Hence in the thermodynamic limit N !1,

�E =
p

NkBT 2cv

�E

E
/ 1p

N
! 0 (6)

The di↵erence between microcanonical (NV E) ensemble and canonical (NV T ) ensem-
ble vanishes.

2 NPT ensemble

The NPT ensemble is also called the isothermal-isobaric ensemble. It describes systems
in contact with a thermostat at temperature T and a bariostat at pressure p. The system
not only exchanges heat with the thermostat, it also exchange volume (and work) with the
bariostat. The total number of particles N remains fixed. But the total energy E and volume
V fluctuate at thermal equilibrium.

Q: What is the statistical distribution ⇢({qi}, {pi}) at thermal equilibrium?

Q: What is the microscopic expression for the thermodynamic potential?

Approach: Consider system of interest + thermostat + bariostat all together as a closed system,
which can be described using the microcanonical ensemble.
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2.1 Equilibrium distribution

Notice that in the (NPT ) ensemble, the probability distribution function must also include V

as its variable, because the volume can (in principle) take any value at thermal equilibrium.

⇢({qi}, {pi}, V ) / number of ways (⌦̃) the thermostat and the bariostat can rearrange them-
selves to allow the system to have energy E = H({qi}, {pi}) and volume V .

Let S̃ be the entropy of the thermostat + bariostat, then

⌦̃ = exp

 
S̃

kB

!
(7)

Let V0 and E0 be the total volume and total energy of the thermostat + bariostat + system
of interest. Let V and E be the volume and energy of the system of interest. Then the
volume and energy left for the thermostat + bariostat are, V0� V and E0�E, respectively.

S̃(Ñ , V0 � V, E0 � E) = S̃(Ñ , V0, E0)�
 

@S̃

@Ṽ

!

N,E

V �
 

@S̃

@Ẽ

!

N,V

E (8)

We recognize
⇣

@S̃

@Ẽ

⌘

N,V

⌘ 1
T

where T is the temperature of the thermostat.

But what is
⇣

@S̃

@Ṽ

⌘

N,E

?

This is the time to use the second type of Maxwell’s relationship.
 

@S̃

@Ẽ

!

V,N

·
 

@Ẽ

@Ṽ

!

S,N

·
 

@Ṽ

@S̃

!

E,N

= �1 (9)

1

T
· (�p) ·

 
@Ṽ

@S̃

!

E,N

= �1 (10)

=)
 

@S̃

@Ṽ

!

N,E

=
p

T
(11)

where p is the pressure of the bariostat. Therefore,

S̃(Ñ , Ṽ , Ẽ) = S̃(Ñ , V0, E0)�
p

T
V � 1

T
E (12)

⌦̃ = const · exp

✓
�E + pV

kBT

◆
(13)

Therefore, the equilibrium distribution of the isothermal-isobaric (NPT ) ensemble is,

⇢({qi}, {pi}, V ) =
1

⌅
e��[H({qi},{pi})+pV ] (14)

⌅ =

Z 1

0

dV

Z 3NY

i=1

dqi dpi e
��[H({qi},{pi})+pV ] (15)
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2.2 Thermodynamic potential

By now, we would expect the normalization factor ⌅ should be interpreted as a kind of
partition function that will reveal us the fundamental equation of state.

To find out the precise expression, we start with the Shanon entropy expression. (Notice here
that V is an internal degree of freedom to be integrated over and p is an external variable.)

S = �kB

X

i

pi ln pi

= �kB

Z 1

0

dV

Z 3NY

i=1

dqi dpi ⇢({qi}, {pi}, V ) ·

H({qi}, {pi}) + pV

�kBT
� ln ⌅̃

�

=
1

T
(hHi+ phV i) + kB ln ⌅̃ (16)

=
1

T
(E + pVavg) + kB ln ⌅̃ (17)

Hence

� kBT ln ⌅̃ = E � TS + pVavg ⌘ G(N, T, P ) (18)

This is the Gibbs free energy, which is the appropriate thermodynamic potential as a function
of N, T, P ! So everything falls into the right places nicely. We just need to careful that
the volume in thermodynamics is the ensemble average Vavg ⌘ hV i, because in (N, T, P )
ensemble, V is not a constant.

Of course, we still need to put in the quantum corrections 1/(N !h3N), just as before. So the
final expression for the Gibbs free energy and chemical potential µ is,

µN = G(T, p, N) = �kBT ln ⌅ (19)

⌅(T, p, N) =
1

N !h3N

Z 1

0

dV

Z 3NY

i=1

dqi dpi pie
��[H({qi},{pi})+pV ] (20)

⌅(T, p, N) =

Z 1

0

dV Z(T, V,N) e��pV (21)

Therefore, ⌅(T, p, N) is the Laplace transform of the partition function Z(T, V,N) of the
canonical ensemble!

2.3 Volume fluctuations

To obtain the average of volume V and its higher moments, we can use the same trick as in
the canonical ensemble and take derivatives of ⌅ with respect to p.
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hV i = �kBT
1

⌅

@⌅

@p

hV 2i = (kBT )2 1

⌅

@
2⌅

@p2

�@V

@p
= kBT

@

@p

✓
1

⌅

@⌅

@p

◆
= kBT

"
1

⌅

@
2⌅

@p2
� 1

⌅2

✓
@⌅

@p

◆2
#

=
1

kBT

"
(kBT )2 1

⌅

@
2⌅

@p2
�
✓

kBT
1

⌅

@⌅

@p

◆2
#

=
1

kBT
(hV 2i � hV i2)

⌘ 1

kBT
(�V )2 (22)

Define compressibility1

�c ⌘ �
1

V

✓
@V

@p

◆

T,N

=
(�V )2

kBTV
(23)

Then we have,

(�V )2 = kBT�cV (24)

�V =
p

kBT�cV (25)
�V

V
/ 1p

V
! 0 as V ! 1 (26)

In other words, in the thermodynamic limit (V !1), the relative fluctuation of volume is
negligible and the di↵erence between (NPT ) ensemble and (NV T ) ensemble vanishes.

2.4 Ideal gas example

To describe ideal gas in the (NPT ) ensemble, in which the volume V can fluctuate, we
introduce a potential function U(r, V ), which confines the partical position r within the
volume V . Specifically, U(r, V ) = 0 if r lies inside volume V and U(r, V ) = +1 if r lies
outside volume V .

The Hamiltonian of the ideal gas can be written as,

H({qi}, {pi}) =
3NX

i=1

p
2
i

2m
+

NX

j=1

U(ri, V ) (27)

1Not to be confused with � ⌘ 1/(kBT ).
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Recall the ideal gas partition function in the (NV T ) ensemble.

Z(T, V,N) =
V

N

N !h3N
(2⇡mkBT )

3N/2 =
V

N

N !⇤3N
(28)

where ⇤ ⌘ h/
p
2⇡mkBT is the thermal de Broglie wavelength.

⌅(T, p,N) =

Z 1

0

dV · Z(T, V,N) · e��pV

=
1

N !�3N

Z 1

0

dV · V N · e��pV

=
1

N !�3N

1

(�p)N+1

Z 1

0

dx · xN · e�x

=
1

N !�3N

1

(�p)N+1
N !

=

✓
kBT

p

◆N+1 1

⇤3N
(29)

In the limit of N ! 1,

⌅(T, p,N) ⇡
✓
kBT

p

◆N

· (2⇡mkBT )3N/2

h3N
(30)

The Gibbs free energy is

G(T, p,N) = �kB ln⌅ = �NkBT ln

✓
kBT

p

◆
· (2⇡mkBT )3/2

h3

�
(31)

This is consistent with Lecture Notes 6 Thermodynamics §3.2,

µ =
G

N
= �kBT ln

✓
kBT

p

◆
· (2⇡mkBT )3/2

h3

�
(32)

3 Grand canonical ensemble

The grand canonical ensemble is also called the µV T ensemble. It describes systems in
contact with a thermostat at temperature T and a particle reservoir that maintains the
chemical potential µ. The system not only exchanges heat with the thermostat, it also
exchange particles with the reservoir. The volume V remains fixed.2 But the number of
particles N and energy E fluctuate at thermal equilibrium.

2Remember the Gibbs-Duhem relation. We cannot specify all three variables T , p, µ simultaneously.
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Q: What is the statistical distribution ⇢({qi}, {pi}) at thermal equilibrium?

Q: What is the microscopic expression for the thermodynamic potential?

Approach: Consider system of interest + thermostat + particle reservoir all together as a closed
system, which can be described using the microcanonical ensemble.

3.1 Equilibrium distribution

Notice that int the grand canonical (µV T ) ensemble, the probability distribution function
must also include N as its variable, because the number of particle can (in principle) be any
non-negative integer at thermal equilibrium.

Following the same approach as in the (NPT ) ensemble, we obtain the equilibrium distri-
bution of the grand canonical (µV T ) ensemble as the following.

⇢({qi}, {pi}, N) =
1

Z̃
e��(H({qi},{pi})�µN) (33)

where

Z̃ =
1X

N=0

Z 3NY

i=1

dqi dpi e
��(H({qi},{pi})�µN) (34)

=
1X

N=0

e�µN
Z̃(N, V, T ) (35)

⇢ is grand canonical distribution and Z̃(N, V, T ) is the normalization factor in the canonical
ensemble for N particles.

3.2 Thermodynamic potential

Again, we should expect the normalization factor to give us the thermodynamic potential
for µ, V, T , which is the Grand potential, or Landau potential,3

�(µ, V, T ) = E � TS � µN = �pV (36)

3We called it K in Lecture Notes 6 Thermodynamics.
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Starting from Shanon’s entropy expression, we can show that

�(µ, V, T ) = �kBT lnZ , pV = kBT lnZ (37)

where Z is the grand partition function,

Z =
1X

N=0

Z 3NY

i=1

dqi dpi e
��(H({qi},{pi})�µN) (38)

=
1X

N=0

e�µN
Z(N, V, T ) (39)

where Z(N, V, T ) is the partition function of the canonical ensemble. Notice that we have
removed the˜sign, meaning that we have applied the quantum correction 1/(N !h3N).

Define fugacity z ⌘ e�µ (so that µ = kBT ln z) we can write,

Z =
1X

N=0

z
N

Z(N, V, T ) (40)

Therefore, the grand partition function Z(µ, V, T ) is the unilateral Z-transform of the
partition function Z(N, V, T ) of the canonical ensemble.4

3.3 Number of particles fluctuations

Average number of particles

hNi = kBT
1

Z
@Z
@µ

= kBT
@

@µ
(lnZ) = z

@

@z
(lnZ) (41)

hN2i = (kBT )2 1

Z
@

2Z
@µ2

(42)

@hNi
@µ

=
1

kBT
(hN2i � hNi2) =

(�N)2

kBT
(43)

Define density ⇢ ⌘ hNi
V

, hNi = ⇢V

V · @⇢

@µ
=

(�N)2

kBT
(44)

(�N)2 = kBT (@⇢/@µ)V (45)

�N =
p

kBT (@⇢/@µ)V (46)

�N

hNi =

p
kBT (@⇢/@µ)V

⇢V
/ 1p

V
! 0 (as V !1) (47)

4No wonder it is called the Z-transform. See http://en.wikipedia.org/wiki/Z-transform for proper-
ties of the Z-transform.
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3.4 Ideal gas example

Recall the ideal partition function in the canonical ensemble,

Z(N, V, T ) =
V

N

N !h3N
(2⇡mkBT )3N/2 =

V
N

N !⇤3N
(48)

(49)

From this we obtain the grand partition function,

Z =
1X

N=0

z
N

V
N

N !⇤3N
=

1X

N=0

1

N !

✓
zV

⇤3

◆N

(50)

Z = exp

✓
zV

⇤3

◆
(51)

Next the grand potential � = �pV ,

pV = kBT lnZ = kBT
zV

⇤3
(52)

p = kBT
z

⇤3
, z =

p

kBT
⇤3 (53)

e�µ =
p

kBT

✓
h

2

2⇡mkBT

◆3/2

(54)

µ = kBT ln

"✓
p

kBT

◆
·
✓

h
2

2⇡mkBT

◆3/2
#

(55)

This is consistent with the results from the NPT ensemble, as it should!

We now can obtain an explicit expression of the density fluctuation of the ideal gas.

hNi = z
@

@z
lnZ = z

@

@z

✓
zV

⇤3

◆
=

zV

⇤3
= ln Z =

pV

kBT
(56)

hNi =
e

�µ
V

⇤3
(57)

@hNi
@µ

=
e�µ

�V

⇤3
= � · hNi =

pV

(kBT )2
(58)

(�N)2 = kBT
@hNi
@µ

=
pV

kBT
= hNi (59)

(60)

Hence the variance of N equals the expectation value of N . The standard deviation of N is

�N =
p
hNi (61)
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The relative fluctuation of N is
�N

N
=

1p
hNi

(62)

From the above we also obtain how density ⇢ = N/V changes with the chemical potential,

@⇢

@µ
=

1

V

@hNi
@µ

=
p

(kBT )2
(63)

3.5 Lattice gas model

From the previous sections, we see
�N = hNi (64)

Q: Is this result reasonable?

Ideal gas means no correlation between molecules. Hence we can build a lattice gas model
as a further simplification to the ideal gas model.

Imagine we divide the volume V into Nc cells. Each cell can have either 1 molecule or 0
molecule.

Assume Nc � hNi, so that we can ignore the possibility that two molecules occupy the same
cell.

Define a random variable for each cell,

ni =

⇢
1 cell i contains 1 molecule, probability p

0 cell i contains 0 molecule, probability (1� p)
(65)

ni and nj are independent of each other (for i 6= j)

The total number of molecules in volume V is

N =
NcX

i=1

ni, (66)
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The average number of molecules is

hNi =
NcX

i=1

hnii = hnii · Nc (67)

Notice that

hnii = p (68)

hn2
i
i = p (69)

hn2
i
i � hnii2 = p� p

2 = p (1� p) (70)

Hence

hNi = Nc p (71)

hN2i � hNi2 = Nc p (1� p) = hNi
✓

1� hNi
Nc

◆
(72)

In the limit of Nc � hNi,5

(�N)2 = hN2i � hNi2 = hNi (73)

This is consistent with the prediction from the grand canonical ensemble.

5Nc can be arbitrarily large and hence much larger than N .
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3 Equipartition theorem 4

4 Free energy of solids 6

A Decoupling of harmonic oscillators 10

We have considered a number of models that can be solved analytically in statistical

mechanics, such as ideal gas, 2-level molecules, 3-level molecules, N -harmonic oscillators.

They are all non-interacting models. In the canonical ensemble, the partition function of N

identical but non-interacting particles is simply the N -th power of the partition function of

a single particle.

If we want to go beyond the ideal gas systems, we need to account for interactions between

molecules. Finding the partition function for systems with interactions is generally di�cult

(if not impossible). However, solids at low temperatures can be approximated by a connected

set of harmonic oscillators. Through a coordinate transformation, the system can be re-

written as a set of independent harmonic oscillators, so that we can use the results from the

non-interacting models again.

Reading assignment: Reif §7.1-7.7, §10.1-10.2.
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1 Average kinetic and potential energy

Let us start with some general discussion that is applicable to a wide range of systems, which

can be either solid, liquid, or gas. Consider a Hamiltonian of an N -particle system

H({qi}, {pi}) =

3NX

i=1

p
2
i

2m
+ U({qi}) (1)

where the first term on the right hand side is the kinetic energy and the second term is the

potential energy.

In the canonical (N, V, T ) ensemble, the partition function is

Z =
1

N !h3N

Z 3NY

i=1

dqi dpi e
��H({qi},{pi}) ⌘ e

��A
(2)

where A is the Helmholtz free energy.

The average energy is

E ⌘ hHi =

R Q3N

i=1 dqi dpi e
��H({qi},{pi})H({qi}, {pi})R Q3N

i=1 dqi dpi e
��H({qi},{pi})

(3)

The average energy is the sum of the average kinetic energy and the average potential energy.

The average kinetic energy is easy to evaluate,

Ekin =

*
3NX

i=1

p
2
i

2m

+
=

R Q3N

i=1 dqi dpi e
��H

(
P3N

i=1
p
2
i

2m
)

R Q3N

i=1 dqi dpi e
��H

=

3NX

i=1

R
dpie

� p2
i

2mkBT p
2
i

2m

R
dpie

�
p2
i

2mkBT

=

3NX

i=1

mkBT

2m

=
3

2
NkBT (4)

Notice that the result does not depend on m. This means the result is
3
2NkBT as long as

the kinetic energy is a quadratic function of pi.

If the potential energy is also a quadratic function of qi, i.e. the case of 3N -independent

harmonic oscillator,

U({qi}) =

3NX

i=1

1

2
k q

2
i

(5)
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then using the same derivation as above we will find that the average potential energy is

also hUi =
3
2NkBT . In this case, the average total energy is equally divided between the

average kinetic energy and average potential energy (i.e. equipartition). But a system of

independent harmonic oscillators is not a good (enough) model of a solid. Nonetheless, the

average potential energy of a solid (at low temperature) is still hUi =
3
2NkBT . We will

explain the reason using Virial theorem.

At low temperature, atoms in solids vibrates around its equilibrium position {q0
i
}. Hence we

can do a Taylor expansion of U({qi}) around the equilibrium position,

U({qi}) = U({q0
i
}) +

3NX

i=1

@U

@qi

����
qi=q

0
i

· (qi� q
0
i
) +

1

2

3NX

i,j=1

@
2
U

@qi@qj

����
qi=q

0
i

(qi� q
0
i
)(qj � q

0
j
) + · · · (6)

Define U({q0
i
}) = E0 = �NEcoh, where Ecoh is called the cohesive energy. Because {q0

i
} are

equilibrium positions, by definition

@U

@qi

����
qi=q

0
i

= 0 (7)

Define Kij ⌘ @
2
U

@qi@qj
. Matrix K ⌘ {Kij} is called the Hessian matrix.

At low temperature (T < Tm/2) where Tm is the melting temperature of the solid, (qi � q
0
i
)

is relatively small (compared with the distance between neighboring atoms), so that terms

above the second order can be neglected, i.e.,

U({qi}) ⇡ �NEcoh +
1

2

3NX

i,j=1

Kij(qi � q
0
i
)(qj � q

0
j
) (8)

Therefore, the solid can be approximated as a set of coupled harmonic oscillators. Notice

that in this approximation, and if we redefine the energy reference to make Ecoh = 0, then

U({qi}) is a homogeneous function of order 2, i.e.,

U({� qi}) = �
2
U({qi}) (9)

We will be using this property soon after the Virial theorem is derived.

2 Virial theorem

For an arbitrary potential energy function U({qi}), it is di�cult to say anything general

about its average hUi. However, we can still say something very general about the Virial,
which (for each i = 1, · · · , 3N) is defined as

@U

@qi

qi

3



and has the same dimension (unit) as the potential energy. Notice that the force on qi is

fi ⌘ �@U/@qi. Thus the Virial is simply (minus) “force” times “position”,

�fi qi

In fact, the average of every term in the summation can be obtained analytically.

⌧
@U

@qi

qi

�
=

R Q3N

i=1 dqi e
��U({qj}) @U

@qj
qj

R Q3N

i=1 dqi e
��U({qi})

=

R
dq1 · · · dqi�1dqi+1 · · · dq3N

⇣
d

dqi
e
��U({qj})dqi

⌘
qi(�kBT )

R
d3Nqje

��U({qj})

=
�

R Q3N

i=1 dqje
��U({qj})

R Q3N

i=1 dqje
��U({qj})

(�kBT )

= kBT (10)

This is the Virial Theorem, which states that the ensemble average of the Virial is

h�fi · qii = kBT (11)

If we sum over all i = 1, · · · , 3N , we get,

*
3NX

i=1

@U

@qi

qi

+
= 3NkBT (12)

which is twice the average kinetic energy!

3 Equipartition theorem

Suppose potential energy U({qi}) is a homogeneous function of order ↵, i.e.

U(�q1, �q2, · · · , �q3N) = �
↵
U(q1, q2, · · · , q3N) (13)

An example is the potential energy of solids at low temperature, where U({qi}) is a homo-

geneous function of order ↵ = 2, see Eq. (9).

For this class of potential energy functions, Euler’s theorem tells us that the sum of Virial

is proportional to the potential energy itself!
1

3NX

i=1

@U

@qi

qi = ↵ U (14)

1
This can be shown by taking derivative of U({� qi}) with respect to � and evaluate it at � = 1. On

the one hand, from chain rule,
@U
@�

��
�=1

=
P3N

i=1
@U
@qi

qi. On the other hand,
@�↵

@�

��
�=1

U = ↵ U . For more

discussions, see lecture note 6 “Thermodynamics”, Section 2.2.2. “Virial theorem / Euler theorem”.
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Therefore, when Virial theorem is applied to a potential energy function U({qi}) that is a

homogeneous function of order ↵, we get

↵ U =

3NX

i=1

@U

@qi

qi = 3NkBT = 2 Ekin (15)

For solids at low temperature (coupled harmonic oscillators), ↵ = 2. Hence

hUi = Ekin =
3

2
NkBT (16)

which means the average total energy is equally divided between average potential energy

and average kinetic energy. This is the energy equipartition theorem for solids.

Q: What is the prediction of the heat capacity from this expression?

As temperature increases and approaches the melting temperature, the fraction of the po-

tential energy in the total energy will drop below 50%. In the limit of T ! 1, everything

will go to the ideal gas limit, in which case the fraction of the potential energy in the total

energy goes to 0.

There are other systems whose potential energy is a homogeneous function of order ↵ = �1.

An example is the gravitational interaction of matter in a galaxy,

U({ri}) =

X

i,j

Gmimj

|ri � rj|
(17)

Another example is the Coulomb interaction in a plasma,

U({ri}) =

X

i,j

QiQj

4⇡✏0|ri � rj|
(18)

For these systems, both average potential energy and average total energy are negative. The

average total energy is the negative of the average kinetic energy.
2

↵ = �1

hUi = �2Ekin

E = hUi+ Ekin = �Ekin (19)

) Ekin = �E

) hUi = 2E

2
This holds even for systems not in thermal equilibrium, such as a satellite orbiting around the earth.
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4 Free energy of solids

Even though Virial theorem gives us the average energy of solids at low temperature (coupled

harmonic oscillators), it does not give us the Helmholtz free energy, for which we still need

to evaluate the integrals in the partition function Z.

Recall that we have simplified the potential function to the following form,

U({qi}) = �N Ecoh +
1

2

3NX

i,j=1

Kij(qi � q
0
i
)(qj � q

0
j
) (20)

The harmonic oscillators can be decoupled by diagonalizing matrix K = {Kij}. For example,

this can be done in Matlab by the following command,

[V,D] = eig(K)

This gives a unitary matrix V and a diagonal matrix D such that
3

K = VDVT

The diagonal entries of D are eigenvalues (�i = Dii) of matrix K and the columns of matrix

V are the corresponding eigenvectors. Using matrix V, we can define a coordinate transform

q̃i =

3NX

j=1

Vji(qj � q
0
j
) , p̃i =

3NX

j=1

Vjipj (21)

The fact that V is a unitary matrix ensures that p̃i is still the conjugate momentum of

q̃i. The Hamiltonian can be rewritten in terms of the new variables, (for more details see

Appendix A),

H({q̃i}, {p̃i}) = �N Ecoh +

3NX

i=1

1

2
�iq̃i

2
+

p̃i
2

2m
(22)

Now the Hamiltonian is identical to that of a set of independent harmonic oscillators (each

with a di↵erent spring constant �i and vibration frequency !i). The distribution of vibration

frequencies give rise to the “density of states” of a solid (see Reif p.410, Fig.10.1.1.). The

partition function can be integrated analytically to give the Helmholtz free energy,
4

A = �NEcoh � kBT

3NX

i=1

ln
kBT

~!i

, where !i ⌘
r

�i

m
(23)

Q: There are three modes (oscillators) with �i = 0, and hence wi = 0. Why? What shall we

do with them?

3
A unitary matrix has the property that VT

= V�1
. A diagnoal matrix has the property that Dij = 0

if i 6= j.
4
When quantum e↵ects are included, this model (independent oscillators with a distribution of vibration

frequencies) gives a better description of the specific heat cv of solid as a function of temperature T in the

low T limit than the Einstein model (independent oscillators all having the same frequency). See Reif. p.416,

Fig.10.2.2.

6



7



8



9



A Decoupling of harmonic oscillators

In this appendix, we prove that the diagonalization of matrix K indeed leads a set of decou-

pled harmonic oscillators by coordinate transformation. In component forms, the relation

K = VDVT
can be written as,

Kij =

3NX

k=1

Vik �k Vjk (24)

Substitute that into Eq. (20), we obtain,

U({qi}) = �N Ecoh +
1

2

3NX

i,j=1

3NX

k=1

Vik �k Vjk(qi � q
0
i
)(qj � q

0
j
) (25)

Define

q̃k ⌘
3NX

i=1

Vik (qi � q
0
i
) (26)

then

U({qi}) = �N Ecoh +
1

2

3NX

k=1

q̃k �k q̃k (27)
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which is equivalent to the potential energy part of Eq. (22).

To evaluate the kinetic energy in the new coordinates, we notice that V is a unitary matrix,

i.e. VTV = I. In component form, this means,

3NX

k=1

Vik Vjk = �ij (28)

where �ij = 1 if i = j and �ij = 0 if i 6= j. Hence the kinetic energy is

Ekin =

3NX

i,j=1

pi pj �ij

2m
=

1

2m

3NX

i,j=1

3NX

k=1

pi Vik Vjk pj

Define

p̃k ⌘
3NX

i=1

Vik pi (29)

then

Ekin =
1

2m

3NX

k=1

p̃k p̃k (30)

which is equivalent to the kinetic energy part of Eq. (22).
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In this lecture, we will discuss fluids beyond the ideal gas limit. This means we need to
account for interactions between molecules. Unlike the case of solid, we cannot remove the
interactions between di↵erent degrees of freedom simply from a coordinate transformation.
Instead, techniques have been developed to account for the interactions as a perturbation to
the non-interacting system.

Reading assignment: Reif §10.3-10.5.

1 Ideal gas model review

In the limit of temperature going to infinity and density goes to zero, all gases can be well
described by the ideal gas model with the well-known equation of state,

pV = NkBT (1)

1



For simplicity, we are considering mono-atomic gas molecules and N is the total number of
gas molecules. Eq. (1) is not the most fundamental form of the equation of state, in the
sense that from it we cannot derive all thermodynamic properties of the ideal gas.

One of the fundamental form of the equation of state is,

A(T, V,N) = �NkBT


ln

✓
V

N⇤3

◆
+ 1

�
= NkBT

⇥
ln
�
⇢⇤3
�
� 1
⇤

(2)

where ⇤ ⌘ h/
p

2⇡mkBT is the de Broglie wavelength at temperature T and ⇢ ⌘ N/V is the
density. From Eq. (2) we can derive Eq. (1) easily by following the definition of pressure,

p ⌘ �
✓

@A

@V

◆

N,T

= �NkBT

V
(3)

However, it is impossible to derive Eq. (2) from Eq. (1) alone.

We can give it a try by writing,

A(T, V1, N)� A(T, V0, N) =

Z V1

V0

@A

@V
dV = �

Z V1

V0

p dV (4)

Using Eq. (1) we have

A(T, V1, N)� A(T, V0, N) = �NkBT

Z V1

V0

1

V
dV = �NkBT ln

V1

V0
(5)

In other words,

A(T, V,N) = �NkBT ln
V

h(N, T )
(6)

where h is some arbitrary function of N and T . Hence the result is consistent with Eq. (2),
but more information (such as heat capacity) is needed to uniquely determine the function
h(N, T ).

2



2 Van der Waals model

With decreasing temperature and increasing density, all gases exhibit deviation from the ideal
gas model. The Van der Waals model is an interesting phenomenological model that tries to
capture the main physical e↵ects responsible for the deviation from the ideal gas model. It
tries to capture two main features of the interactions between two gas molecules. First, two
molecules repel each other strongly when they get too close to each other. (This is mainly
caused by the electrons on both molecules that are forbidden to take the same quantum
state according to the Pauli’s exclusion principle.) Hence we can think of molecules as tiny
solid spheres each having a non-zero exclusion volume. Second, two molecules attract each
other when they are far apart. (This is caused by the fluctuating electric dipole moment of
each molecule. The interaction is called Van der Waals interaction and interaction energy
scales as r

�6 where r is the distance between two molecules.)

The p-V relation of the Van der Waals model of a non-ideal gas is,

✓
p +

N
2
a

V 2

◆
(V �N b) = N kB T (7)

where a > 0 and b > 0 are two empirical constants. Equivalently, we have

p =
NkBT

V �Nb
� N

2
a

V 2
(8)

b can be thought of as the exclusion volume of each gas molecule, so that the available volume
for the gas molecules to wiggle around is reduced to V �Nb. a is supposed to capture the
mutual attraction between the molecules, which should reduce the pressure exerted on the
wall of the gas tank. Because the attraction is between every pair of molecules, the reduction
of the pressure should be proportional to the square of density (in the limit of low density),
hence the term �N

2
a/V

2.

A fundamental form of the equation of state of the Van der Waals model is

A(T, V,N) = �NkBT


ln

✓
V �Nb

N⇤3

◆
+ 1

�
� N

2
a

V
(9)

Again, we can derive Eq. (8) from Eq. (9) but not vice versa.

3 Virial expansion

The Van der Waals model captures several important physical aspects of a real fluid (such
as the transition between the liquid and vapor phases below a critical temperature, to be
discussed later). However, the behavior of a real fluid is not necessarily described very
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accurately by the (two-parameter) Van der Waals model. The Virial expansion is a more
systematic approach to describe the deviation of a real gas from an ideal gas. Define particle
density ⇢ ⌘ N/V , then the ideal gas satisfies the relation

p

kBT
= ⇢ (10)

One way to generalize this (ideal gas) law is to add higher order terms of ⇢ to the right hand
side. The resulting expression is called the Virial expansion.

p

kBT
= ⇢ + B2(T )⇢2 + B3(T )⇢3 + · · · (11)

where B2(T ), B3(T ), · · · are called Virial coe�cients. In the limit of ⇢ ! 0, the leading
term (⇢) dominates the right hand side, and the ideal gas is recovered, as it should.

The Van der Waals equation of state, Eq. (8) can be rewritten in the form of Virial expansion.

p =
NkBT

V �Nb
� N

2
a

V 2

p

kBT
=

N

V �Nb
� N

2
a

V 2kBT

=
⇢

1� b⇢
� a

kBT
⇢

2

= ⇢ (1 + b⇢ + b
2
⇢

2 + b
3
⇢

3 + · · · )� a

kBT
⇢

2

= ⇢ +

✓
b� a

kBT

◆
⇢

2 + b
2
⇢

3 + b
3
⇢

4 + · · · (12)

Hence

B2(T ) = b� a

kBT
(13)

B3(T ) = b
2 (14)

B4(T ) = b
3 (15)

· · ·

Of course, the Virial coe�cients of a real gas does not need to have the same form as above,
which only holds for the Van der Waals model.

Q: Can we find the Helmholtz free energy A(N, V, T ) (i.e. the fundamental equation of state)
of a non-ideal gas given its Virial expansion coe�cients?

A: The answer is yes. This may sound strange because in the previous two sections we said
that from the p-V relation alone it is impossible to completely determine the A(N, V, T )
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function. However, now that the A(N, V, T ) function for an ideal gas is already known, we
can use it to our advantage to determine the A(N, V, T ) function for an non-ideal gas.

All we need to do is to determine the Helmholtz free energy di↵erence between the non-ideal
(real) gas and the ideal gas, i.e.,

�A(N, V, T ) ⌘ A
real.gas(N, V, T )� A

ideal.gas(N, V, T ) (16)

�A(T, V1, N)��A(T, V0, N) = �
Z V1

V0

(preal.gas � p
ideal.gas)dV

= �
Z V1

V0

kBT

✓
B2N

2

V 2
+

B3N
3

V 3
+ · · ·

◆
dV

=

Z V0

V1

kBT

✓
B2N

2

V 2
+

B3N
3

V 3
+ · · ·

◆
dV (17)

Notice that at constant N and T , a real gas goes to the ideal gas limit as V !1. Hence

lim
V!1

�A(T, V,N) = 0 (18)

�A(T, V1, N) =

Z 1

V1

kBT

✓
B2N

2

V 2
+

B3N
3

V 3
+ · · ·

◆
dV (19)

= kBT

✓
B2N

2

V1
+

B3N
3

2V 2
1

+ · · ·
◆

�A(T, V,N) = NkBT

✓
B2N

V
+

B3N
2

2V 2
+

B4N
3

3V 3
+ · · ·

◆
(20)

= NkBT

✓
B2 ⇢ +

1

2
B3 ⇢

2 +
1

3
B4 ⇢

3 + · · ·
◆

(21)

Hence the Helmholtz free energy of a real gas described by the Virial coe�cients B2(T ), B3(T ), · · ·
is,

A(T, V,N) = NkBT


ln
�
⇢⇤3
�
� 1 + B2(T ) ⇢ +

1

2
B3(T ) ⇢

2 +
1

3
B4(T ) ⇢

3 + · · ·
�

(22)

Adding this to the ideal gas Helmholtz free energy, we obtain the Helmholtz free energy
of a real gas in terms of Virial expansion coe�cients.

Q: What is the energy E of the gas? [Hint: S ⌘ �
�

@A
@T

�
V,N

, E = A + TS.]

Q: What is the chemical potential of the gas?
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4 Virial coe�cients from molecular interactions

So far all of our discussions are still phenomenological. For example, we can consider the
Virial coe�cients B2(T ), B3(T ), · · · as empirical functions to characterize the experimental
p-V curves of a non-ideal gas. However, to gain a fundamental understanding of the behavior
of a non-ideal gas, we would like to be able to derive the Virial coe�cients from the interaction
potentials between the gas molecules.

We can often assume that the potential energy of a (non-ideal) gas can be written as a sum
over all pair-wise interactions between the gas molecules

U
int({ri}) =

N�1X

i=1

NX

j=i+1

�(rij) , (23)

where rij = |ri � rj| is the distance between molecules i and j. The function �(r) describes
the interaction energy between two molecules as a function of their separation distance r.
Typically, � ! +1 as r ! 0, � ! 0 as r ! 1, and � exhibits a minimum between these
two limits, as shown below.

In this section, we will show that the Virial coe�cients can indeed be expressed in terms of
function �(r). Specifically, the second Virial coe�cient is

B2(T ) = �2⇡

Z 1

0

⇥
e���(r) � 1

⇤
r
2 dr (24)

Higher order Virial coe�cient can also be derived (Barker 1964).

This means that the p-V curve measurements can tell us something about the inter-molecular
interaction and vice versa.
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First, we can write down the explicit expression of the Hamiltonian for a tank of gas with
inter-molecular potential function �(r),

H({qi}, {pi}) =
3NX

i=1

p
2
i

2m
+ U({ri})

=
3NX

i=1

p
2
i

2m
+

N�1X

i=1

NX

j=i+1

�(|ri � rj|) +
NX

i=1

U
ext(ri) (25)

where U
ext(ri) is introduced to describe the confining e↵ect of the gas container.

In order to derive the second Virial coe�cient B2 (or for anything else really), we start with
the partition function in the canonical ensemble.

Z =
1

N !h3N

Z 3NY

i=1

dqi dpi e
��

✓P3N
i=1

p2
i

2m+U({ri})
◆

The integrals over the momenta can be performed analytically (just in the case of the ideal
gas), so that,

Z =
1

N !⇤3N

Z
d

3r1d
3r2 · · · d3rN e��U({ri}) (26)

Define

Zu ⌘
Z

d
3r1d

3r2 · · · d3rN e��U({ri})

then

Z =
Zu

N !⇤3N
(27)

Recall that for an ideal gas, Zu = V
N , hence Z = V N

N !⇤3N , leading to Eq. (2).

To get rid of the inconvenient potential from the container U
ext(r), we can assume the gas

molecules are subjected to the periodic boundary conditions (PBC) in a cube of length L

V = L
3 (28)
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When there is no interaction between atoms, this directly give us Zu = V
N . When there is

pair interaction between gas molecules

U({ri}) =
X

i<j

�(rij) , rij = |ri � rj| (29)

Therefore

Zu =

Z
d

3r1d
3r2 · · · d3rN exp(��U) (30)

exp(��U) =
Y

i<j

exp(���(rij)) (31)

=
Y

i<j

(1 + f(rij)) (32)

where we have defined f(rij) ⌘ e���(rij) � 1.

Next we expand the product and write down all the terms...
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Compare this with earlier expression

�A(T, V,N) = NkBT

✓
B2(T ) ⇢ +

1

2
B3(T )⇢2 + · · ·

◆
(33)

We have

B2(T ) = �2⇡

Z 1

0

f(r) r
2
dr

= �2⇡

Z 1

0

[e���(r) � 1] r2
dr (34)

Higher order Virial coe�cient can be obtained similarly — the approach is called cluster
expansion. The math will become horrendous by the time you get to the 5th Virial coe�cient
but it can be done [2].
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5 Liquid-gas phase transition

The Van der Waals model is important because it is a simple model that captures the
transition between the liquid and gas phases (vaporization and condensation). This can be
seen by plotting the Helmhotz free energy and pressure of the Van der Waals model as a
function of V at constant T . (Download plotvanderwaals.m from coursework.)

A(T, V,N) = �NkBT

"
ln

 
(V �Nb)

N

✓
2⇡mkBT

h2

◆3/2
!

+ 1

#
� N

2
a

V

p = �
✓

@A

@V

◆

T,N

=
NkBT

V �Nb
� N

2
a

V 2

The model exhibits two di↵erent behaviors when T is above or below a critical temperature
Tc, where kBTc = 8a

27b . When T > Tc, the Van der Waals model behaves like one homogeneous
fluid. When T < Tc, the model exhibits a distinction between two phases: a gas phase at
large V and a liquid phase at small V , and a phase transition between the two.
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Observations: There exist a critical temperature Tc.

• When T > Tc, the A(V ) curve is convex ( @2A
@V 2 > 0) everywhere. Correspondingly, the

p(V ) curve has negative slope everywhere.

• When T < Tc, the A(V ) curve has concave regions ( @2A
@V 2 < 0). Correspondingly, the

p(V ) curve has positive slope there.

A convex free energy is required for the stability of a homogeneous phase.

Consider a tank of gas with volume V0 that has
reached thermal equilibrium.

Now let us introduce a piston that separate the
gas tank into two halves.

The gases on both sides of the piston can be de-
scribed by the same p(V ) curve.

Initially, both of them have the same volume
V1 = V2 = V0/2.

Hence they have the same pressure p1 = p2.

Now imagine a small perturbation on the position of the piston, such that

V1 =
V0

2
+ �V , V2 =

V0

2
� �V , �V > 0

If @2A
@V 2 > 0, @p

@V < 0, then p1 < p2. Therefore, there is a net force to the left, which pushes
the piston back to its original position. In this case, we say that the system is stable against
the perturbation.

What happens if @2A
@V 2 < 0, @p

@V > 0?

Then we will have p1 > p2. There is a net force
to the right, pushing the piston further away from
its original positions.

In this case, the system is unstable against the
perturbation.
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Q: Is this really bad if the position of the piston is unstable?

Yes! The piston is only imaginary. If @p
@V > 0, then a spontaneous density fluctuation some-

where inside the gas tank will always get amplified. The denser region will get even denser,
the more dilute region will get even more dilute. In other words, the original homogeneous
phase is unstable against spontaneous separation into two phases — a denser liquid phase
and a more dilute gas phase.

Even if locally @2A
@V 2 > 0, the phase is not

necessarily stable.

For example, consider point m, whose
voluem is Vm. According to the A(V )
curve, the free energy at Vm is A(Vm).

Now consider a common tangent line
touching the A(V ) curve at V↵ and V�. Let
Vm = (1� �)V↵ + �V� (� > 0).

Claim: A gas at volume Vm (density ⇢m = N/Vm) is thermodynamically unstable against
separation into two phases: one phase having density ⇢↵ = N/V↵, the other phase having
density ⇢� = N/V�.

From Eq. (9), the Helmholtz free energy per molecule of the Van der Waals model can be
expressed as a function of density ⇢ = N/V ,

A(T, V,N)

N
= �kBT


ln

✓
1

⇢⇤3
� b

⇤3

◆
+ 1

�
� ⇢ a (35)

Let us compute the free energy of a mixture of two phases (at density ⇢↵ and ⇢�) and compare
it with the free energy of a homogeneous phase (at density ⇢m).

Let Ñ↵, Ñ� be the number of molecules in phase ↵, �.

Let Ṽ↵, Ṽ� be the volume occupied by phase ↵, �.
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Ñ↵ + Ñ� = N

Ṽ↵ + Ṽ� = Vm

Ñ↵

Ṽ↵

=
N↵

V↵
= ⇢↵

Ñ�

Ṽ�

=
N�

V�
= ⇢�

Hence

Ñ↵ = (1� �) N

Ṽ↵ = (1� �) V↵

Ñ� = � N

Ṽ� = � V�

(36)

The Helmholtz free energy of the two phase mixture is

A(T, Ṽ↵, Ñ↵) + A(T, Ṽ�, Ñ�)

= (1� �) A(T, V↵, N) + � A(T, V�, N)

< A(T, Vm, N) (free energy of the homogeneous phase) (37)

Hence the fluid (starting from a homogenous phase at density ⇢m) can lower its Helmholtz
free energy by breaking into two phases (with densities ⇢↵ and ⇢�). From second law of
Thermodynamics, this shall happen spontaneously and is a irreversible process.

Hence for T < Tc, the Van der Waals fluid consists of a single phase only if V  V↵ (liquid)
or V � V� (gas). It is a mixture of two phases if V↵ < V < V�.

For T > Tc, the Van der Waals fluid consists of a single phase at all volume (or density).
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A major topic of interest in statistical mechanics (and in physics in general) is the under-
standing of phase transitions (e.g. freezing of water to form ice), which requires the study
of interacting models.

The 2-dimensional (2D) Ising model (see front page image on coursework) is one of the few
interacting models that have been solved analytically (by Onsager, who found the expression
of its partition function). It turns out that the 2D Ising model exhibits a phase transition.
The analytic and numerical solutions of the Ising model are important landmarks in the
field of statistical mechanics. They have significantly influenced our understanding of phase
transitions.

We will first discuss the simpler 1-dimensional (1D) Ising model, whose analytic solution is
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easier to obtain. This will pave the road to the discussion of the 2D Ising model which comes
next.

Reading assignment: Sethna p.163-165. Reif Chapter 10.

1 Definition of Ising model

Ising (Z. Physik, 31, 253, 1925) introduced a model consisting of a lattice of “spin” variables
si, which can only take the values +1 (") and �1 (#). Every spin interacts with its nearest
neighbors (2 in 1D) as well as with an external magnetic field h.

The Hamiltonian1 of the Ising model is

H({si}) = �J

X

hi,ji

sisj � h

X

i

si (1)

The sum hi, ji is over nearest neighbors (j = i ± 1 in 1D).

J is a constant specifying the strength of interaction. The Ising model is usually studied in
the canonical ensemble. (It would be a nightmare to do it in the microcanonical ensemble.)

In the canonical ensemble, the probability of finding a particular spin configuration {si} is,

p({si}) =
1

Z
exp(��H({si})), � ⌘ 1

kBT
(2)

where Z =
P

{si} exp(��H({si})) is the partition function. Due to the Boltzmann factor,

e��H , spin configurations with lower energies will be favored.

We can now discuss the e↵ect of J and h on the behavior of the spins.

• when h > 0, si = +1 is favored.

• when h < 0, si = �1 is favored.

This means that the spins wants to align with the direction of h.

1Here the Hamiltonian is no longer a function of coordinate qi and momentum pi, as in the case of classical
mechanics. We still call H the Hamiltonian because it represents the total energy of the Ising model.
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• when J > 0, neighboring spins prefer to be parallel, e.g. si = +1 and si+1 = +1, or
si = �1 and si+1 = �1. (This is called the ferromagnetic model.)

• when J < 0, neighboring spins prefer to be anti-parallel, e.g. si = +1 and si+1 = �1,
or si = �1 and si+1 = +1. (This is called the anti-ferromagnetic model.)

At low enough temperature, all spins in the 2D Ising model will “cooperate” and sponta-
neously align themselves (e.g. most spins become +1) even in the absence of the external
field (h = 0). This phenomenon is called spontaneous magnetization.

At high enough temperatures, the spontaneous magnetization is destroyed by thermal fluc-
tuation. Hence the 2D Ising model has a critical temperature Tc, below which there is
spontaneous magnetization and above which there isn’t. In other words, there is a phase
transition at Tc.

Unfortunately this doesn’t occur in the 1D Ising model. The 1D Ising model does not have
a phase transition. We are discussing it here just to “warm up” for the discussion of the 2D
Ising model.

The term “spin” and “magnetic field” in the Ising model originate from its initial application
to the phenomenon of spontaneous magnetization in ferromagnetic materials such as iron.
Each iron atom has a unpaired electron and hence a net spin (or magnetic moment). At low
temperature, the spins spontaneously align giving rise to a non-zero macroscopic magnetic
moment. The macroscopic magnetic moment disappears when the temperature exceeds the
Curie temperature (1043 K for iron). (See http://en.wikipedia.org/wiki/Ferromagnetic
for more details.) As we will see later, the Ising model can be applied to many other problems
beyond magnetism, such as phase separation in binary alloys and crystal growth.
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2 Solving the 1D Ising model

Q: What do we mean by solving the Ising model?

A: We are really after the partition function Z, as a function of J and h. If we have the
analytic expression for Z, we can easily obtain all thermodynamic properties of the
Ising model.

2.1 Non-interacting model (J = 0)

Let us first consider the simpler case of J = 0 (h 6= 0). This is a non-interacting model. It
is the same as the two-level systems we have considered in the canonical ensemble section!

Z =
X

{si}

e
�h

P
i si =

X

{si}

NY

i=1

e
�hsi =

NY

i=1

X

{si=±1}

e
�hsi

=
�
e�h + e

��h
�N

= (2 cosh �h)N (3)

Q: What thermodynamic quantities are we interested in?

A: Helmholtz free energy A(N, T, h), energy E, entropy S, and average magnetization

M(N, T, h) ⌘
DP

N

i=1 si

E
.

Hyperbolic functions

cosh x =
ex + e�x

2

sinh x =
ex � e�x

2
d

dx
cosh x = sinh x

d

dx
sinh x = cosh x

tanh x =
sinh x

cosh x

d

dx
tanh x = 1� (tanh x)2

(See http://en.wikipedia.org/wiki/Hyperbolic function for more details.)

A = �kBT ln Z = �NkBT ln(2 cosh �h) (4)

E = � @

@�
ln Z = �Nh tanh �h (5)
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In this special case (J = 0), H = �h
P

i
si. Therefore,

E ⌘ hHi = �h · M (6)

M = �E

h
= N tanh �h (7)

The magnetic susceptibility2 is

� ⌘ 1

N

✓
@M

@h

◆

T

= (1� tanh2
�h) � (8)

2.2 Ising model at zero field (h = 0)

For the first time, we are discussing an interacting model.

H({si}) = �J

X

hi,ji

sisj = �J

X

i

sisi+1 (9)

The interaction makes the derivation of the partition function more di�cult. It is not
surprising that we will try some coordinate transformations to turn it into an equivalent
non-interacting model. After all, that’s all we know how to solve at this point!

Before we proceed, we need to be more specific about the the boundary conditions (B.C.). A
widely used B.C. is the periodic boundary condition (PBC). The advantage is that no spin
is di↵erent from the others.

2The magnetic susceptibility is a response function of the material. It describes how much does the
magnetization M changes when the external field h is changed. It is analogous to the specific heat, cV ⌘
1
N

�
@E
@T

�
h
, which describes how much heat the system absorbs when the temperature T is changed.
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PBC states that sN+1 = s1. Therefore the Hamiltonian can be written as,

H = �J(s1s2 + s2s3 + · · · + sN�1sN + sNs1) (10)

Alternatively, we can use the “free-end” B.C.

H = �J

N�1X

i=1

sisi+1 = �J(s1s2 + s2s3 + · · · + sN�1sN) (11)

The di↵erence between di↵erent B.C. should vanish in the thermodynamic limit (N !1).

Under free-end B.C., the partition function can be easily evaluated through a coordinate
transformation.

{s1, s2, · · · , sN}! {s1, p2, · · · , pN} (12)

where p2 = s1s2, p3 = s2s3, · · · , pN = sN�1sN .

Since si = ±1, pi = ±1, pi describes whether the spin flips from i to i + 1.

The inverse transform can be written as

s2 = s1p2, s3 = s1p2p3, sN = s1p1 · · · pN (13)

Hence there is a one to one correspondence between

{s1, s2, · · · , sN} and {s1, p2, · · · , pN} (14)

• For free-end B.C., H = �J (p2 + p3 + · · · + pN). Hence the partition function is

Z =
X

{s1,p2,··· ,pN}

e�J(p2+p3+···+pN )

= 2
NY

i=2

X

pi=±1

e�Jpi

Z = 2 (2 cosh �J)N�1 (15)

• One can show that under PBC

Z = (2 cosh �J)N · [1 + (tanh �J)N ] (16)

We see that here J is taking the place of h in the previous section.

Given the partition function Z, we can easily obtain A, E, S, M , as well as specific heat cV .
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2.3 The general case (J 6= 0, h 6= 0)

To obtain the magnetic susceptibility � at non-zero J , we need to consider the case of J 6= 0,
h 6= 0, which is a true interacting model.

The partition function is usually expressed in terms of the trace of a matrix.

The trace is the sum of the diagonal elements of a matrix

Tr(B) = B11 + B22 + · · · + Bnn (17)

where B =

0

BBB@

B11 B12 · · · B1n

B21 B22 · · · B2n

...
...

. . .
Bn1 Bn2 · · · Bnn

1

CCCA
(18)

For example, for an Ising model with one spin, H = �h s1, the partition function is

Z = Tr

✓
e�h 0
0 e��h

◆
= e�h + e��h (19)

Now consider two spins, under periodic B.C.,

H(s1, s2) = �Js1s2 � Js2s1 � hs1 � hs2 (20)

Define matrix

P ⌘
✓

e�(J+h) e��J

e��J e�(J�h)

◆
(21)

then,
Z =

X

{s1s2}

e��H = Tr(P · P ) (22)

Q: Why?

A: Notice that P is a 2⇥ 2 matrix.

Let the 1st row (column) correspond to s = +1, and let the 2nd row(column) corre-
spond to s = �1, e.g.,

P+1,+1 = e�(J+h)
, P+1,�1 = e�� J

,

P�1,+1 = e�� J
, P�1,�1 = e�(J�h)

,

Ps1s2 = e�(Js1s2+h
2 s1+h

2 s2) (23)

Tr(P · P ) =
X

s1

(P · P )
s1,s1

=
X

s1,s2

Ps1,s2 Ps2,s1 (24)
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) Tr(P · P ) =
X

s1,s2

e�(Js1s2+h
2 s1+h

2 s2) · e�(Js2s1+h
2 s2+h

2 s1)

=
X

s1,s2

e��H(s1,s2)

= Z (25)

In general, for N spins forming a linear chain under PBC, the partition function is

Z =
X

{si}

e��H({si})

=
X

{si}

e�(Js1s2+h
2 s1+h

2 s2) · e�(Js2s3+h
2 s2+h

2 s3) · · ·

e�(JsN�1sN+h
2 sN�1+h

2 sN) · e�(JsNs1+h
2 sN+h

2 s1)

= Tr
�
P

N
�

(26)

Now we have obtained a concise formal expression for the partition function. But to compute
matrix P

N , it requires a lot of calculations. Fortunately, we don’t need P
N . we just need

Tr(PN). This is the time we need to introduce a little more matrix theory, concerning the
properties of the trace.

1. Every symmetric (real) matrix can be diagonalized,

P = U · D · UT (27)

where U is a unitary matrix (U ·UT = I), and D is a diagonal matrix. For 2⇥2
matrices, define �+ ⌘ D11, �� ⌘ D22 (D12 = D21 = 0). �± are the eigenvalues
of matrix P .

2. Trace is unchanged after diagonalization

Tr(P) = Tr(D) = �+ + �� (28)

Hence the trace equals the sum of the eigenvalues.

3. The same matrix U that diagonalizes P also diagonalizes P
N , because

P
N =

�
U · D · UT

�
·
�
U · D · UT

�
· · ·
�
U · D · UT

�
= U · DN · UT (29)

4. Notice that

D
N =

✓
�

N

+ 0
0 �

N

�

◆
(30)

We have
Tr(PN) = Tr(DN) = �

N

+ + �
N

� (31)

8



Thus, all we need to do is to diagonalize P . We can do this using Matlab (or Maple,
Mathematica, etc). The result is

�± = e�J


cosh �h ±

q
sinh2

�h + e�4�J

�
(32)

U =


�e�J

�
e�(J�h)��+

�
1

1 �e�J
�
e�(J+h)���

�
�

(33)

Tr(P ) = �+ + �� = 2 e�J cosh �h (34)

Z = Tr(PN) = �
N

+ + �
N

�

= eN�J

(
cosh �h +

q
sinh2

�h + e�4�J

�N

+


cosh �h�

q
sinh2

�h + e�4�J

�N
)

(35)

In the special case of h = 0,

Z = Tr(PN)

= eN�J

h�
1 + e�2�J

�N
+
�
1� e�2�J

�Ni

=
�
e�J + e��J

�N
+
�
e�J � e��J

�N

= (2 cosh �J)N + (2 sinh �J)N

Z = (2 cosh �J)N
⇥
1 + (tanh �J)N

⇤
(36)

Given the general expression for Z(N, T, J, h), we can obtain analytic expressions for

• Magnetization

M(N, T, h) =

*
NX

i=1

si

+
= kBT

1

Z

@Z

@ h
= kBT

@ ln Z

@ h
= �@A

@ h
(37)

• Magnetic susceptibility

� ⌘ 1

N

✓
@M

@h

◆

T

=
kBT

N

@
2 ln Z

@ h2
(38)
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In the thermodynamic limit (N !1), notice that �+ > ��, we have,

ln Z ⇡ N ln �+ = N ln
n

e�J ·
h
cosh �h +

�
sinh2

�h + e�4�J
�1/2
io

= N�J + N ln
h
cosh �h +

�
sinh2

�h + e�4�J
�1/2
i

(39)

A = �kB T ln Z

= �NJ �N kB T ln
h
cosh �h +

�
sinh2

�h + e�4�J
�1/2
i

(40)

E = · · ·
CV =

@E

@T
= · · ·

M = kBT
@ ln Z

@ h
= �@A

@ h
= · · ·

� =
1

N

@M

@ h
= � 1

N

@
2
A

@ h2
= · · · (41)
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3 Generalized 1D Ising model

3.1 Spins with more than two states

The transfer matrix method can be applied to generalized Ising models. For example,
we can consider a Hamiltonian similar to the one considered above,

H({si}) = �J

X

hi,ji

sisj � h

X

i

si (42)

except that each spin can take three possible values, si = �1, 0, +1.3

The partition function can be written as

Z =
X

{si}

e��H({si}) = Tr
�
P

N
�

(43)

where P is now a 3⇥ 3 matrix,

Z = �
N

+ + �
N

0 + �
N

�

⇡ �
N

+ (N !1) (44)

3This is similar to the Potts model (http://en.wikipedia.org/wiki/Potts model).
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3.2 More than one row of spins

Another generalization of the 1D Ising model is to consider two rows of spins interacting
with their nearest neighbors.4

Apply periodic boundary condition in x-direction and free-end boundary condition in y-
direction. In this case, each spin has 3 nearest neighbors. The Hamiltonian and partition
function can still be written in the same way as before,

H({si}) = �J

X

hi,ji

sisj � h

X

i

si

Z =
X

{si}

e��H({si}) = Tr
�
P

N
�

To apply the transfer matrix method, let us consider the two rows of spins as one row of
“super-spins”, ŝi. Each “super-spin” represents the 2 spins in each column, and hence has 4
di↵erent states: (+, +), (+,�), (�, +), (�,�). Hence we can still write,

Z = Tr
�
P

N
�

(45)

where P is a 4⇥ 4 matrix, N is the size of the Ising model in the x-direction.

Let �1, �2, �3, �4 be the four eigenvalues of matrix P (�1 > �2 > �3 > �4). Then,

Z = �
N

1 + �
N

2 + �
N

3 + �
N

4 ⇡ �
N

1 (N !1) (46)

4We can consider this as a baby 2D model. As the number of rows increases, we gradually go to the 2D
Ising model.
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4 2D Ising model

4.1 Analytic solution

Consider the 2D Ising model defined over a square lattice of N spins under periodic boundary
conditions. Again, the Hamiltonian can be written as

H({si}) = �J

X

hi,ji

sisj � h

X

i

si (47)

J describes the strength of interaction, h is exter-
nal magnetic field, and the sum

P
hi,ji is over all

nearest neighbor pairs. Each spin has 4 nearest
neighbors.

Onsager’s solution in the absence of magnetic field h = 0 in the thermodynamic limit is [4]

A = �kBT ln Z

Z = �
N

ln � = ln(2 cosh 2�J) +
1

⇡

Z ⇡
2

0

dw ln


1

2

�
1 + (1�K

2 sin2
w)1/2

 �
(48)

K =
2 sinh 2�J

(cosh 2�J)2

Onsager’s original solution used the transfer matrix method, and was very compli-
cated (Phys. Rev. 65, 117, 1943). Nine years later, Kac and Ward (Phys. Rev.
88, 1332, 1952) re-derived the result using a much simpler graphical/combinatorial
approach. The combinatorial approach was also explained in Feynman’s book on
Statistical Mechanics (Ref. 2). While Onsager was well known for his exact solution
of the 2D Ising model, he won the 1968 Nobel Prize in Chemistry (not in Physics)
for his reciprocal relations in non-equilibrium thermodynamics.

0 0.5 1 1.5 2 2.5 3
−2.45

−2.4

−2.35

−2.3

−2.25

−2.2

−2.15

−2.1

−2.05

−2

−1.95

kB T

 A
 / 

N
 

kBTc =
2J

ln(1 +
p

2)
= 2.269 · · · J (49)

Onsager’s solution predicts a phase tran-
sition at T = Tc. From Monte Carlo
simulation (below), we will see that
T < Tc is the ordered phase; T > Tc is the
disordered phase. Tc of Ising model is anal-
ogous to the Curie Temperature of mag-
netic materials (e.g. Fe). The spontaneous
magnetization disappears if T > Tc.
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From Eq. (48) we can obtain the energy E of the 2D Ising model and its heat capacity.

E = �@ ln Z

@�
= �N

@ ln �

@�
(50)

CV =
@E

@T
= � 1

kBT 2

@E

@�
=

N

kBT 2

@
2 ln �

@�2
(51)

In the above, we plot A, E and CV for the 2D Ising model as a function of kBT (with J = 1).
(Download plot Onsager solution.m and try it yourself.) We see that CV becomes singular
as T ! Tc. (It has been shown that CV / ln |T � Tc| as T ! Tc.) This means that the
slope of the E(T ) curve becomes infinite as T ! Tc. The second derivative of the ln �(�)
curve becomes infinite as T ! Tc. In other words, the second derivative of the integral with
respect to � in Eq. (48) becomes infinite at T = Tc (K = 1). The integral itself and its first
derivative with respect to � remain finite at T = Tc (K = 1).

4.2 Monte Carlo simulation

The Metropolis algorithm is a simple and widely used approach to generate the canonical
ensemble. It is especially convenient to explain (and to implement) for an Ising model. The
algorithm has the following steps.

0. Start with some spin configuration {si}.

1. Randomly choose a spin si

2. Attempt to flip it, i.e. si := �si (trial).

3. Compute the energy change �E due to this flip.

4. If �E < 0, accept the trial.

5. If �E > 0, accept the trial with probability p
acc = e

���E.
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6. If trial is rejected, put the spin back, i.e. si := �si.

7. Go to 1, unless maximum number of iterations is reached.

* More details about this algorithm will be discussed later.

Numerical exercise: run ising2d.m for N = 80⇥80, starting from random initial conditions,
with J = 1, at kBT = 0.5, 1, 1.5, 2, 2.269, 3. Write down your observations.

kBT = 0.5 kBT = 2.269 kBT = 3

Q: Why does the Metropolis algorithm generate the canonical distribution?

To simplify the notation, let A, B represent arbitrary spin configurations {si}. Our goal is
to prove that when the MC simulation has reached equilibrium, the probability of sampling
state A is

pA =
1

Z
e��H(A) (52)

where
Z =

X

A

e��H(A) (53)

— the sum is over all possible (2N) spin configurations.

Monte Carlo simulation follows a Markov Chain, which is completely specified by a transition
probability matrix ⇡AB — the probability of jumping to state B in the next step if the current
state is A.

For an Ising model with N spins, there are 2N spin configurations (states). So ⇡AB is a
2N ⇥ 2N matrix. However, most entries in ⇡AB are zeros.

⇡AB 6= 0 only if there is no more than one spin that is di↵erent (flipped) between A and B.
For example,

if A = {+1, +1, +1, +1, +1, +1} then

for B = {+1,�1, +1, +1, +1, +1}, ⇡AB > 0

but for B = {�1,�1, +1, +1, +1, +1}, ⇡AB = 0

15



To prove the Metropolis algorithm generates the canonical ensemble:

(1) transition matrix can be written as

⇡AB = ↵AB · pacc
AB

, for B 6= A (54)

⇡AA = 1�
X

B 6=A

⇡AB (55)

where ↵AB is the trial probability that satisfies

↵AB = ↵BA (56)

and p
acc
AB

is the acceptance probability.

without loss of generality, let’s assume EB > EA, then
(

p
acc

AB
= exp

⇣
�EB�EA

kBT

⌘

p
acc

BA
= 1

=) ⇡AB

⇡BA

=
↵AB

↵BA

p
acc

AB

p
acc

BA

= exp

✓
�EB � EA

kBT

◆
(57)

(2) If the equilibrium distribution is reached, with pA being the probability of sampling
state A, then we expect the following balance of fluxes.

) pA ⇡AB = pB ⇡BA

pA

pB

=
⇡BA

⇡AB

= e
EB�EA

kBT

=) pA = const · e�
EA

kBT for all A

(58)

The normalization of pA,
P

A
pA = 1, requires that

pA =
1

Z
e
� EA

kBT , Z =
X

A

e
� EA

kBT (59)

(end of proof)
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4.3 Qualitative behavior
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There is a problem with the top plot M/N vs T .

If we define M ⌘
DP

N

i=1 si

E
, then if h = 0, we should always have M = 0 by symmetry.

Why do we claim that there is a di↵erence between low temperature regime (T < Tc) and
high temperature regime (T > Tc)?

To reduce this paradox, we need to imagine the magnetic field h is a very small but positive
number. h ! 0+.

In this case, only the upper branch of the M

N
(T ) curve will be selected, when T < Tc. The

value remains positive as h ! 0+ when T > Tc. The magnetization M

N
! 0+ as h ! 0+.

This is too complicate to do in a numerical simulation. So we need a di↵erent way to compute
magnetic susceptibility �, especially near h ! 0.
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We expect the susceptibility � ⌘ 1
N

@M

@N
to diverge if T < Tc and N !1.

Fluctuation-Dissipation Theorem

� =
1

N

@M

@h
=

1

NkBT

⇣
hM̃2i � hM̃i2

⌘
(60)

where M̃ ⌘
P

N

i=1 si

M ⌘ hM̃i =

*
NX

i=1

si

+
, hM̃2i =

* 
NX

i=1

si

!2+
.

� =
1

NkBT

NX

i,j=1

hsisji � hsiihsji (61)

Therefore, we arrived at another of fluctuation-dissipation theorem (FDT),

� =
1

kBT

NX

j=1

Cij (the right hand side does not depend on i) (62)

19



where
Cij ⌘ hsisji � hsiihsji (63)

is the correlation function between spins i and j. When T < Tc, � ! 1, corresponding to
long range correlation,

P
N

j=1 Cij / N . (unbounded as N !1).

Proof of Eq. (60)

Z =
X

{si}

e��H({si}) =
X

{si}

exp

2

4�J

X

hi,ji

sisj + �h

X

i

si

3

5

@Z

@h
=

X

{si}

e��H({si}) � M̃ (64)

M = kBT
1

Z

@Z

@h
(65)

@M

@h
= kBT

"
1

Z

@
2
Z

@h2
� 1

Z2

✓
@Z

@h

◆2
#

= kBT

h
�

2hM̃2i � �
2hM̃i2

i

=
1

kBT

h
hM̃2i � hM̃i2

i
(66)

4.4 Sketch of derivations of partition function in 2D

Consider a 2D array of spins with dimension N ⇥ L under periodic boundary conditions in
both directions.

We can follow the approach in Section 3.2 and define “super-spins” for each column of spins.
The system then becomes a linear chain of N “super-spins”. But each “super-spin” has 2L

states. This means the transfer matrix P is a 2L⇥2L matrix. Let �1 be the largest eigenvalue
of matrix P . Then,

Z = Tr(PN) ⇡ �
N

1 (N !1) (67)

If L is not too large, this problem can be solved numerically using Matlab.
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This is the approach Onsager took (1943) to find the analytic solution for Z in the limit of
N !1, L !1.5

Onsager used some very advanced mathematical techniques to solve this problem. His solu-
tion predicts a critical temperature of kBTc = 2J

ln(1+
p

2)
= 2.269 J . Onsager also stated the

zero-field magnetization should be

M

N =
⇥
1� sinh�4(2� J)

⇤1/8
(68)

for T < Tc, but did not give a proof (Onsager 1943)! Finally, C. N. Yang (1952) was able
to proof this (again) using a very di�cult derivation.

In 1952, Kac and Ward found a much simpler approach to re-derive Onsager’s result, using
a graphical/combinatorial approach, which is what we will describe below.

The new idea is to rewrite the partition function as a multiplication and expand all the
terms.

Z =
X

{si}

e� J
P

hi,ji si sj

=
X

{si}

Y

hi,ji

e� J si sj (69)

Notice that si sj = ±1, hence

e� J si sj =
e� J + e�� J

2
+

e� J � e�� J

2
si sj

= (cosh �J) + (sinh �J) si sj

= cosh �J (1 + t · si sj) (70)

where t ⌘ tanh �J . Therefore,

Z = (cosh �J)N
X

{si}

Y

hi,ji

(1 + t · si sj) (71)

The key is to find the term following (cosh �J)N .

5Onsager obtained the solution for the case of h = 0. No analytic solution has been found for h 6= 0.
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It turns out that Z
0 can be obtained by summing over all polygons that can be drawn on

a square lattice, each one contributes t
n, where n is the number of lattice points on the

polygon. For example,

It also turns out that there is a “simple” way to sum over all the graphs (need to use Fourier
transform).

The entire derivation was explained by Richard Feynman [2] in 14 pages. So it is not so
“easy”. But all we need to do is to “count carefully”. There is no need to master the theory
of Group and Group Representations, which are used in Onsager’s original proof.
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